AMITÉ: Annotation and Mapping of Internet Topology at the Edges
BAA 07-09, TTA 5: Internet Tomography/Topography

Project Retrospective

John Heidemann and Ramesh Govindan
joint work with Xue Cai, Xun Fan, Zi Hu, Yuri Pradkin;
part with Bala Krishnamurthy and Walter Willinger (AT&T)
USC/ISI and USC/CS Dept.

9 October 2012

Copyright © 2012 by John Heidemann
Release terms: CC-BY-NC 3.0 unported
Yet We Must Understand the Internet

many network security questions
• how robust is…
 – the Internet routing topology?
 – cloud computing?
 – models of topology, traffic, …?
• trends and correlations in…
 – {network location, country, provider, users…}
 – to {compromised hosts, spam generation, botnet C&C, traffic generation, service use…}
• new technology deployment…
 – firewalls? content filters?
 – IPv6 and new protocols? new applications?

how did 2010 Japanese earthquake affect Internet connectivity?

• anecdotes are useful starters…
 – but data essential to
ex: Nov ‘08: take out a bad ISP (McColo)
how much did spam change?
how disproportionate was McColo’s spam?
compare McColo to daily spam ebb&flow?
answers must combine spam + population

how quickly is IPv6 deployment going? or DNSsec?
Our Insight

• we can directly measure the whole Internet
 – fast computers and networks
 – “only” 4 billion IPv4 addresses or 100 anycast nodes
• bring new techniques
• and validation and calibration
 – quantify uncertainty

privacy-sensitive collection of real network data

new measurement and analysis

understanding and knowledge
AMITÉ’s Approach to provide an **Internet map** that is

- **updated**
 - continuous probing and regular map updates

- **edge-conscious**
 - end hosts and services
 (not just routers and links)

- **annotated**
 - latencies, services, owners
 (not just connectivity)

to improve network understanding and security

one map: pings to 3 billion addresses over 2 months
Other data: allocation, usage, high/low bitrate…
Expected AMITÉ Benefits

- **new measurement tools**
 - run on the Internet or your network
 ⇒ new raw data

- **annotated maps**
 - knowledge in that raw data
 ⇒ informs simulations and studies

- **studies quantify accuracy**
 - answers with error bars
 ⇒ know bounds and limits

- **visualization and understanding**
 ⇒ browse, query, or reuse this new knowledge
AMITÉ Development Model

- from **basic research to operation**
 - prove new results via peer review
 - ongoing collection
 - results at range of maturities
- **provide data** to others
- **standardize new approaches**
 - where appropriate
- **today**
 - data is browsable on the web
 - datasets available for use (gratis under DHS PREDICT)
 - tools in use (data collection 24x7); available for others
 - mature tools open sourced
- **ongoing**
 - long-term data collection
 - as a service: we run our tools on your network
 - as a product: spinning out the tools
AMITÉ Challenge and Competitors

• what collection scales to the Internet?
 – many targets
 – many security policies (and paranoid and naïve administrators)
 – need for new infrastructure

• how does it change?
 – constant evolution
 – what are the invariants?

• how can we assess accuracy?
 – finding ground truth

• we complement other topology studies:
 – other researchers (CAIDA, iPlane, DIMES) look at core,
 us: edge and services
 – companies (MaxMind, Neustar, etc.) focus on products,
 us: new approaches and free (gratis) data
Specific AMITÉ Results

- artifacts
 - web-based Internet map
 - datasets
- new techniques
 - topology discovery
 - hitlist generation
 - AS-to-org mapping
 - understanding the edge
 - block-allocation policies
 - low-bitrate edge detection
 - anycast enumeration
 - mass geolocation
Specific AMITÉ Results

- artifacts
 - web-based Internet map
 - datasets
- new techniques
 - topology discovery
 - hitlist generation
 - AS-to-org mapping
 - understanding the edge
 - block-allocation policies
 - low-bitrate edge detection
 - anycast enumeration
 - mass geolocation
Integrated Visualization of Internet Edge

need: first responders, network admins, researchers need to understand Internet

insight: Google maps shows power of web browser

approach: use OpenStreetMaps, plus Hadoop-generated tiles

benefits:
- go-to tool to understand unknown IP address
- excellent PR for Internet mapping (poster, news coverage, understandable)

responsiveness

latency

allocation

geolocation
Automatic Hitlist Generation

need: all topology studies need *targets* *(a hitlist)* ideally addresses that are up

insight: our censuses tell the best targets

approach:
- study series of censuses *(data on all reachablity)*
- look at each /24’s history
- to find best representative for each /24 over whole Internet

benefits:
- data used by 5 groups
- analysis suggested improvements to Internet mapping

need: Autonomous Systems (ASes) are important to understand Internet topology.

insight: must consider that large ISPs often use many ASes.

approach: build an AS-to-organization map from whois.

benefits: better understanding of true ISP footprint and influence.

Cai, Heidemann, Krishnamurthy, Willinger: "An Organization-Level View of the Internet and its Implications (Extended)", ISI TR 2012-679 joint work with AT&T.

Our map: 49,262 ASes to 36,463 orgs. Only 11% of orgs have multiple ASes, but those orgs are important controlling 64% of addrs and 29% of ASes.

AS-to-org matters: compare “biggest AS” (today) vs. all ASes (us), without all ASes, often underestimate ISPs.

underestimates size of large organizations.
Anycast Enumeration

need: anycast is used in *most* root and TLD DNS requests. How big is the infrastructure? Are there anycast hijackers?

insight: we can map anycast servers by looking from many places

approach: probe anycast from 100k end users or 300k recursive DNS; define new data to assist auditing

benefits: better understanding of true ISP footprint and influence

Fan, Heidemann, Govindan: “Characterizing Anycast in the Domain Name System”, ISI TR 2012-681

dns? I’ll use closest (anycast)

our approach is complete (recall > 0.8)

but requires at least 20k vantage points
need: where (*physically*) is each IP address? Today’s geolocation is often approximated for whole IP blocks.

insight: we can scale up geolocation to study *every* IPv4 address

approach: use many vantage points, but pick the *right ones for each target*

benefits: public geolocation data for every IPv4 address

High-Impact Results

• deep-edge mapping
 – IP census/survey data* [14 external users]
 – block allocation* [6 external users of data]
 – low-bitrate block detection*
 – IP hitlists* [7 external users of data]
• wide-area service discovery
 – anycast discovery† [standardization underway; 2 external users of ideas]
 – as-to-org mapping† [4 external users of data; 1 external user of ideas]
• map views and data export
 – IPv4 address browser
 – lots of data to research [over 23 unique research groups using our data]
• wide-area geolocation
 – geolocation* in progress: 54 /8s = 24% allocated, 55% geolocatable
 – datasets now public
• impact via
 – ideas (talks plus *peer reviewed and †in-progress papers)
 – datasets
 – public code and services
Do Our Results Inform Your Work?

• browse our data on the web
 – http://www.isi.edu/ant/address/browse/

• use our ideas? http://www.isi.edu/ant/pubs/

• data for your simulations and models?
 – data is free (gratis): http://www.isi.edu/ant/traces/
 – approval at http://predict.org

• collaboration or to extend our tools?

http://www.isi.edu/ant/