Team Profile

• **Indiana University**
 – Principal Investigator: Jean Camp
 – Doctoral Researchers: Zheng Dong, Greg Norcie, Vaibhav Garg
 – Research Programmer: Constantine Murenin

• **USC Information Sciences Institute**
 – Principal Investigators: John Wroclawski and Jim Blythe
 – Doctoral intern: Shirin Nilizadeh
Customer Need

• Non-expert human decisions play a role in many cases of security failures.

• Improving communication, decision-making, and tool usability will have a large impact on security.

• People need security that fits: personalized, customized, and appropriate for the context.
 – Contexts: banking, work, high risk
 – Mental models: violent crime, mischievous vandals, bad neighborhoods, organized crime.
Approach

• HATS models the user and context to tailor communication
 – Tracks risk context to help identify problems and guide communication
 – Decision-theoretic reasoning about when and what to communicate
 – Tailors risk communication with mental models
 – Coordinates response through automation
Architecture of Approach

Risk Context Analysis

- Network Context
- Web Context
- User Context

- Observed urls
- Observed settings, network activity

- Browser settings
- Dialog specification

- Browser Interface

Intelligent Interaction

- Security reconfig
- Dialog generation

- Probabilistic reasoning

- Metaphors

Ontology/MLN

Year 1 design
Approach: Web Context

- Built learned models of web certificates, applied in real time for web context
 - Complements red/green lists approach
 - Sorting into banks, 6 large banks, phishing, rogue, other
 - Can classify and identify uncertainty in classification
 - URL history reputation system
Approach: Probabilistic Fusion

- Overall risk picture combines uncertain data from network, web and user contexts
- Use decision theory to decide when and how best to act and how to involve the user
- Markov logic network: uses human-readable rules, but compiles to a fast, optimal Bayesian network
Approach: Mental Models

- Your Actions are Risky
- Your Property is At Risk
- Mischievous Vandals Here
- Physical Threat - High Risk!
Benefits

• Involve the user in decision making when appropriate and with understandable information
 – Risk illustration, action, risk escalated or resolved

• High security defaults, simple to override, personalized to individual and context.

• Machine learning approach allows updating responses to emerging threats

• Off-the-shelf tools can be coordinated through the mental model
Competition

• Products
 – Everbank password reuse prevention
 – Custom security configuration and audit

• Research
 – Other usable security research groups

• Open source
 – Certificate pinning
 – No script
Current Status

- Key components of HATS prototype developed
 - Built learned models of web certificates, applied in real time for web context
 - Mental models identified, warnings designed
 - Implemented ontology and probabilistic reasoner for context fusion and interaction
Next Steps

- User testing will quantify benefits and data will fine-tune mental models approach

- Build out risk context: e.g. update user context from responses and integrate resources from related projects

- Web certificate next steps

- Porting to easily deployable real-time tool
Technology Transfer Activities

• Off the record all-day meeting at Indiana University
 – Potential users/tech transfer targets represented
 • Microsoft, Mozilla, Apple, Goldman Sachs
 – others represented
 • Tor, ISOC, CAIDA

• Industrial outreach
 – Microsoft Research – ongoing certificate analysis discussions, project intern, speaking invitation
 – Google via integration with Mozilla
 – Tor: https everywhere, certificate sharing

• Placed doctoral students in industry
 – PARC
 – Microsoft
 – Big Switch
Contact Information

http://UsableSecurity.net

• Jean Camp: UI PI
 Lindley Hall
 Office 230D
 Indiana University
 Bloomington, IN 47405
 – ljcamp@gmail.com

• Jim Blythe: USC ISI
 4676 Admiralty Way
 Suite 1001
 Marina del Rey, CA 90292
 – blythe@isi.edu