UNDERSTANDING AND DISRUPTING THE ECONOMICS OF CYBERCRIME

Carnegie Mellon University (and subcontractors)
Nicolas Christin

September 19, 2013
Team profile

- Nicolas Christin, Carnegie Mellon University (PI)
- Alessandro Acquisti, Carnegie Mellon University (co-PI)
- Ross Anderson, Cambridge University (co-PI)
- Tyler Moore, Southern Methodist University (co-PI)
- Ryan Williams, National Cyber Forensics Training Alliance (co-PI)
- Richard Clayton, Cambridge University (senior personnel)
Why we should look at economics

• Cyber-security attacks cost money
 – Estimates vary and are highly disputed, but:
 – A couple of hundreds of millions of dollars per year in direct costs to victims

• Indirect costs are killing us!

<table>
<thead>
<tr>
<th>Criminal revenue</th>
<th>Cost in policing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large botnet: 1/3 of the spam on the Internet Made its owners 2.7 million USD in a year</td>
<td>How much did we invest in email spam reduction over that year? > 1 Billion USD</td>
</tr>
</tbody>
</table>

• Can we be smarter? How?
 – Focusing limited law enforcement resources on the points where they matter the most
Approach overview

• Criminals are mostly in it for the money
 – Do cost/benefit analysis too!
• Very economically rational
 – Will give up if costs become too high
 • “Visa is burning us with napalm” (some illicit Rx seller on the Internet)
 • “Will close shop until Bitcoin value stabilizes” (a drug dealer on the Silk Road anonymous marketplace)

• Need to find and exploit concentration points (that can lead to effective financial pressure on criminals)
• Need to understand why victims fall for attacks, what are defenses deemed acceptable by the public

Network measurements + economic and behavioral analysis
Task 1: Designing cybercrime indicators

• Catalog available data sources for input
 – Survey vantage points of data collection for different cybercrime categories
• Categorize availability of inputs (public vs. private, incentive vs. disincentive to share, …)
• Examples of existing inputs:
 – Known “bad” URLs (e.g., malware databases)
 – Known “bad” IPs
• Design novel indicators
 – E.g., Indicators of certain website platforms known to be vulnerable to compromise (might be measured)
 – “Google dorks”
 – Features of vulnerable CMS
 – …
Task 2:
Sharing indicator data

- **Even when we have good indicators (task 1), how do we share data?**
- Lots of logs record cybercrime activity
- How can we share information about activity
 - without infringing the privacy of innocent individuals?
 - without compromising commercial confidentiality?
- How can disparate log data be integrated?
 - logs must stay where they generated, and queries run upon them, but how do ensure that queries are proportionate?
- Much study of these issues for fixed datasets (e.g., census), less so for dynamic data (Internet)
- Which data can be made public?
 - Easy answer: data that is already public in the first place (fortunately there is lots of it, see next slide)
 - What about non-public data?
 - Necessary: Anonymization
 - Necessary: Non-interference with measurement itself (cf. Heisenberg principle)
 - No “sufficient” condition – case by case evaluation?
Task 3: Uncovering cybercrime supply chains

- Monetization = finding customers
- So a lot of data can be found by posing as a customer
 - Search engine data
 - Underground forums
 - Actual stores
 - ...
Task 4:
Modeling attacker and victim behavior

Conduct user experiments to:

1. Understand the impact of framing
 - E.g., how do individuals' judgment and condemnation of cybercrime vary as function of the characteristics of the crime?

2. Understand user biases when dealing with computer risks
 - Explore behavioral traits and mechanisms that make cybercrime work and security fail
 - E.g., deception (online attackers cheat victims by exploiting similar psychological and behavioral mechanisms as their offline counterparts).

3. Improve risk management through better interventions such as messaging and re-personalization
 - Design soft paternalistic solutions to counter or anticipate those biases.
 - Design technical systems and public policies in manners that take into account the possible or likely biases in individuals’ behavior.
Benefits of the approach

- **Tangible impact on society**
 - Impact adversary’s behavior
 - Some evidence from pharmaceutical affiliates after payment processor crackdown

- **Reduce cost of law enforcement and policing**
 - Taking down ~8-10 pharmaceutical labs vs. ~4,000 online pharmaceutical shops

- **Help us determine what can be addressed by social norms vs. economics vs. technological means**
 - Evidence from pharmaceutical research: people are interested in buying from these shops; why?

- **Help us come up with appropriate defenses by understanding attackers**
 - Syrian Electronic Army ≠ “Canadian Pharmacy” ≠ Nation-state adversary
Alternatives

- **Formal economic models**
 - Lots of assumptions that do not necessarily hold in practice
 - Perfect information
 - Perfect strategy execution…

- **Traditional computer security research**
 1. Find an attack (or invent a new attack)
 2. Build a defense
 3. Repeat

- **Other cybercrime measurement research**
 - Stefan Savage, Vern Paxson, and their collaborators
 - Less focus on building economic models; no behavioral work
 - *Not so much competition as much as complement to our work*
 - The more data we get, the better picture we have
Current status

- **Major milestones so far: academic contributions**

 Identifying Risk Factors for Web Server Compromises

 Empirical Analysis of Factors Affecting Malware URL Detection

 Pick Your Poison: Pricing and Inventories at Unlicensed Online Pharmacies

 (more to come in Y2)

- **Deliverables** (besides academic contributions)
 - Monthly reports delivered as needed
 - Software & data: see transition activities

- **Schedule**
 - Behavioral task started a bit late; catching up right now
 - Data interchange standards task slightly more complex than thought initially (adverse incentives for industrial actors)
 - Work on indicators (task 1) very helpful
 - Rest of the project on schedule
Next steps

- **Plans for remainder of the effort**
 - Continue on our four tasks
 - Significant work on indicators (task 1), behavioral analysis (task 4) to take place in Y2
 - Connection with related efforts we are starting
 - E.g., analysis of zero-day markets
 - As part of cybercrime supply chains research (task 3)

- **Technology Transition Activities**
 - Peer-reviewed publications: knowledge product
 - Models, methodologies, description
 - Discussion/transition of knowledge with relevant agencies
 - Working on making (part of) our datasets public (part of task 2)
 - Harmless for data that was publicly available in the first place
 - Conservative approach with non-public data
 - Working on making measurement software (as well as software helpers) public/open-source as well
Contact Information

Nicolas Christin
Assistant Research Professor
Carnegie Mellon University
Electrical and Computer Engineering, and CyLab
CIC Room 2108
4720 Forbes Ave
Pittsburgh, PA 15213, USA
Email: nicolasc@cmu.edu
Web: https://www.andrew.cmu.edu/user/nicolasc
Twitter: @nc2y
Phone: 412-268-4432 (rarely used)