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A Joint Interagency Working Group (JIWG) under the
auspices of the Department of Homeland Security Office of
Research and Development conducted a technology assessment
of emergency radiological dose assessment capabilities as part
of the overall need for rapid emergency medical response in the
event of a radiological terrorist event in the United States. The
goal of the evaluation is to identify gaps and recommend general
research and development needs to better prepare the Country
for mitigating the effects of such an event. Given the capabilities
and roles for responding to a radiological event extend across
many agencies, a consensus of gaps and suggested development
plans was a major goal of this evaluation and road-mapping
effort. The working group consisted of experts representing the
Departments of Homeland Security, Health and Human Services
(Centers for Disease Control and the National Institutes of
Health), Food and Drug Administration, Department of Defense
and the Department of Energy’s National Laboratories (see
appendix A for participants). 

The specific goals of this Technology Assessment and
Roadmap were to:

• Describe the general context for deployment of emergency 
radiation dose assessment tools following terrorist use of a 
radiological or nuclear device

• Assess current and emerging dose assessment technologies
• Put forward a consensus high-level technology roadmap 

for interagency research and development in this area.

Below we provide a summary of the consensus of needs,
gaps and recommendations for a research program in the area of
radiation dosimetry for early response, followed by a summary
of the technologies available and on the near-term horizon. We
then present a roadmap for a research program to bring present
and emerging near-term technologies to bear on the gaps in
radiation dose assessment and triage. Finally we present detailed
supporting discussion on the nature of the threats we considered,
the status of technology today, promising emerging technologies
and references for further reading.

Needs Evaluation
In the event of a terrorist-driven radiological event, emerg e n c y

radiation dose assessment by first responders will be necessary to
identify and focus the use of precious medical resources.
Terrorist-driven exposure to radiation can result from several
forms of radiological or nuclear devices (R/N), ranging from
non-explosive, and clandestine exposure to a radiation source, to
explosively-driven radiological dispersion devices (RDD), and
even improvised or stolen nuclear weapons (IND). Incidents may
result in external exposure (radiation dose, without the presence
of radioisotope(s) in or on the body) and/or the uptake of
radioactive materials by inhalation, ingestion, skin absorption,
wound contamination or injection of radioisotope(s) as embedded

material.  In many instances, emergency response personnel are
the first medical responders to contact victims. In other cases, 
the medical treatment facility itself serves as the “first response”
c e n t e r. In both cases rapid evaluation of patients is key to early
initiation of medical intervention and ultimately to saving lives.

Tools to rapidly triage individuals needing medical
attention and to intelligently direct medical treatment to
those needing immediate care will optimize the use of scarce
resources, improve survival, and enhance public confidence
in government. It is imperative that victims who have been
exposed to significant levels of radiation following a terrorist
event, especially one involving an IND or stolen nuclear
weapon, be identified and sorted from those that are concerned
that they have been exposed, but who have received no or a
non-health threatening radiological dose as rapidly as possible
so that treatment can be administered to those in need. This is 
no small task as it is expected that for every person requiring
medical attention, 100 – 500 persons concerned about their
possible exposure will request medical evaluation, thus taking
up precious time and resources. The more rapidly this can be
carried out the faster precious medical resources can be focused
on those in need of medical intervention. 

Radiation dose assessment is critically important because
medical treatment depends on understanding the dose an
individual receives. Treatment guidance will depend on the
therapy type employed. Currently, medical intervention depends
on the patient’s medical signs and symptoms resulting from the
radiation dose received which, in turn, depend on distance from
the initial event and exposure to fallout. Immediate treatment is
needed for otherwise healthy persons who have had whole or
near-total body radiation exposure exceeding 2 Gy. 3.5-4.5 Gy
exposure, without treatment, would result in at least 50%
mortality within 3 to 6 weeks. Combined injury (radiation and
burn/blast trauma) lowers the threshold for treatment to 2 Gy.
In addition to the clinically significant doses that could be
received, with some radiological scenarios such as an RDD or
“dirty bomb,” many victims may have severe levels of internal
contamination from inhalation of the radionuclide(s) dispersed
by the bomb. Current medical guidance recommends that
treatments for internal contamination should begin within hours
of exposure (Ceverny, 1989).  

Patients with very high radiation doses or significant internal
contamination will likely present with no clinical symptoms
other than possible conventional trauma. In most cases radiation
sickness takes days to weeks to present clinical manifestation.
The severity of the resulting lesions and time of onset depends,
in part, on the delivered dose and how soon interventions are
begun. Medical management and decisions regarding initiation
of simple interventions such as removal of contaminated
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Executive Summary

clothing and washing of the body; early initiation of more
aggressive therapies such as chelators for reducing internalized
radionuclide dose, cytokines for reducing the effects of bone
marrow suppression and others depend on knowledge of
expected clinical responses. Clinical response is correlated with
acute radiological dose. Current state-of-the-art practice for
determining acute radiation doses relies on three methods:

1. Time-to-onset and severity of nausea and vomiting

2. Lymphocyte depletion kinetics 

3. Chromosome aberration cytogenetics.  

P resently available methods are not satisfactory for
managing the medical casualties from an R/N event and there
is urgent need to develop new capabilities to assess radiation
dose quickly with at least moderate pre c i s i o n . Assessment of
emesis is only a rough indicator of acute exposure and can never
be relied upon alone, especially for quantitative information.
Lymphocyte depletion provides direct quantitative information
but requires analyzing peripheral blood samples from the patient
over a period of 12 hours to 7 days, while chromosome
aberration analysis requires a qualified cytogenetic laboratory
and 48 to 72 hours to analyze after sample receipt.  Because none
of these methodologies alone are reasonably satisfactory for
managing mass casualties from a large RDD or an IND event in
the first few hours, there is an urgent need to develop novel
e m e rging technologies to supplement the current capabilities for
assessing emergency radiation doses.

Technology Gap
Within the first 72 hours tools are needed that can detect

whole body doses of between 1-8 Gy and can run at a rate of 1
assay every 5 minutes. These tools presently do not exist. 

Based on radiological and nuclear weapons scenarios that
range from clandestine sources to full-scale nuclear weapons,
combined with decision-point dose levels recommended by
current medical consensus on triage and treatment, the following
throughput, turnaround time, sensitivity, and range are used as
generally ideal reference points for emergency-response dose
assessment tools:

• Hand-held diagnostic device with throughput of 1 assay per
5 minutes or less

• Field-laboratory turnaround time of 24 hours or less
• Hand held field laboratory and reference laboratory 

radiation dose assessment systems need a detection range 
1-8 Gy, with thresholds at 1.5 Gy and 4.5 Gy for triage and
2-3 Gy and 6-7 Gy for treatment decisions for hand-held, 
field laboratory, and reference laboratory diagnostic dose 
assessment system.

• Critical need to identify those who do not need immediate 
medical attention

Recommendations and Priorities
A research and development program focused on providing

simple tools that can provide an estimate of whole or near
whole body radiation dose is needed which can discriminate
approximately 2 Gy and 4 Gy exposures from background and
can provide throughput of 1 assay per 5 minutes or less. A
process leading to fielding such devices is possible within the
next 5 years.  The goals of this program should be to:

Clarify device needs and requirements
• Combine user input, technology assessment and 

operations/systems studies to guide development of 
realistic requirements and appropriate system architectures 
for radiation dose assessment tools.  

• Focus initial studies on defining the role of pre-positioned 
dosimeters, optimizing the size and organization of a 
national cytogenetics network, and estimating the added 
value of dosimetry technologies still on the horizon, such 
as luminescence, ultrasound, and molecular markers of 
radiation dose and injury. Prioritize investment based on 
user input, available technology capabilities and 
operational needs developed under the first bullet.

• Develop a clear set of decision points to determine whether
individual technologies are on track to be deployed, and 
define a path/mechanism for deployment.

Maximize use of existing technologies
• Concentrate near-term technology investments in 

developing pre-positioned dosimeter concepts and 
establishing a stable U.S. cytogenetics capability for use in 
the event of an R/N incident, in line with the results of 
systems studies to assess their relative value in saving lives
for realistic radiological or nuclear events.

Pursue longer-range research and development to fill gaps 
with existing technologies

• Answer key questions about the throughput, specificity,
prognostic value, sensitivity, range, accuracy and reliability
(including person-to-person variability and impact of 
confounding factors) for new radiation dose and injury 
assessment technologies.

Conduct a demonstration program to assess the value of 
existing and proposed technologies 

• Conduct field tests and leverage already-scheduled events 
to assess systems-study assumptions, new-device 
performance, and concepts of operation in an operational 
environment.
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Technology Assessment
Table 1 summarizes what we know and don’t know about

current and emerging technology for emergency dose
assessment and triage. Overall, the prospects of current
technologies meeting emergency-tool assessment criteria are
limited: 

• Direct measurement of external radioactive emissions on 
body surfaces and clothing is a standard tool for first 
responders. High throughput screening for qualitatively 
detecting overt contamination is possible with portable 
probes for many isotopes. This technology is viewed as an 
important tool by first responders for triage decision 
making in the first hours following a detonation, primarily 
for use in decontamination decisions. Early external 
decontamination removal is important to reducing whole 
body radiation dose. However, it only provides an estimate 
of the dose received from external contamination on the 
clothing and body at the time of measurement and this dose
may be a small component of the total dose received by the
victim, depending on the type of terrorist device used.

• Direct external measurement of radioactive emissions in 
v i v o originating in the body is a practical solution for 
measurement of internal radioactive contamination; 
however high-throughput sample-processing systems and 
quick-reference guidance for converting contamination 
measurements do not exist. These technologies are 
important to long-term case management and could be 
useful for early initiation of relevant therapies. 

• Pre-positioned dosimeters generally perform well for dose 
assessment criteria; the most cost-effective and easy-to-
read candidate, the SIRAD card, currently has limited 
distribution with a shelf-life reported to be one-year when 
stored properly.

• Conventional cytogenetic assays are presently considered 
the standard for estimating whole body biological dose.  
Such assays have demonstrated capability to estimate doses
below 1 Gy in a controlled laboratory setting. However,
use of cytogenetics in a triage situation is difficult below 
1 Gy, and standard assays take 48-72 hours to complete.  
Shorter-turn around (24 hours) assays are not yet well 
benchmarked or available.  

• Lymphocyte depletion is not detectable following radiation 
doses of less than 5 Gy within the first 24 hours, and 
lymphocyte kinetics which require serial measurements of 
3 or more counts, exhibits a dose threshold near 1 Gy but 
likely will be logistically difficult to obtain within this time
period after a mass casualty incident without development 
of a hand-held blood counter device.

• Dose assessment based on time-to-vomiting, has variable 
sensitivity with only 35% of victims vomiting after a 2 Gy 
exposure and >90% incidence following 6 Gy exposure; 
dose assessment based solely on use of prodromal 
symptoms including time-to-vomiting will likely exhibit 
significant false positives.

Emerging technologies offer potentially significant
advantages, but present substantial uncertainties that must 
be resolved: 

• Molecular biomarkers, including mRNA and proteins, offer
a new set of tools for hospital-based, fieldable, or even 
self-administered radiation dose assessment. However,
research is necessary to assess person-to-person variability 
and impact of confounding factors such as stress, gender,
and age among others. Prototype devices must demonstrate
sensitivity (as well as cost, size/weight, and ruggedness) in 
realistic test scenarios. 

• Luminescence, particularly Optically Stimulated 
Luminescence (OSL) and Electron Paramagnetic Resonance 
(EPR-ESR) are technologies that have the potential for 
measurement of radiation doses in vivo at or below the 
1.5 Gy thresholds in human tissues. Sensitivity and inter-
individual variations must be demonstrated experimentally.  
Prototype devices must be built and tested for cost, 
size/weight, performance, and ruggedness.

• Ultrasound is a particularly exciting opportunity for 
assessing tissue damage from radiation and may have much
broader applications. Sensitivity, as well as person-to-
person variation is not known. Operability in the field has 
not been demonstrated and fieldable hospital-based 
prototypes require development and evaluation.

• Fortuitous dosimeters promise simple, accurate dose 
estimates from common objects that may be at or near the 
victim(s), using luminescence as the primary approach for 
readout. However the value of relying on fortuitous objects
which may or may not be available, in an emergency 
setting needs to be demonstrated. Accuracy and sensitivity,
cost, size/weight, performance, and ruggedness are 
presently unknown. Concepts of operation are not 
developed.

• Hand-held devices for blood cell counting, breath-gas 
analysis, and medical recording, tagging of casualties, and 
triage tools should be explored and could be an essential 
part of the response system. The utility of these tools and 
how best to use them are somewhat undefined. Current 
recording criteria identified for emergency tools should be 
expanded to include plume/position-based dose estimates 
as well as newer dosimetry tools as they become available.  

Technology Summary 
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Technology Summary

Even if technologies do not meet operational requirements,
they may still have useful applications in response to a
radiological or nuclear event. An example of this is cytogenetics,
the gold standard for biodosimetry: even though likely

throughputs and turnaround times do not match the needs
described above, cytogenetics will no doubt prove
invaluable in directing treatment for those already
identified for as in need.

What we know What we don’t know

Measurement of
radioisotope 
contamination

Many available handheld detectors for external assessment.
Internationally accepted guidelines for radiation dose estimation.
Available instrumentation for body fluid analysis, limited high-throughput capability.

Radiation dose estimation models need more
attention, and may have significant inaccuracies,
especially for sub-populations.

Biological and 
clinical signatures
of radiation dose

Lymphocyte depletion is not detectable in the first 24 hours for less than 5 Gy.

Lymphocyte kinetics will be logistically difficult to obtain within this time period and vary signifi-
cantly from individual to individual. 

Time-to-vomiting is limited in sensitivity (only 35% of victims vomit with a 2 Gy exposure) and is
widely variable from individual to individual.

Conventional/cytogenetic chromosome aberration assessment (scoring 1000 metaphase spreads)
takes 48-72 hours and has demonstrated capability to estimate doses from 0.20 to 6.0 Gy (acute
photon equivalent dose), while cytogenetic triage (scoring 40-50 metaphase spreads) becomes diffi-
cult below 1 Gy. The current U.S. cytogenetics capability is limited to less than 500 standard assess-
ments over a 2-week period.

These methods may not accurately predict partial-body or organ-specific exposure.

Effect of dose rate on lymphocyte counts or
depletion rate is not known. 

Psychosomatic impact on time-to-vomiting is not
established for a mass casualty situation.

Shorter-turnaround (24 hour) cytogenetic 
chromosome aberrations are not yet well 
benchmarked.

Pre-positioned
physical dosimeters

Current technology meets dose threshold and dynamic range requirements.

May not accurately predict partial-body or organ-specific exposure.

Shelf-life, longevity not well established for
SIRAD cards.

Social and medical questions about how to inter-
pret “significant radiation exposure” readings and
false positives.

Physical changes in
human tissues

OSL and EPR could enable accurate and safe estimation of dose from non-invasive in vivo measure-
ments in teeth, with a threshold at or below 1.5 Gy.

Ultrasound may provide evidence of local radiation injury around wounds. 

Potential for turnaround and throughput in 1 min / assay timeframe.

O S L sensitivity significantly below 15 Gy is antic-
ipated from theoretical arguments, but has not yet
been established experimentally.

In vivo EPR dosimetry sensitivity and potential
inter-individual variation effects are unknown.
OSL and EPR field equipment (portable, etc.) has
not been demonstrated.

Dose sensitivity of ultrasound is not established.

Personal items and
other fortuitous
dosimeters

Several materials have been demonstrated to provide very accurate dosimetry, with a detection
threshold well below 1.5 Gy.

Potential for turnaround and throughput in 5 min / assay timeframe.

Hard to depend on this approach for all victims, since dosimetry materials are fortuitous.

May not accurately predict partial-body or organ-specific exposure.

Con-ops and instrumentation for widespread use
have not been established.

Biological markers Several mRNA and protein candidates demonstrated to be dose dependent, with sensitivity well
below the 1.5 Gy action threshold.

Hand-held devices for blood cell counting, breath gases analysis, and triage medical recording
involving the tagging of casualties will assist with triage. 

Instrumentation concepts (protein and PCR assays) have been demonstrated for other applications,
and could provide 5 min turnaround and throughput and / or be run in a highly multiplexed format.

Potential for a self-administered disposable format for proteins.

May not accurately predict partial-body or organ-specific exposure – this could be addressed with
significant further research.

Time dependence and variation with confounding
factors such as age, stress, and health status have
not been well established.

Instrumentation throughput, ruggedness, accuracy
and sensitivity have not been established for this
application.

Organ–specific markers have not been estab-
lished.

Utility of other biological markers such as
metabolites need investigation.

Ability of markers to detect/differentiate whole or
partial body exposures are unknown.

Current Methods and Tools 

Table 1. Summary of what we know and don’t know about current and emerging dosimetry technologies.

Emerging Technologies
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Table 2 lays out a roadmap, a set of deliverables, and a rough
timetable for a National Program in Emergency Radiation Dose
Assessment. We advocate the development of a cooperative,
interagency program to efficiently develop capabilities, both
near and far-term, that could have a major impact on the
management of victims and the potentially exposed individuals
in the aftermath of the detonation of an RDD or IND. We focus
on what will be needed within the first 72 hours following an
event to determine who will be in need of follow-up care or
medical surveillance. This proposed program has four major
goals:

1. Clarify device needs and requirements

2. Maximize use of existing technologies

3. Pursue longer-range research and development to fill gaps 
with existing technologies

4. Conduct a demonstration program to assess the value of 
existing and proposed technologies and optimize their 
development for fielding and commercialization.

Below is a brief discussion of priority investments for each of
these goals.

Clarify device needs and requirements
The expected user community should be polled to determine

the needs and requirements for the technology to be used in
deployments. The requirements developed should be device and
application specific. Many factors must be considered in the
choice and design of this technology including:

• Desired throughput
• Specificity
• Ease of use (level of training required to operate the 

equipment)
• Sensitivity
• Time to complete the assays
• Result integration for end-user application
• Allowable false positive/negative rates
• Sample matrices/ease of sample collection and processing
• Shelf life
• Costs (manufacturing/use)

The requirements may differ depending on the intended 
use of the devices. For example field triage devices may have 
a different set of requirements for cost and ease-of-use than
devices used in clinical settings. The exact scenarios of use 
and expectations must be determined.

User input and technology assessment should be used 
to inform quantitative operations/systems studies to guide 
con-ops and medical response architecture development and
help prioritize science and technology investments. The initial 
focus should be on:

• Developing a national cytogenetics network with each 
reference laboratory supplemented by satellite scoring 
laboratories capable of each analyzing 500 samples per 
week.

• Defining the role of pre-positioned dosimeters.
• Estimating the added value of radiation injury and 

dose assessment technologies still on the horizon, such 
as luminescence, electron paramagnetic resonance, 
ultrasound, molecular markers of radiation dose, and 
hand-held devices for bioassay (blood cell counting, 
breath gases, etc.) measurements and recording/tagging 
of individuals. 

• Developing a clear set of decision points and critical 
development paths to determine whether individual 
technologies are on track to be deployed, and define a 
path/mechanism for deployment.

Maximize use of existing technologies
Near-term technology investments should be concentrated 

on building a U.S. cytogenetics capability and developing 
pre-positioned dosimeter concepts, in line with the results of
systems studies to assess their relative value in saving lives for
realistic radiological or nuclear events. A deployable hematology
capability should be investigated as an available resource,
following the IAEA ERNET model, to provide the ability to
supplement local capabilities for serial blood cell counts on
suspected radiation casualties. Radioisotope contamination
assessment laboratories should be equipped with high-
throughput sample-assessment systems based on existing
commercial-off-the shelf (COS) technologies.
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What Should be Done

Pursue longer-range research and development to fill gaps 
with existing technologies

Longer-range research and development should be conducted
on emerging dosimetry technologies to answer key questions
about the specificity, prognostic value, throughput, sensitivity,
range, accuracy and reliability (including person-to-person
variability and impact of confounding factors). A variety of
technologies are presently in the marketplace for diagnosis of a
number of diseases. Some of these technologies may be useful
for radiation dose assessment with minimal development.
Evaluation of potentially useful technologies should be carried
out and emphasis placed on their conversion for use in radiation
dose assessment.

Conduct a demonstration program to assess the value of 
existing and proposed technologies

Finally, field tests, conducted as stand-alone studies as well
as piggy-back exercises attached to already-scheduled events,
should be done to assess operational assumptions, new-device
performance, and con-ops in an operational environment.

Table 2 summarizes a strategic 5-year roadmap to accomplish
these goals.

1 year 1 to 3 years 3 to 5 years

Systems analysis to clarify
device needs and requirements

Analyze scenario for one radiological and
one nuclear incident type. 

Define relative roles of physical and bio-
dosimetry, perform cost-benefit analyses
for dosimetric systems.

Determine optimum size and organization of a national cytogenetics network.

Evaluate competing technologies and define the most effective role of pre-positioned
dosimeters.

Develop criteria to distinguish the added value of emerging dosimetry technologies.
Evaluate and compare competing technologies to select the best available.

Provide initial estimate of operational
device requirements for R/N scenario's for
physical and bio-dosimetry tools. 

Evaluate hospital instruments and techni-
cians to determine capability to perform
required measurements.

Refine estimates based on progress in
laboratory experiments and initial field
demonstrations.

Work with instrument manufacturers to
modify hospital-based instruments to be
capable of measuring threat isotopes, and
provide training to technicians.

Short-range efforts to maximize
use of existing technologies

Define a blueprint to stabilize a U.S. 
cytogenetics capability and developing 
pre-positioned dosimeter concepts.

Establish deployable hematology 
capability - radiation response team
resource.

Establish a national cytogenetics laboratory
network composed of reference laboratories
supplemented with satellite scoring 
laboratories.

Develop high-throughput sample-assessment
system for radioisotope contamination.

Pilot pre-positioned dosimeters.

Test system in well-controlled round
robins and practice exercises.

Establish standardized cytogenetics pro-
tocols and develop standard calibration
curves. 

Longer-range research on
emerging dosimetry technologies

Initiate parallel efforts in emerging physical
and biological dosimetry, define decision
tree for technology assessment.

OSL, EPR and ultrasound: assess sensitivity,
person-to-person variability, and safety of
prototype systems.

Hand-held breath gas analysis, blood cell
counters, and triage medical recording/
tagging systems.

Fortuitous dosimeters: develop con-ops,
develop and assess field prototype detectors.

Molecular markers: demonstrate sensitivity, person-to-person variability / sensitivity 
to confounding factors; demonstrate field prototypes that meet sensitivity and other 
operational requirements.

Develop working prototypes for con-ops
and performance-based down select after
~year 5.

Demonstration programs Define a field demonstration plan that
leverages state and national exercises. 

Conduct field demonstrations that verify
performance of existing technologies.

Conduct field demonstrations of 
emerging dosimetry prototypes.

Table 2. Suggested Goals for National Program in Radiation Assessment.
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1. Event Characteristics and Diagnostic Require m e n t s
Terrorist-driven exposure to radiation can result from several

forms of R/N devices, ranging from non-explosive, clandestine
exposure to a radiation source, to RDD, and even IND. Incidents
may result in external exposure (radiation dose, without the
presence of radioisotope(s) in or on the body) and/or the uptake
of radioactive materials by inhalation, ingestion, skin absorption,
wound contamination or injection of radioisotope(s) as
embedded material. In many instances, emergency response
personnel are the first medical responders to contact victims. In
other cases, the medical treatment facility itself serves as the
“first response” center. We did not consider attack on a nuclear
facility, as this scenario has already been well-studied and
planned by the Nuclear Regulatory Commission.

A nuclear weapon detonation may result in exposure to α-
particles, ß-particles, γ-rays, X-rays, and neutrons, with over 400
radionuclides possibly being released. However, only about forty
of the released radioisotopes are likely to be hazardous to humans.
( N C R P 65 1980; Durakovic, 1987; Cerveny, 1986). The most
significant radioisotopes from unspent nuclear fuel are tritium,
plutonium, and uranium. Radioisotopes of immediate radiological
significance include isotopes of americium, californium, cerium,
cesium, curium, iodine, plutonium, polonium, strontium, and
uranium, as well as tritium. (Cerveny, 1986)

For radioactive contamination, early information on the
history of the exposure incident may identify the major isotopes
involved and provide some dosimetry information. Causalities
will likely present with no clinical symptoms other than possible
conventional trauma (Cerveny, 1989). 

In most scenarios, the number and type of individuals that
require evaluation changes, often significantly, over time
following the event. In the first hour following detonation, it 
is expected that there will be potentially 100’s of treatable
radiological victims with external and internal radioisotope
contamination and explosive trauma injury.  At slightly later
times (24 hours), victim makeup will likely shift to those with
radiological contamination, minor trauma and many self-
identified individuals who have some or no contamination but
who still need evaluation. Beyond the first day, victims will
likely consist of those who have some radiological contamination
from plume exposure and many, potentially in the hundreds-of-
thousands, who self identify with concerns about being exposed.
In the case of the detonation of a nuclear weapon, many of those
individuals are likely to be seriously exposed.

In response to the changing number and nature of the
causalities, the types and needs of first responders and receivers
also change. Initially, fire fighters, paramedics, law enforcement
and good Samaritans will need tools for assessing radioisotope
contamination and rapid dose assessment for triage in the field
so that decontamination and life-saving activities can be
managed. Later, high-throughput radioisotope contamination
detectors and rapid dose assessment tools will be needed to
assist with finding those in need of chelation, cytokine or other
therapy and sending concerned citizens, with little or no
exposure, home. A means to later identify victims in the early
response phase following detonation will be crucial for longer
term follow-up.  Overall, there are four classes of device needs
(here we focused on categories 1-3):

1. Radioisotope contamination detectors and 
radionuclide dose assessment:
These detectors range from simple Geiger-Muller-type 
detectors to instruments for assessing body fluids and 
other products, and computational tools for converting 
measured counts or activity to an estimate of and/or 
committed dose. Of equal importance is a simple, robust 
way to rapidly predict committed dose from detected 
counts. First responder concepts of operations will likely 
rely on such tools for early decision making concerning 
the need for decontamination and whether it’s necessary to
initiate more agressive threapies to limit possible organ 
system failure. These concerns along with the first priority,
first aid, will be important issues in the early stages of an 
event.  

2. Dose assessment tools that do not rely directly on 
counting radioactive emissions:
In many cases, particularly when significant dose is 
delivered from distant external radiation sources such as 
from delayed γ-radiation including ground shine, the level 
of radioactive contamination may not accurately 
provide an of estimate dose. The accuracy and threshold(s)
required of dose assessment tools will depend on the type 
of triage / assessment capabilities available, particularly on
whether other injuries are present. 

3. “You’re ok” markers to avoid multiple evaluations 
of the same individual:
In all scenarios, the concerned citizens with no real 
exposure pose a significant and important component of 
those being assessed for potential radiation dose. 

Supporting Information
A. Context for the Use of Emergency radiation Dose Assessment Tools
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Importantly, the number of these individuals is likely to 
measure in the thousands for all scenarios proposed and 
will drain resources, potentially reducing the capability to 
treat highly exposed persons. Reliable tools to 
discriminate those who do not need further immediate care
avoids the wasting of critical dose-assessment and 
response recovery resources. 

4. Tags for future tracking:
Many individuals, often numbering in the thousands, both 
those who may need active care and those who do not, 
will be monitored for decades for long-term radiation 
effects. An efficient system for tagging these individuals 
and recording their initial location at the time of exposure 
will provide invaluable information for this long-term 
follow-up. 

For each device, throughput and complexity are key
considerations. The throughput requirements for each of the
dosimetry devices depend on the type of scenario and time after
the event when the device will be used. These factors affect the
expected ratio of individuals to be assessed to number of
responders and devices placed in use. Tolerance for device
complexity depends on whether it is used by hospital personnel,
firefighters, or even individual victims as a self-administered
test and the environment in which the device is to be operated
(i.e., in the field at the site of an event vs. in a hospital).
However, in all cases, devices must feature simple sample
collection, preparation, and results output, because of the likely
confusion surrounding a radiological or nuclear event,
compounded by their extreme rarity.

2. Triage and Initiation of Tre a t m e n t
The International Atomic Energy Agency (IAEA) has

provided consensus guidelines for a comprehensive description
of procedures for medical response during a nuclear or
radiological emergency (IAEA, 2005).  Requirements for
sensitivity and dynamic range for emergency dosimetry
strategies and technologies are related to current (and future)
medical guidance for triage and initiation of treatment. Ideal
medical management recommends early administration of
treatment.

Lives may be saved if we can develop rapid dose assessment
and can implement earlier treatment. Specifically, ideal medical
management recommends early administration of treatment
because much large animal data (McVitte, 1996) and some
human accident data (Gusev, Guskova, and Mettler, 2001 )
strongly suggests that early treatment with cytokines can
significantly increase survival following external radiation
exposure to the hematopoetic system of more than 2 Gy. This is

because early cytokine therapy can mitigate significant white
blood cell depletion and the subsequent mortality from
infections. There is a clearly identified gap in technology for
identifying individuals with a clinically significant dose within
the first 36 hours after exposure.

Radiation Injury Assessment and Triage Treatment.  
Current civilian medical guidance (Waselenko, 2004)

advocates two possible triage systems, one based on a
modification of the military triage system (Walker and
C e r v e n y, 1989) used in mass-casualty scenarios and another
based on grading of clinical signs and symptoms (Dainiak,
2002; Fliedner, 2001). In the pre-dosimetry clinical signs 
and symptoms scheme, an initial response category is 
assigned by determining the degree of damage to the 
cutaneous, gastrointestinal, and neurovascular systems. 
Further categorization of patients based on degree of
hematologic damage permits triage to an ambulatory setting,
admission to a routine-care hospital floor, or admission to 
a critical care unit. This system is very useful to the clinician 
in management of a small-volume radiologic event. However,
it is time-consuming and may be impractical in a large-
volume scenario.

In the military-based triage system, priorities for treatment
change, depending on how the patient is evaluated in terms of
radiation dose and the presence or absence of significant
mechanical trauma or burns. (Waselenko, 2004)

“Individuals requiring surgical intervention should
undergo surgery within 36 hours (no later than 48 hours)
after exposure (Walker and Cerveny, 1989). Additional
surgery should not be performed until 6 weeks later.”

Recommended triage priorities are summarized in Table 3,
according to the Strategic National Stockpile – Radiation
Working Group (Waselenko, 2004): 

“At a whole body dose <1.5 Gy, triage categories remain
the same: delayed treatment for those who are medically
stable with significant injury but who may survive until
definitive treatment is available; 2) immediate therapy for
those with high survivability and significant injury, provided
that immediate therapy is available; 3) minimal therapy for
medically stable patients with minor injury; and 4) expectant
therapy for patients who are seriously injured and in whom
survivability is poor. All patients with the combined injury
syndrome and exposure dose >4.5 Gy should be treated
expectantly, except for those with minimal or no injury.
Patients with radiation injury alone (i.e., without combined
injury) should be triaged to the ambulatory setting if dose
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<1.5 Gy. For those with a higher exposure dose, routine care
should include therapy with cytokines, antimicrobial agents,
blood transfusion and frequent outpatient follow-up with
laboratory monitoring.”

Consensus guidelines for treatment of radiologic victims
( Waselenko, 2003) are summarized in Table 4. Radiation dose is
described as photon dose equivalent, and values are provided for
adults (consider initiating therapy at lower radiation dose for
non-adolescent children and elderly persons). Cytokines would
be among the first agents administered to the group of
significantly irradiated individuals who have the treated survival
potential. A significant survival advantage has been demonstrated
in irradiated animals treated with colony-stimulating factors
(cytokines) in the first 24 hours. (Waselenko, 2004).
Prophylactic antibiotics are also a treatment component to be
considered but should be addressed on a case-by-case basis. 

Radioisotope Contamination
Thorough evaluation and estimation of internal contamination

may take days or weeks, so initial decisions may have to be
based only on local information and superficial measurements.
Because rapid initiation of decontamination therapy both
increases the effectiveness of the therapy and reduces the
absorbed dose in the body, medical personnel must proceed
quickly to obtain information and make treatment decisions
based on available early estimates of possible exposure. Initial
response will be to remove contaminated clothing and wash

radioactive victims to remove contamination from the body
surface. Therapy for internal contamination will likely begin
somewhat later. Treatment risks must be weighed against the
presumed risks of untreated exposure, and treatments for internal
contamination should begin within hours of exposure. (NCRP
Report 65, 1980; Durakovic, 1987, Cerveny, 1986; ICRP, 1955;
Conklin, 1983; Moskalev, 1974; Cosgriff, 1987). More detailed
radioisotope monitoring and radiation absorbed dose estimation
may continue for days to weeks after treatment has been
initiated. Although decontamination should be done as quickly as
possible, the stability of an injured patient is vital, and first aid
must be the primary concern (Cerveny, 1989) followed by
removal of external sources of contamination. 

3. Diagnostic Requirements for Sensitivity, Accuracy,
T h roughput and Tu rn a round Time 

The military-based triage system, as well as the pro p o s e d
consensus guidelines for t reatment, assume a method for
establishing radiation absorbed dose. Key decision points
revolve around 1.5 and 4.5 Gy for triage, and 2-3 and 6-7 Gy for
direct treatment of radiation injury. These action dose levels set a
lower sensitivity limit of no greater than 1 Gy, and dosimetric
uncertainties of less than about 20-30%. Because available data
on exposure estimates have significant inherent uncertainties
themselves, it is difficult to estimate the ideal dosimetric accuracy
for emergency response and triage. Thus the above decision levels
are based on the best available information and provide consensus
starting points. Further research may be needed on this point.

Conventional
Triage Categories
for Injuries with-
out Exposure to
Radiation*

Changes in Expected Triage Categories
after Whole-Body Radiation

<1.5 Gy

Delayed

Immediate

Minimal

Expectant

Ambulatory
Monitoring

Ambulatory monitoring with routine
care and hospitalization as needed

*Although other injuries may be minimal, treatment guidelines should be followed for patients 
receiving a whole-body radiation dose greater than 3 Gy.

1.5 – 4.5 Gy

Variable

Immediate

Minimal

Expectant*

>4.5 Gy, � 10 Gy 

Expectant

Expectant

Minimal

Expectant*

Delayed

Immediate

Minimal

Expectant

Absent

Table 3. Priorities in triage of patients with and without combined
injury, based on dose of radiation (military-based triage scheme)
(Waselenko, 2004).

Variable Proposed 
radiation dose
range for treat-
ment with
cytokines

Proposed radi-
ation dose
range for treat-
ment with 
antibiotics

Proposed radiation
dose range for
referral for stem-
cell transplant 
consideration (SCT)

Table 4. Guidelines for treatment* of radiologic victims
(Waselenko, 2004).

3-10 Gy 2-10 Gy 7-10 for allogeneic  SCT;
4-10  if previous autograft
stored or syngeneic donor
available

Healthy 
person, 
no other
injuries

3-7 Gy 2-7 Gy 7-10 for allogeneic  SCT;
4-10  if previous autograft
stored or syngeneic donor
available

Healthy 
person, 
no other
injuries

2-6 Gy 2-6 GyMultiple
injuries or
burns

2-6 Gy* 2-6 Gy* NAMultiple
injuries or
burns

Small-volume scenario (≤100 casualties)

Mass casualty scenario (>100 casualties)

* If resources are available. ; see reference (Waselenko, 2004) for additional details.
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Ideal timescales for obtaining dosimetry information can be
estimated from what are presently considered as optimal therapy
initiation times. Radionuclide decontamination treatment should
be initiated within hours of exposure. For direct treatment of
radiation injury, cytokine therapy should be initiated within 24
hours after exposure, leading to a goal of completing initial triage
/ screening for radiation injury victims within this 24 hour time
frame. Upper limits for processing time may be related to onset
of radiation sickness syndromes, which would presumably make
radiation exposure self-evident. However, in the case of a nuclear
weapon detonation, presence of high radiation levels may prevent
access to the scene for 24 hours or more. Thus turn around time
of less than 24 hours is needed for maximal benefit from such
t h e r a p y.  The gastrointestinal syndrome follows a latent period of
5-7 days. Cytopenia associated with the hematopoietic syndrome
becomes evident within 24-48 hour for lymphocytes, 5-30 days
for neutrophils, and ~15 – 30 (nadir) days after exposure. If
identifying patients substantially before gastrointestinal
syndrome onset is used as an upper limit for processing times, 

The consensus generic approach for medical management of
radiation casualties involves use of multiple parameter biological
symptoms and bioassays, physical dosimetry, and radioactivity
contamination assessment for radiation injury and dose
estimation. Individual dose assessment is essential for predicting
the clinical severity, treatment, and survivability of exposed
individuals and identifying those with minimal or no exposure.  

In the case of a radiological mass casualty incident the initial
triage response should focus on screening these large populations
for clinically significant doses with 1-Gy threshold sensitivity.
The individual technology components, including physical
dosimeters, of the multiple parameter dose assessment approach,
need Food and Drug Administration regulatory review and
approvals if applied for medical treatment decisions.  

This section describes current methods and instrumentation
that could be used for triage and emergency dose assessment.

1. Biological and Clinical Signatures of Radiation 
Dose Assessment

C u r r e n t l y, the three most useful biological / clinical signatures
determining radiation injury and accumulated dose are time to
onset of vomiting, lymphocyte depletion kinetics, and the presence
of chromosome aberrations (Waselenko, 2004). A r a d i a t i o n
casualty management software program, the Biological

B. Current Methods and Tools for Triage and Emergency Dose Assessment

3 days seems to be a reasonable upper limit for processing
patients who have been potentially lethally exposed to radiation.
Beyond 5-10 days, the gastrointestinal syndrome is self-evident
and blood counts may serve as a reasonable indicator of
exposure for predicting hematopoietic syndrome. 

These timescales suggest an ideal assay processing
turnaround time of 24 hours. For throughput estimate purposes,
assume a processing goal of initial assessment completed within
24-72 hours, and an estimated 100,000 individuals to be
evaluated (this could be a representative figure for expected
radiation injuries for fallout following a nuclear weapon
explosion, and would include mostly concerned individuals for
most radiological dispersal scenarios). Also assume 100
individuals to be assessed in parallel. To achieve the evaluation
within these parameters, the initial triage bioassay for each
individual radiation-injury assay must be completed in 1-4 min.
C l e a r l y, this is difficult to envision without additional investment
in technology enhancements.

Assessment Tool, is available at the Armed Forces Radiobiology
Research Institute’s Web site (www.afrri.usuhs.mil). This tool was
developed in collaboration with the Radiation Emerg e n c y
Assistance Center/Training Site (REAC/TS) and others to facilitate
medical recording and estimation of individual dose (Sine, 2001).
The IAEA has developed generic guidelines for recording clinical 
signs and symptoms of radiation injury (see www. i a e a . o rg). Using
a grading system for the severity of clinical symptoms, the
Medical Treatment Protocols team has developed a quantitative
system to assess individual biological response to radiation
exposure when results of chromosomal analysis are not yet
available (Fliedner, 2001).

The time-to-onset and percentage of victims with vomiting is
related to radiation dose received. Greater than 90% of those
receiving 6 Gy or more will present with an average time-to-
onset of vomiting within an hour. In the 1-3 Gy range, between
20-50% of victims show signs of vomiting, with an average time-
to-onset of greater than 2 hours. However, this assay relies on
victim recall and results are variable among individuals.  

Absolute lymphocyte counts decrease with increasing dose and
increasing time from exposure. In the first 12 hours, only doses of
9 Gy and higher are expected to result in absolute lymphocyte
counts that exceed the lower normal bound. This lower bound will
be exceeded for approximately 5 Gy and 3 Gy exposures, after 24
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and 48 hours, respectively. The rate constant for lymphocyte
depletion increases with dose. Figure 1 shows the variation in
lymphocyte kinetics and time-to-vomiting, based on accident
victim data. (Goans and Waselenko, 2004).

Dose assessment based on cytogenetic chromosome aberration
biodosimetry represents a well established and proven bioassay
for radiation dose assessment (10 cGy threshold in a good
laboratory). Radiation exposure induces many types of
chromosomal aberrations in the exposed individual’s peripheral
blood lymphocytes. The presence of dicentrics, a chromosomal
aberration, in an individual’s peripheral blood lymphocytes
indicates radiation exposure (Bender and Gooch, 1966).
Dicentrics are considered relatively specific, to ionizing
radiation; only a few chemicals are known to interfere with the
a s s a y. Low background levels (about 1 dicentric in 2000 cells),

high sensitivity (a threshold dose of 0.05 Gy), and known dose
dependency of up to 5 Gy (for acute photon exposures) make 
this assay robust and a “gold standard” biodosimetry method.

The IAEA published a technical manual containing a
harmonized methodology for various cytogenetic assays (IAEA,
2001).  An International Organization for Standardization (ISO)
working group was established to standardize biological
dosimetry by cytogenetics. Under the auspices of the ISO,
regulatory compliance and validation standards have already
been developed (Voisin 2002). This ISO working group is now
focusing on developing the standard titled “Radiation Protection
— Performance Criteria for Service Laboratories Performing
Cytogenetic Triage for Assessment of Mass Casualties in
Radiological and Nuclear Emergencies.” This standard will
define the process and identify quality control standards for the
use of cytogenetic methods to rapidly assess radiation dose,
information that will supplement the early clinical categorization
of casualties. 

The use of cytogenetic assays to guide treatment decisions
was demonstrated in radiation mass casualties for example,
Chernobyl, Goiania, and Tokaimura. Dose estimates from
cytogenetic methods correlate well with the severity of acute
radiation syndrome (Sevan’kaev 2000). In the Chernobyl
accident an approximate dose estimate was achieved by rapid
preliminary examination of metaphase spreads (Pyatkin 1989).
From the Goiania (Brazil) accident cohort, 129 exposed or
potentially exposed individuals were investigated by cytogenetics
(Ramalho and Nascimento 1991). More recently, in the
Tokaimura, Japan, criticality accident, the dicentric and
premature chromosome condensation (PCC) assays were used to
assess the dose for three severely exposed workers (Hayata 2001;
Kanda 2002) and 43 resident workers (Sasaki 2001). 

Rapid response is required from specialized cytogenetic
biodosimetry laboratories in the case of a mass-casualty
scenario for potentially thousands of individuals (Voisin, 2001;
Prasanna, 2003). Due to requirements inherent in the standard
a s s a y, results are not available for 48 to 72 hours after the
sample has been submitted for analysis. These time gaps limit
standard cytogenetic bioassay to be an important tool for dose

Figure 1. Dose response calibration curves for lymphocyte depletion
kinetics and time-to-vomiting. These data illustrate the radioresponse
for two major indicators used to provide a triage dose assessment
based on radiation doses of record derived from γ-ray accidents,
criticality accidents, and Chernobyl (Goans and Waselenko, 2004:
presented at the 2004 NCRP annual scientific meeting).
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assessment, but not for direct use at the emergency scene. A
requirement for the emergency scene, however, is obtaining
blood samples with a well-defined protocol, possibly using pre-
prepared kit as done in some field studies. 

While standard cytogenetic assays require days to complete,
speed and throughput of the dicentric assay could be adapted for
mass casualty triage (Lloyd 2000; Voisin 2001; Prasanna 2003).
Faced with an urgent need for rapid results, clinical triage can be
accomplished by scoring as few as 20 metaphase spreads per
subject, compared with the typical 500 to 1000 spreads scored in
routine analyses for estimating dose. For example, Lloyd (1997),
after studying lymphocyte chromosome damage in 10 of the 13
severely irradiated Chernobyl victims, suggested that the
frequency of metaphase spreads without dicentric aberrations can
be used to identify patients suitable for cytokine therapy versus
bone-marrow transplantation. In addition, sample processing
throughput of cytogenetic laboratories can be increased by using
robotic instruments, metaphase harvesters and spreaders, etc.
Commercially available laboratory information management
systems (LIMS) can be customized for dealing with the data and
sample management challenges inherent in requests to process
l a rge quantities of samples for dose assessment. However research
is needed to determine whether cytogenetics will have the
necessary sensitivity (1 Gy) to detect clinically significant doses
when applied in an emergency situation to large populations. A t
present, to deal with such a situation, multiple laboratories with
common methods and calibrations will likely be needed to meet
throughput, speed and sensitivity requirements.

Other approaches have been explored as well including the
use of somatic null mutations at the glycophorin A locus on the
surface of blood erythrocytes, micronucleus assay, and
measurement of premature chromosome condensation, PCC and
all have been found to be reliable indicators of exposure over a
broad dose range (0.25 to 8 Gy) in the laboratory with high doses
of ionizing radiation but with poor dosimetric discrimination at
lower doses (Bigbee et al., 1997; Gray and Pinkel., 1994; Jones
et al., 2001; Brown et al., 1997; Tawn et al., 2003; Bedford and
D e w e y, 2002; Durante 1996; Kanda 1999). Variations of the PCC
assay (Prasanna, 2000) may provide dose estimates in less than
24 hours for relatively high doses of ionizing radiation, but still
require validation.

In the last decades, the use of fluorescence in-situ
hybridization (FISH) to label specific chromosomes has allowed
the easy detection of chromosome translocations, which can
persist for decades after exposure (Lucas, 1992). Translocations
have played a fundamental role in determining the radiation

dose received by individuals exposed during the Chernobyl
nuclear accident (Moore et al., 1997; Jones et al., 2001).
Translocations can provide a very precise assessment of
radiation dose with the proper calibration curve; however, the
experimental method requires skilled personnel and expensive
equipment. Additionally, the assay requires several days to a
week to be completed and therefore cannot be used to obtain a
fast estimate of the dose during the first few days after exposure
when the information would be most critical for identifying
victims of radiation accidents who could benefit the most by
medical intervention.

Given cytogenetics current standing as the best accepted assay
for radiation dose assessment and its limited throughput, we
advocate that a national network of laboratories linked by standard
methods and calibrations should be established to handle the
potential surge in analysis needed in the event of an R/N event 
and this network should be integrated into the a national radiation
protection program. Development of national biodosimetry
network of reference laboratories could provide capacity needed 
to respond to a large scale or multi-site R/N incident.  

In summation, research is needed to address the potential for
more rapid cytogenetics, to develop standardized Food and Drug
Administration approved assays and to develop a network of
laboratories that can respond to a mass causality event.
H o w e v e r, methods for its improvement should be encouraged
and inter-laboratory variability in this bioassay needs 
to be characterized.  

2. Dosimetry and Location-Based Dose Assessment
Physical dosimetry using pre-positioned dosimeters currently

serves as a mainstay in the military, as well as all org a n i z a t i o n s
in which personnel could be exposed to ionizing radiation.
Personal dosimeters of this type exist in the form of film,
thermoluminescent dosimeters, or track-etch devices. 

Since radiation fields are typically determined during the early
response of a radiological exposure, an individual’s time and
locations at the radiation incident scene should be recorded so
that they can be used for dose reconstruction applications.

Dose estimates can be made through knowledge of the time
an individual spent at a particular location if there is information
on the radiation contamination in the environment for that area or
on the exposure rate (and its rate of change) during the time the
victim spends at the site of injury. Hence, information should be
collected on the victim’s whereabouts relative to the source of
radiation such that their accumulated external dose can be
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quickly estimated using simple hand-held calculating devices or
from more complex models which would take much longer to
d e t e r m i n e .

The external dose received by an individual who has spent
time in an area that has received contamination from a
radiological dispersal device is proportional to the initial exposure
rate  they were subjected to and the time spent in that area. 

Location and Time in A r e a
The integral dose received by exposed victims is important to

determining the triage that is necessary; hence, information should
be collected on the victim’s whereabouts relative to the source of
radiation such that their accumulated external dose can be quickly
e s t i m a t e d .

The external dose received by a victim in the vicinity of an
IND will be a sum of the instantaneous exposure from the prompt
gamma rays and neutrons released by the explosion as well as the
longer term exposure from radioactive debris and/or fallout. In
contrast, the external dose received from a RDD will primarily be
a function of the initial exposure rate1 and the length of  time
spent in the area that received contamination. The prompt gamma
and neutron dose will be extremely difficult to assess at time 
of triage without expert guidance on bomb yield coupled with
measurements of fortuitous dosimeters at the site of exposure. In 
that case, it would be important to know the location of the
exposed person, either relative to the site of the explosion, or
relative to the site of the nearest measurement of exposure rate (or
dose rate to air). However, for the case of continuing exposure
from a ground contamination or due to a clandestine source,  the
critical information needed to assist initial dose assessment would
include the exposure rate measured in air at least two points in
time, the locations of the victim, and the length of time spent in
the area where irradiation took place.

For example, when the exposure rate remained nearly constant
during the time spent in the contaminated area, the dose to the
whole body can be simply estimated: 

DT = X t DCF

w h e r e ,

DT = Whole body dose equivalent (Sv or rem), effective dose (Sv
or rem), or absorbed dose (Gy or rad)

X = exposure rate (Roentgen where 1 R S– 1 = 2.58 x 10– 4 C kg– 1

s– 1

t = time (s) spent at location with exposure rate as described

DCF = exposure to dose conversion factor (Sv or rem, or Gy or rad,
per R)

The conversion factor is about 0.8 for adults for most photon energ i e s
for rotational incidence (NCRP 1 9 9 9 ) .

The dose to a specific organ or tissue can also be estimated assuming
that the exposure rate is nearly constant during the time spent in the
contaminated area;

DT = X t (W/e)(DT/ Ka)

w h e r e ,

DT = tissue absorbed dose (Gy)

X = exposure rate (C kg– 1 s– 1, where 1 R s– 1 = 2.58 x 10– 4 C kg– 1

s– 1)

t = time (s) spent at location with exposure rate as described
W/e = mean energy expended in air to form an ion pair ≅34 J/C

Ka = air kerma (Gy)

Note that values of DT/ Ka can be obtained from numerous sources,
e.g., ICRP 74 (1996).2

If the exposure rate is changing substantially during the exposure
period, then the dose to the person can be estimated from an
integration of the dose rate over the exposure time:

where to is the time that exposure began, and te is the time that
exposure ended. In the case of radioactive fallout, the radiation 
field decays approximately by the power law of t– 1 . 2:

w h e r e ,

X is the integral expressed in milliRoentgens (mR) from 
TO A until te,

1Here exposure rate is used in the technical sense of the rate of ionization in air, i.e., 1
Roentgen s–1 = 2.58 x 10–4 C kg–1 s–1. Note that the dose to a person could also be
determined from the dose to air.

2ICRP. International Commission on Radiological Protection. Conversion Coefficients
for Use in Radiological Protection Against External Radiation. Report No. 74. Pergamon
Press. 1996.

.

.

.

.
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TO A is the time elapsed from the detaontion until the arrival of
the debris cloud (h),

XTO A is the exposure rate at TO A ( m R / h ) .

Since the time of measurement would undoubtedly be later than
the time that exposure began, a simple decay correction can be
from time of measurement, tm, to the time when exposure began,
to (again, assuming fallout from a nuclear detonation):

If the exposure is due to a single radionuclide, then the
equations can be modified for its half-life and energ y.

Calculations such as those described here could be facilitated
by use of pre-programmed hand instruments (calculators, Palm
Pilots, etc.). In that case, the person who is responsible for the
crude estimate of external dose (as described above) would need
to input the following data: exposure rate (R/s) measured at a
location relatively close to victim, the time of measurement,
approximate time when exposure began, approximate time when
exposure ended (i.e., when victim was removed).

If exposure rate measurements at the precise location of
exposed victims are not available, measurements made nearby to
the victim could be substituted with the restriction that both the
measurement and the victim were both outside a building, or
both inside.

In the case of a radiological terrorism event, it would seem
that quick calculations via handheld devices would be possible,
but would require that the outcome of that assessment be
physically or virtually attached to the identity of the person, e.g.,
via a database including a photograph. During the chaotic
situation that would follow such events, maintaining the dose
assessment information with the victim will prove diff i c u l t .

3.  Measurement of Radioisotope Contamination 
The Centers for Disease Control is currently leading an effort

to provide high-throughput bioassay of internal radioisotope
contamination. While critical for medium- and long-term
assessment, internalized radioisotope contamination dosimetry
does not contribute to decisions made within the first 72 hours
after initial exposure. Decorporation decisions will be driven

primarily by the long-term risk to the vicim and to the
availability of effective decorporation available to be brought to
bear. In addition, contamination from nose swabs and clothing
should be captured as part of an overall initial assessment, and
estimation of internal contamination is important for long-term
patient management. 

If patients are few and there is an evident need to determine
the total internal radiation dose, all body effluents should be
collected for an extended time. Measurements of excreted
radionuclides will provide information required to estimate the
total internal body burden (NCRP 1980). Depending on the
internally deposited radionuclide and its physicochemical
characteristics, the collections may have to be made for months.
For example, radionuclides with long radiological and biological
half-times would need to be monitored longer than radionuclides
with a short radiological or biological half-time. Radionuclides
inhaled in relatively insoluble form would need to be monitored
longer than more soluble forms due to the potentially extended
residence in the lungs.

4. Pre-positioned Physical Dosimeters
Physical dosimetry using pre-positioned dosimeters currently

serves as a mainstay in the military, as well as all org a n i z a t i o n s
in which personnel could be exposed to ionizing radiation.
Personal dosimeters of this type exist in the form of film,
thermoluminescent dosimeters, or track-etch devices. 

Measurement of neutron activation of sodium in blood or
sulfur in hair is an approach that has been demonstrated in the
laboratory for estimating prompt neutron dose. However the
presence of high background radiation may make such
measurements infeasible for use as a neutron dosimeter following
an R/N event.

A new device, the Self-indicating Instant Radiation A l e r t
Dosimeter or SIRAD™ (see www.jplabs.com for more
information) is a low-cost, disposable dosimeter that is packaged
similar to a credit card. This devise presents the possibility of
producing a low-cost, preposition civilian monitoring dosimeter.
The sociological dimensions of wide distribution of such a
device provide one of the greatest uncertainties for its
deployment for use by the civilian population. Nevertheless, 
this type of technology, while relatively new, is a very exciting
development for the field of personal dosimetry and should be
evaluated for its value in a radiological or nuclear event. 
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1. Biological Measure m e n t s
A variety of biological materials can and have been used for

diagnostic purposes in clinical medicine and forensics. Collection
of certain biologic samples can incur some risks to the victims,
but significant risks are primarily limited to tissue biopsies. T h e s e
range in the risks and complexity of collection from hair and
saliva for rapid safe and simple collection to sampling of internal
tissues by biopsy which is complex and presents health risks to
the casualty. We considered technologies that could be applied to
any biological sample but expect that diagnostics will be limited
in practice to samples that can be easily collected in a rapid
fashion with little risk to the potential causality or responder. We
also limited our evaluation to samples which responders are
accustomed to dealing with and for which a supporting research
literature base exists. We judged the most promising sample
sources to be exfoliated cells, body fluids such as blood and
saliva, and breath. Collection of tissues and other body fluids
requiring risky, time consuming, complex collection procedures, 
are not generally handled by first responders, or have a limited
supporting research base.

Molecular Markers in body fluids and tissues
Biomarkers are specific chemical or biological properties that

can indicate a health-related process or outcome. They constitute
molecules as diverse as proteins and small molecule metabolites.
Biomarkers have been under intensive research for many decades
and many reviews and books have been written on them and
their use (Blakely et al., 2001; Mendelsohn, Mohr, and Peeters,
1998; Gledhill and Mauro, 1991 as examples). Biomarkers
represent underlying changes in physiology which can arise from
physical damage (cell lysis and the release of intracellular
proteins into the circulation, oxidation by-products or DNA
breakage), underlying changes in biochemistry (presence of new
metabolites or changes in levels of key gene products), and / or
changes in cellular composition of tissues. Biomarkers have been
proposed for and used to diagnose the presence of infectious
agents, to judge the damage caused by exposure to chemicals, to
judge one’s individual susceptibility to disease, to predict
medical outcome and therapy, to measure organ system function,
and to predict prognosis or health outcome for damaging
exposures or disease. Likewise, it has been suggested by several
expert panels that such markers could be useful in responding to
an R/N incident particularly to enable rapid triage of at-risk
populations (young, aged, those with significant health
conditions) from potentially exposed individuals and to guide
treatment and post-radiation victim care (NIH, 2005, JIWG,
2005; Trent Congressional Testimony at
h t t p : / / k y l . s e n a t e . g o v / l e g i s _ c e n t e r / s u b d o c s / 0 5 11 0 4 _ t r e n t . p d f ). 

The steadily increasing sophistication in our understanding of
the early biochemical responses of irradiated cells and tissues
provides the opportunity for developing mechanism-based
biosignatures of exposure (Woloschak & Paunesku, 1997;
Fornace et al., 1999; Tusher et al., 2001). Compelling
breakthroughs have been made in the technologies for genome-
scale analysis of cellular transcriptional and proteomic profiles
(Chee et al., 1996; Lockhart et al., 1996; Lipshutz et al., 1999;
Jain, 2002; Kukar et al., 2002; Issaq et al., 2003; Krieg et al.,
2004), in the quantitation of biomolecular signatures, and in
advanced statistical and bioinformatics methods to analyze larg e
biological data sets (Dudoit et al., 2000; We r n e r, 2001; Peterson,
2002; Peterson, 2003). There have also been major strides in the
mechanistic understanding of the early events in DNA d a m a g e
and radiation damage products, as well as in the cellular
pathways that lead to radiation injury (Thompson & Schild,
2001; Burma & Chen, 2004; Fernet & Hall, 2004; Kurz & Lees-
M i l l e r, 2004; Meek, 2004).  

New research with genomic- and proteomic-wide tools is
showing that within minutes to hours after exposure to ionizing
radiation proteins are modified and activated, and larg e - s c a l e
changes occur in the gene expression profiles involving a broad
variety of cell-process pathways (Amundson et al., 1999; Park et
al., 2002; Kang et al., 2003; Yin et al., 2003). High-throughput
gene expression profiling in human peripheral blood
lymphocytes irradiated ex vivo and other human cells have
identified several genes, such as GADD45 and CDKN1A, whose
expression increases as a function of the ionizing Radiation dose
(Amundson, 1999; Blakely et al., 2001; Kang et al., 2003).
Transcriptional changes should correlate with changes in protein
expression, and a recent survey of the literature has identified
several proteins that provide evidence of exposure over a range
of dose and time. 

A review of the literature suggests that there are presently
approximately 90 known proteins that show changes in
expression or undergo post-translational modifications after
exposure to ionizing radiation. Some of these change in a dose
dependent fashion although there is limited data on the shapes of
dose- and time-response curves. To date, most of these proteins
(approx. 90%) were identified using in vitro tumor cell models
and the majority of research has been with high doses of ionizing
radiation (> 4Gy). Few human- or animal-based studies have
been reported and limited validation of the use of molecular
biomarkers for radiation injury assessment has taken place in
clinical populations although some validation of the value of
molecular markers for judging biological dose for ionizing

C. Assessment of Emerging Dosimetry Technologies
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radiation is now being published and appears promising (Leslie,
1992; Becciolini, 2001). Serum amylase, for example, is a case
where clinical assays presently exist and where there is data
suggesting radiation responsiveness.

Although more research is needed, the wealth of information
generated by these studies provides the foundation for
developing mechanism-based biosignatures of exposure that
correlate with the timing and dose of radiation exposures. In
addition, the rapid explosion of proteomic/genomic/metabolomic
technologies and innovations and their application to the
systematic characterization of the proteomic, genomic and
metabolomics profiling of healthy human tissues and serum
( Tirumalai et al., 2003), provide baseline references for
identifying early biomarkers of radiation exposure and of tissue-
specific damage. At present, even though there are significant
limitations in extrapolating the value of the nucleic acid,
metabolite or proteins discussed above to the human R/N threat
scenarios, a set of proteins or mRNA t a rgets do seem to off e r
potential for use as biomarkers (see Table 5).  

Recognition of the gap in available early and rapid
technologies for radiation dose assessment has accelerated
research into the applicability of molecular markers as indicators
of radiation dose. However, at the present time, this technology is
in its infancy. Research into the discovery of markers indicative
of radiation exposure is primarily being carried out in academic
institutions and government laboratories. No commercial assays
have been developed or marketed and there presently is little
e ffort in the industrial sector to develop such assays for radiation
dosimetry or triage. Likewise little R&D funding has been
directed towards development of commercial assay concepts and
prototypes (although the Department of Defense and the National
Institutes of Health will fund some centers and increase spending
in the near term to conduct such research). Research is needed to
understand how these markers respond to different types of
radiation, how these markers relate to known clinical or
biologically relevant effects and dose rate effects. There is a
critical need to understand the normal expression range of
potential radiation markers in healthy people as well as groups
with pre-existing health conditions.

A d d i t i o n a l l y, an understanding of the time and dose kinetics
and effects of other confounding factors such as age, gender, and
genetic background needs to be understood. The value of single
parameter versus multi-parameter signatures should also be
evaluated. Analytic models based on quantitative data using
various model systems are required. An understanding of
sensitivity and specificity of potential molecular markers is
needed. Statistical methods to evaluate and interpret assay results
needs development and validation. Research is also needed into
judging the value of these biomarkers for indications of latent
radiation responses even though initial efforts may focus on the
diagnostic information for acute early-response. 

While most research and technology development has so far
centered on genomics and proteomics, other potential molecular
classes could prove useful as indicators of radiation dose also and
should be investigated. In particular research is beginning on
small molecule metabolites, lipids, and glycosylated,
biomolecules. National efforts in this regard can be significantly
aided by international research efforts and experiences.

Breath Gas A n a l y s i s
Another promising area for biological measurement of radiation

injury is breath analysis. The vast majority of tissue damage
following irradiation results from the action of free radicals

Priority Group Symbol Name

Protein

ATM

H2AX

CDKN1A

DDB2

GADD45A

PCNA

CCNB1

BLM

RPA1

Tp53

CHK2

CDK4

CDKN2A

ENO1

ERP 29

Proteins with data from more than one species are indicated in bold.

ataxia telangiectasia mutated

Histone 2AX

cyclin-dependent kinase inhibitor 1A (p21, Cip1)

damage-specific DNA binding protein 2

growth arrest and DNA-damage-inducible 45 alpha

Proliferating cell nuclear antigen

cyclin B1

Bloom syndrome protein

replication protein A1

tumor protein p53

checkpoint kinase

Cyclin-dependent kinase 4

cyclin-dependent kinase inhibitor 2A (p16)

enolase 1

similar to Protein disulfide isomerase A4 precursor

1

2

3

Table 5.  High-priority candidate radiation-responsive proteins for
biomarker development.
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produced by the absorption of ionizing radiation. Free radical-
induced damage is associated with the process of lipid peroxidation
of omega-3 and omega-6 fatty acids (Sies 1997).  End products of
lipid peroxidation of polyunsaturated fatty acids are ethane and
pentane. No other major endogenous sources of ethane and pentane
are anticipated other than lipid peroxidation (Kharitonov and
Barnes 1994). 

Breath ethane generation was measured by Arterberry et al
(1994) during clinical total body irradiation for treatment over a
4-day period. The largest changes in breath ethane occurred on
day 2 and these changes were correlated with clinical
manifestations of gastrointestinal side effects. Since the study by
Arterberry et al (1994) several authors have explored more
sensitive methods for measuring breath gasses. The study by
Mueller et al (1998) evaluated breath analysis of exhaled air by
mechanically ventilated patients using microwave energ y
desorption coupled with gas chromatography-flame ionization
detection-mass spectrometry. Infrared laser spectroscopy was
used by Basum et al (2003) who were able to detect in near real-
time 500 ppt ethane. Other molecules are also present in breath
and efforts have been made to explore their utility for disease
diagnostics. 

These studies suggest the possibility of breath analysis as a
tool to support triage following an IND/RDD event. However,
these gases are associated with a variety of medical conditions
that may complicate future attempts to use breath analysis to
estimate absorbed radiation dose. Research is needed on how
well they relate to radiation dose.  

Devices for Biological Indicators of Radiation Injury
A vast array of technologies is being developed and applied to

researching biological indicators of disease and is being
developed for use in diagnosis. Platforms have been developed
for analysis of proteins, DNA/RNA, molecules in breath, small
molecule metabolites, cells and others. These are generally based
on DNA m i c r o a r r a y, Polimerase Chain Reaction (PCR) based
assays (PCR), protein array, multiplexed-antibody assays, lateral
flow immunoassay (LFD), mass spectrometry, various
c h r o m a t o g r a p h y ’s, spectroscopic analysis, image analysis, flow
cytometry and SAGE (serial analysis of gene expression). A
variety of companies have proprietary platforms for conducting
these analysis including, as examples, Luminex for multiplexed
antibody assays; A ffymetrix for DNA microarrays; Litron
Laboratories for flow cytometry-based methods for cytogenetic

damage; Loats Associates for automated micronucleus assay; and
Metabolon for metabolic pathway mapping. While many
technologies have been developed, none are available for
molecular diagnostics of radiation injury (see Baker, 2005) 
and few are available for cell analysis.  

The simplest promising device that has applications for
radiation biodosimetry triage is the lateral flow immunoassay
device (LFD). LFDs are a common diagnostic assays employed 
in clinical laboratories. Most people are aware of the use of this
format in over-the-counter pregnancy tests. Laboratory tests are
available to the clinician for fertility, pregnancy, infectious
disease, veterinary, and food safety applications, and new ones are
being developed at a steady rate (eg, Quach et al., 2002, O’Keefe
et al., 2003, Slinger et al. 2004, Cazacu et al., 2004). In addition,
the US military uses this format in the field to detect biological
warfare agents with their Hand Held Assays (HHAs). These can
be run by hand or employed in automated systems. In 2004, the
US military produced over 9 million HHAs. The anthrax letter
that was sent to Senator Daschle was tested on site with an HHA
which shut down the congressional mail and prevented the letter
addressed to Senator Leahy from being opened. 

As mentioned, while a variety of technologies, tools and
methodologies have been developed to discover, characterize 
and analyze proteomic, metabolomic, and genomic, markers for
diseases, there is no commercial assay available for radiation
dose estimation and limited evidence of development in this area.
There are few patents for radiation biodosimetry diagnostics, few
awarded research proposals, and some requests for proposals in
this area from the Department of Defense and the National
Institutes of Health.  However, since significant industrial eff o r t
is being devoted to development and marketing of diagnostics for
other health-related conditions (cancer, infectious disease, etc) it
should be possible to rapidly develop and commercialize
radiation dosimetry tools once the basic research finds and
validates relevant molecular indicators of radiation exposure.
Research investment is needed in exploring the development of
such tools specifically for radiation biodosimetry, concepts of
operation and their application.

2. Physico-Chemical Measure m e n t s
We have identified several techniques that can potentially use

changes in physical and chemical attributes of tissue and/or other
materials that people carry as a means to estimate radioaction
dose. Prior investment in attempting to capitalize on these
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characteristics has been uneven and therefore it is difficult to
provide inter-comparisons with respect to potential.  For
example, optical stimulation of luminescence (OSL) is a well-
defined science supporting commercial dosimetry systems for
workers in nuclear facilities. But the use of teeth or bone as
dosimeters represents additional technological challenges.
Electron parametric resonance (EPR) of tooth enamel, on the
other hand, has been used essentially for retrospective dose
estimation in support of epidemioloic studies but currently
requires an extracted tooth, an invasive procedure not likely
acceptable in the first hours after a large terrorist event. We
present concepts below that vary considerably in underlying
technologies.  While there certainly are additional concepts, we
will focus on the following:

• L u m i n e s c e n c e
— Teeth and Bone
—Fortuitous Dosimeters

• Electron Parametric Resonance

• Breath A n a l y s i s

• U l t r a s o u n d

L u m i n e s c e n c e
Estimating dose from physical measurements has been under

investigation for many years. Dose response luminescence of a
wide variety of natural and manufactured materials has been
studied since the early decades of the 20t h c e n t u r y. Initial
experiments concentrated on prompt phosphors and
photoluminescence, however technical improvements in fine
control of thermal profiles led to the development of
thermoluminescence (TL) as a reliable means of detection of
radiation doses absorbed by a variety of natural and
manufactured wide-gap insulators. Understanding of the dose
response T L behavior of natural materials, primarily quartz and
f e l d s p a r, was given a tremendous boost by a key group at Oxford
University in the 1960’s to 1980’s (Aitken, 1985). Although their
focus was the chronology and authentication of archaeological
objects, the basic research carried out by members of the group
led to methodologies suitable for the detection of very low
absorbed radiation doses and therefore to retrospective dosimetry.  

The recognition that exposure to sunlight of natural geological
deposits results in a depletion of their T L signal led to the

invention of optical dating (Huntley et al., 1985). In this
technique, dose response luminescence is stimulated optically
rather than thermally, as in TL. OSL, in which stimulation is
provided by infrared or visible photons rather than by heat was
quickly recognized as providing a number of advantages over T L .
For example, with a short pulse of stimulating light, the t r a p p e d
c h a rge population may be sampled rather than completely erased
as it is in a T L measurement. Thus different wavelengths of light,
tailored for optimal luminescence response in different minerals
may be selected;  a wide or narrow detection region is achievable
with appropriate stimulating photons or with pulsed rather than
continuous stimulation; and a high concentration of stimulating
photons permits the detection of luminescence from an aliquot as
small as a single sand-sized grain of quartz with a mass of  ~2
µg. In addition, transmittance of both stimulating photons and
emitted luminescence via fiber-optic cables is easily achievable,
thus permitting a degree of flexibility and optimization of
instrumentation design simply not possible with TL. OSL m a y
also be detected simultaneously with T L o r, if the sample is being
continuously irradiated, with radioluminescence (RL).  Many of
these potential advantages have been discussed and implemented
within the past two decades (Aitken, 1998; Bøtter-Jensen et al.,
2003) but primarily as a laboratory, rather than a field technique. 

Optical Stimulation of Teeth and Bone
A portable OSL dosimetry instrument that could be used 

on an intact person has been suggested by Godfrey-Smith and
Pass (1997). The key advantage of such an instrument is that 
it would use non-ionizing photons rather than electron resonance
to stimulate luminescence (Huntley et al., 1985), and therefore
any risks associated with its use should be no more dangerous (in
principle) than shining a strong light into a person’s mouth.   

The key observation of the initial investigation of the OSL
properties of tooth enamel is that both infrared and visible
green photons are capable of stimulating luminescence, and 
that the dose response is detectable in both a broadband visible
region (when stimulated with infrared photons) and in the near-
ultraviolet (when stimulated with green photons). Godfrey-
Smith and Pass (1997) also showed that signal response is
stronger in non-deproteinated tooth enamel versus
deproteinated enamel. A dose of 15 Gy should be readily
detectable in non-deproteinated enamel: i.e., whole teeth, with
an S/N ratio of 3, with no changes in present instrumentation.
One may deduce from this that steps toward the optimization of
stimulating wavelength, its incident intensity, spectral width of

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 18



Supporting Information

19

the detection band, and the tooth-to-detector geometry should
make the detection of much lower (10X) doses readily
achievable. Such optimization could bring the lower limit 
of detetion to approximately 0.25-0.5 Gy.  

Optical Stimulation of Fortuitous Dosimeters
Members of the public do not carry calibrated radiation

dosimeters like those provided to radiation workers, but there are
a number of common materials often in their possession or
nearby that can serve as dosimeters for evaluating the degree of
radiation exposure from an incident. Radiation dose from X-rays,
γ-photons and ß-particles can be measured using diamonds and
other semi-precious stones in jewelry; semiconductor
components in cell phones, personal digital assistants and car
keys, quartz in watches and watch faces, and even tooth enamel.
All the previously listed materials potentially store energy from
ionizing radiation as unpaired electrons trapped in elevated
e n e rgy states. These unpaired electrons can be detected and
measured a number of ways: – by EPR, TL, and OSL – to
determine the radiation dose. Alpha (α) particles that could
originate from uranium and transuranic radioisotopes and
neutrons from nuclear devices can be detected in glass and many
plastics, including those used in watch covers and eyeglass lenses
after etching with a strong base solution. However calibration of
measurement to predict the actual dose received by a person will
likely present difficulties. Other radiation-sensitive materials in
buildings and soil can be used to determine isodose curves
around the radiation event. Quartz, used widely for radiation
damage dating of archaeological artifacts, is ubiquitous in soil
and building materials, and its man-made counterpart is the
principal component of fiber-optic cable. Even common table salt
can serve as a radiation dosimeter.

Determining the radiation dose from a fortuitous (un-
calibrated) dosimeter material subsequent to its exposure requires
two steps. The first step involves measuring the “as-found”
signal from the material. The second step requires exposing the
sample to a known radiation field and measuring the additional
response. The sample’s radiation sensitivity, from the second
step, is then used to evaluate the “as-found” dose from the first
step. This practice was used in the reconstruction of doses to A -
bomb survivors with, for example, tile and brick, heated to
produce T L ( R E R F, 1983).   Stimulation of light from materials
using both thermal and light stimulation is in use worldwide in
geologic studies to assist in the dating of events and materials
(Godfrey-Smith and Pass, 1997). Development of a useful

technology will require identification of common items carried
by people that can serve as fortuitous dosimeters, determination
of which have the sensitivity to be of use in post-exposure injury
assessment, and development of procedures for readout and
calibration.  

The phenomenon of T L was first observed in diamond by
Robert Boyle, who reported to the Royal Society in London on
October 28, 1663 (Becker, 1975). Diamond films made using the
chemical vapor deposition process, with various impurities to
enhance radiation response, have been studied and shown to be
e ffective dosimeter materials for radiation doses from 0.8 Gy to 
3 kGy (Barboza-Flores et al, 2004). Natural diamond has its own
impurities (responsible for color and other qualities), and the
radiation sensitivity for a particular gemstone would be
determined a posteriori as part of the dosimetric analysis, as
noted above. A variety of other minerals can be used for radiation
d o s i m e t r y, including some semi-precious gems like sphene and
epidote. The fundamental T L properties of these minerals have
been studied at very high doses (1 - 3 kGy), but the range of
radiation sensitivities needs to be determined (Khalifa, Khalifa
and Durrani, 1986).

Natural quartz and its man-made analog used extensively in
optical fibers provide another source of fortuitous dosimeters,
both for evaluating radiation doses to incident victims and for
establishing radiation isodose curves in the area surrounding a
radiological event. Natural quartz is ubiquitous in nature and can
be found virtually wherever there is dirt except in coral-based
soils. Grains of sand from shoe soles, pants cuffs and pockets,
city streets, and plant leaves provide a record of dose from a
radiological event (Khan and Delincée, 1995). Fiber-optic strands
are excellent radiation dosimeters from 0.1 Gy to several kGy
and are associated with computer networks and cable service in
many buildings (Espinosa et al, 2004). Optical fibers will
probably be available for analysis of a radiological event, since
such events are most likely to occur in areas with a highly
developed infrastructure, either because of commercial use of the
material involved in the event, or because of terrorist targ e t i n g .

Common table salt is also an excellent radiation dosimeter.
Impurities such as potassium, calcium, magnesium, iron, copper
and silver create defects in the salt crystal structure that provide
sites where orbital electrons promoted by interaction with
ionizing radiation become trapped and can be measured by EPR,
T L or OSL. Radiation doses from 0.01 - 1,000 Gy have been
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measured using untreated table salt (Kaibao et al, 1986). A n y
building with a cafeteria or break area, food vendors on the street
and packages of salted snacks from the vicinity of a radiological
event provide a wealth of material for radiation dosimetry.

The number of α particles absorbed following dispersion of
uranium or transuranic materials, or neutrons from detonation of
a nuclear device, is possible using a variety of glass or plastic
materials, including picture glass, eyeglass lenses, and compact
disks (Fleischer, 2002). Neutrons interact with uranium
impurities in glass, causing them to fission and leave tracks
(damage in the glass structure from energetic charged particles
released in the fission event) that can be developed to visible size
and counted. Polymer chains that make up plastic materials are
damaged by charged particles from alpha emitters on the surface
or from neutron interactions with atoms in the plastic itself.
These can be etched with a caustic solution to enlarge the
damage sites to visible size. The number of damage sites reflects
the total particle fluence (source strength), and certain
characteristics of the tracks’ geometry can be used to provide
e n e rgy spectra, useful in identifying the source material (Phillips
et al, 2004) and for estimating dose.

Optical Stimulation Instrumentation
Several OSL instrumentation systems currently exist, some of

which are commercially available (Bøetter-Jensen et al., 2003).
All current commercial systems, however, are designed for
bench-top laboratory use only; none are portable. Most
extensively used are those systems designed for automated,
multiple-sample analysis, primarily for geological or
archaeological dating (e.g. those systems manufactured by Riso
National Laboratory or by Daybreak Inc). Others are designed
for personnel dosimetry application, such as the InLight™
system manufactured by Landauer Inc. All of these systems,

h o w e v e r, are designed to have the sample (or dosimeter) placed
inside the apparatus and none is appropriate for field application.
Polf et al. (2004) and Gaza et al. (2004) describe a fiber- o p t i c
system designed to measure absorbed doses by A l2O3:C OSL
dosimeters. Overall design is based on similar systems described
earlier by Justus et al. (1999) and Huston et al. (2001). Similar
apparatus is also described by Anderson et al. (2003). T h e
primary application for each of these systems is i n - v i v o r a d i a t i o n
dosimetry during radiotherapy (external beam and/or
brachytherapy) and the OSL measurement scheme in these
applications is by continuous-wave stimulation (CW-OSL). A
similar system is described by Klein et al (2004) for
environmental dosimetry. Since the goal of the latter work is to
measure low level environmental doses the Klein et al. apparatus
is designed for optimum sensitivity, and uses pulsed OSL ( P O S L )
rather than CW-OSL. POSL measures the OSL signal between
stimulation pulses rather than during the stimulation and leads to
a high signal-to-noise ratio. 

E l e c t ron Paramagnetic Resonance
The development of the theory and instrumentation of

electron spin resonance paralleled that of T L and OSL. ESR (also
called EPR, electron paramagnetic resonance) has made it
possible to detect radiation doses absorbed by a very wide variety
of organic as well as inorganic materials. The inorg a n i c
hydroxyapatite component of tooth enamel and bone is not only
a well known natural dosimeter, it is also unique amongst all
living tissues in its ability to retain the signal from absorbed
radiation dose on time scales that are sufficiently long to be of
use in human dosimety’s risk assessment. (Other tissues such as
blood provide evidence of radiation exposure, but suffer from a
rapid disappearance of detectable changes from absorbed dose.)
For this reason, attempts to develop instrumentation for in vivo
ESR measurement of dose to teeth in humans have been
recognized as having potential applications (Ikeya and Ishii,
1989; Yamanaka et al., 1993). Unfortunately, these early eff o r t s
resulted in microwave burns to volunteers. Although progress is
being made in this regard, most recently reported data indicate
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that applications to human teeth are still at the ex vivo s t a g e ,
although the instrumentation is suitable for in vivo a p p l i c a t i o n s
with research animals (Miyake et al., 2000; Swartz et al., 2004a,
2004b).  

Further emerging development work, using smaller magnetic
fields (smaller magnet systems) could lead to practical and safe
in vivo dose assessment in teeth and bone. The goal would be to
develop a portable instrument to rapidly assess clinically
significant exposures in the field.  

U l t r a s o u n d
Medical injury from a terrorist event (IND, RDD) is likely to

involve thermal trauma in addition to radiation injury (combined
injury). A high frequency ultrasound technique has been
developed to function as a clinical tool to distinguish partial-
thickness from full-thickness thermal burns (Roswell, Goans and
Cantrell, 1977; Goans, Cantrell and Meyers, 1977; Cantrell,
Goans and Roswell, 1978; Goans and Cantrell, 1978). Electrical
and thermal burns represent a class of traumatic injury whose
severity is difficult to diagnose through conventional clinical
techniques. In many cases involving burns, the prognosis for
patient survival is dependent upon an early and precise knowledge
of both the magnitude of injury and of the depth of burn. T h i s
technique could be extended to analyze radiation-induced injury.
The method is intended to use a conventional off - t h e - s h e l v e
medical ultrasound unit with an adjunct computer-driven analyzer. 

Because most hospitals utilize ultrasound routinely, the
potential use of ultrasound to estimate dose also has significant
merit as an adjunct to fortuitous dosimeters (discussed above) or
possibly internal dose estimates based on nasal swabs, among
others. The concept has been proven in principle by its ability to
evaluate burn damage (Goans and Cantrell, 1978). Like

fortuitous dosimeters, that may be readable with readily available
equipment, ultrasound analysis may also provide invaluable
assistance in the identification of people who have received
radiation exposures that were below a level that could be
detected by other means. This is of great importance if many
people are assumed to be significantly exposed and medical
triage must be administered. 

A conventional ultrasound pulse-echo unit (5-30 mHz) was
modified so that necrotic tissue at shallow depths (< 5 mm) from
the skin surface could be resolved. Resolution of soft-tissue
damage is less than 0.2 mm. This requirement was necessary so
that deep dermal damage could be separated from epidermal
necrosis and from thermal injury near the subcutaneous fat layer.
The technique received a patent through the Oak Ridge National
Laboratory and the Atomic Energy Commission (AEC) and was
subsequently licensed into the private sector (Goans et al, 1978)
where the technique has matured with improvement in ultrasound
technology (Adams, Murphy, Gillespie and Roberts, 2000; Bauer
and Sauer, 1989).  The use of pulse-echo ultrasound is a stable
clinical technique for ascertaining burn depth (Goans 1985).  In
that report, data were presented that show that the depth of
necrotic tissue remains constant with time during a 12 day period
after the burn was initiated. 

Two pilot studies indicate that both pulse-echo ultrasound and
standard B-scan ultrasonic imaging are sensitive to high-level
radiation-induced cutaneous damage (Goans, 2005). Ultrasonic
analysis of radiation burns appears to be much more complicated
than for thermal burns because what is likely being measured is
early vascular damage and vascular leakage. However, the
sensitivity of the technique for measuring pathology is at least as
great for radiation injury as for thermal injury. In fact, it may
actually be more sensitive. Statistically significant changes (p <
0.05) in the magnitude of the reflected ultrasound spectrum have
been noted less than 30 min post-irradiation. While promising,
research is needed to better understand how to use ultrasound in
a field setting and what it’s ultimate capabilities are. 

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 21



R e f e r e n c e s

22

Adams, T.S., Murphy, J.V., Gillespie, P.H., and Roberts, A . H . ,
2000. “The use of high-frequency ultrasonography in the
prediction of burn depth,” J. Burn Care Rehabil. 2 1(4), 333–338.

Aitken, M.J., 1985. Thermoluminescence Dating. New Yo r k :
Academic Press.

Aldrich, J.E., and Pass, B., 1986. “Dental enamel as an in vivo
radiation dosimeter: separation of the diagnostic x ray dose from
the dose due to natural sources,” Rad. Prot. Dosim. 1 7, 175–179.

Amundson, S.A, Bittner, M., Chen, Y., Trent, J., Meltzer, P., and
Fornace, A.J.J., 1999. “Fluorescent cDNA m i c r o a r r a y
hybridization reveals complexity and heterogeneity of cellular
genotoxic stress,” O n c o g e n e 1 8, 3666–3672.

Andersen, C.E., A z n a r, M.C., Bøetter-Jensen, L., Brack, S.S.,
A.J., Mattsson, S., and Medin, J., 2003. “Development of optical
fibre luminescence techniques for real time in vivo dosimetry in
r a d i o t h e r a p y,” S t a n d a rds and Codes of Practice in Medical
Radiation Dosimetry (Proceedings of the International
Symposium Vienna, 2002), Vol. 2, IAEA, Vienna, 353–360.

A r t e r b e r y, V.E., Pryor, W.A., Jiang, L., Sehnert, S.S., Foster,
W.M., Abrams, R.A., Williams, J.R., Wharam, M.D. Jr., and
R i s b y, T.H., 1994. “Breath ethane generation during clinical total
body irradiation as a marker of oxygen-free-radical-mediated
lipid peroxidation: a case study,” F ree Radic. Biol. Med. 1 7( 6 ) ,
5 6 9 – 5 7 6 .

Awa, A.A., 1983. “Chromosome damage in atomic bomb
survivors and their offspring–Hiroshima and Nagasaki,”
Radiation-Induced Cytogenetic Damage in Man, T. I. A. M.
Sasaki. New York: Alan R. Liss, 433–453.

B a k e r, M., 2005. “In biomarkers we trust?” N a t u re Biotechnol.
2 3, 297–304.  

Barboza-Flores, M., et al., 2004. “Optically stimulated
luminescence dosimetry on CFD diamond films,” Phys. Stat. Sol.
( A ) 2 0 1( 11), 2548–2552.

Basum, G., Dahnke, H., Halmer, D., Hering, P., and Murtz, M.,
2003. “Online recording of ethane traces in human breath via
infrared laser spectroscopy,” J. Appl. Physiol. 9 5, 2583–2590.

B a u c h i n g e r, M., Schmid, E., and Braselmann, H., 1986.” Cell
survival and radiation induced chromosome aberrations. II.
Experimental findings in human lymphocytes analysed in first
and second post-irradiation metaphases,” Radiat. Enviro n .
B i o p h y s. 2 5, 253–260.

B a u e r, J.A., and Sauer, T., 1989. “Cutaneous 10 MHz Ultrasound
B Scan allows the determination of burn depth,” Burns Incl.
Therm. Injury 1 5(1), 49–51.

Becciolini, A., Porciani, S., Lanini, A., Balzi, M., and Faraoni, P. ,
2001. “Proposal for biochemical dosimeter for prolonged space
flights,” Physica Medica 1 7, 185–186.

B e c k e r, K., 1975. Solid State Dosimetry. Ohio: CRC Press.

Bedford, J.S., and Dewey, W.C., 2002. “Historical and current
highlights in radiation biology: has anything important been
learned by irradiating cells?” Radiation Researc h 1 5 8, 251–291.

B e n d e r, M.A., and Gooch, P.C., 1966. “Somaticchromosome
aberrations induced by human whole-body irradiation: the
“Recuplex” criticality accident,” Radiat. Res. 2 9, 568–582.

B e n d e r, M.A., Awa, A.A., Brooks, A.L., Evans, H.J., Groer, P. G . ,
Littlefield, L.G., Pereira, C., Preston, R.J., and Wachholz B.W. ,
1988. “Current status of cytogenetic procedures to detect and
quantify previous exposures to radiation,” Mutat. Res. 1 9 6,
1 0 3 – 5 9 .

B e n d e r i t t e r, M., Durand, V., Caux, C., and Voisin, P., 2002.
“Clearance of radiation-induced apoptotic lymphocytes: ex vivo
studies and an in vitro co-culture model,” Radiat. Res. 1 5 8,
4 6 4 – 4 7 4 .

Bigbee, W. L., Jensen, R. H., Veidebaum, T., Tekkel, M., Rahu,
M., Stengrevics, A., Auvinen, A., Hakulinen, T., Servomaa, K.,
Rytomaa, T., Obrams, G., and Boice, J.D., 1997. “Biodosimetry
of Chernobyl cleanup workers from Estonia and Latvia using the
glycophorin a in vivo somatic cell mutation assay,” Radiat. Res.
1 4 7, 215–224.

B l a k e l y, W. F., Prasanna, P.G., Grace, M.B., and Miller, A . C . ,
2001. “Radiation exposure assessment using cytological and
molecular biomarkers,” Radiat. Prot. Dosimetry 9 7, 17–23.

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 22



References

23

B ø t t e r-Jensen L., McKeever S.W.S., and Wintle A.G., 2003.
Optically Stimulated Luminescence Dosimetry. A m s t e r d a m :
E l s e v i e r. 

Brooks, A.L., 1999. “Biomarkers of exposure, sensitivity and
disease,” Int. J. Radiat. Biol. 7 5, 1481–1503.

Brooks, A.L., 2001. Biomarkers of exposure and dose: state of
the art. Radiat. Prot. Dosimetry, 9 7, 39–46.

Brown, J.M., Hertveldt, K., Philippe, J., Thierens, H.,
Cornelissen, M., Vral, A., and De Ridder, L., 1997. “Flow
cytometry as a quantitative and sensitive method to evaluate low
dose radiation induced apoptosis in vitro in human peripheral
blood lymphocytes,” Int. J. Radiat. Biol. 7 1, 429–433.

Burma, S., and Chen, D.J., 2004. “Role of DNA-PK in the
cellular response to DNA double-strand breaks,” D N A R e p a i r 3,
9 0 9 – 9 1 8 .

Cantrell, John H., Jr., Goans, R.E., and Roswell, R.L., 1978.
“Acoustic impedance variations at burn-nonburn interfaces in
porcine skin,” J. Acoust. Soc. A m . 6 4, 731.

C e r v e n y, T.J., 1989. “Treatment of internal radionuclide
contamination” in Textbook of Military Medicine Part I: Wa r f a re ,
We a p o n ry, and the Casualty Volume 2, Medical Consequences of
Nuclear Wa r f a re. Office of the Surgeon General, Department of
the A r m y, Col. R. Zajtchuk, R.I. Walke, and T.J. Cerveny, Eds.
(available online at
h t t p : / / w w w. a f r r i . u s u h s . m i l / w w w / o u t r e a c h / m m o r e s o u r c e s . h t m ) .

C e r v e n y, T.J., and Cockerham, L.G., 1986. “Medical
management of internal radionuclide contamination,” M e d i c a l
B u l l e. U.S. A r m y, Euro p e 4 3(7), 24–27.

Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern,
D., Wi n k l e r, J., Lockhart D.J., Morris, M.S., and Fodor, S.P. ,
1996. “Accessing genetic information with high-density DNA
arrays,” S c i e n c e 2 7 4, 610–614.

Cologne, J.B., and Preston, D.L., 2000. “Longevity of atomic-
bomb survivors,” L a n c e t, 3 5 6 , 3 0 3 – 3 0 7 .

Conklin, J.J., Wa l k e r, R.L, and Hirsch, E.F., 1983. “Current
concepts in the management of radiation injuries and associated
trauma,” S u rg. Gynecol. Obstet. 1 5 6, 809–829.

C o s g r i ff, J.H. Jr., 1987. “Guidelines for the emerg e n c y
management radiation injury,” Int. Med. Spec. 8, 170–180.

Dainiak, N., 2002. “Hematologic consequences of exposure to
ionizing radiation,” Exp. Hematol. 3 0, 513–528.

Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., and
Farese, A.M., 2003. “The hematologist and radiation casualties,”
H e m a t o l o g y (Am. Soc. Hematol. Educ. Program), 473–496.

Davis, C.J., 1999. “Nuclear blindness: an overview of the
biological weapons program of the former Soviet Union and
Iraq,” E m e rg. Infect. Dis. 5, 509–512.

Dudoit, S., Yang, Y.H., Callow, M., and Speed, T. P., 2000.
Statistical Methods for Identifying Differentially Expressed Genes
in Replicated cDNA M i c ro a rray Experiments. Berkeley, CA:
University of California.

Durakovic, A., 1987. “Internal contamination with medically
significant radionuclides,” in M i l i t a ry Radiobiology, J.J. Conklin
and R.I. Wa l k e r, Eds., Orlando, FL: Academic Press, 241–264.

Durante, M., George, K., and Yang, T.C., 1996. “Biological
dosimetry by interphase chromosome painting,” Radiat. Res.
1 4 5, 53–60.

Durbin, P. W., 1972. “Plutonium in man: A new look at the old
data,” in Radiobiology of Plutonium, B.J. Stover, W.S.S. Jee, and
J.S. Montague, Eds., J.W. Press, Salt Lake City, UT, Department
of A n a t o m y, University of Utah Printing Service: 469–530.

Espinosa, G., et al., 2004. “Commercial optical fiber as T L D
material,” P roceedings of the 14t h International Conference on
Solid State Dosimetry, New Haven CT, June 27–July 2, 2004 (to
be published in Radiation Protection Dosimetry) .

Fernet, M., and  Hal, L.J., 2004. “Genetic biomarkers of
therapeutic radiation sensitivity.” D N A R e p a i r, 3, 1237–1243.

F l e i s c h e r, R. L., 2002. “Serendipitous radiation monitors,” A m .
S c i e n t i s t 9 0, 324–331.

F l i e d n e r, T.M., Friesecke, I., and Beyrer, K., 2001. M e d i c a l
Management of Radiation Accidents: Manual on the A c u t e
Radiation Syndro m e. Oxford: British Institute of Radiology.

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 23



24

References

Fornace, A.J., Amundson, S.A., Bittner, M., Myers, T. G . ,
M e l t z e r, P., Weinsten, J.N., and Trent, J., 1999. “The complexity
of radiation stress responses: analysis by informatics and
functional genomics approaches,” Gene Expr. 7, 387–400.

Gaza, R., McKeever, S.W.S.,  Akselrod, M.S. Akselrod, A . ,
Underwood, T., Yo d e r, C., Anderson, C.E., A z n a r, M.C.,
Marchmann, C.J., and Bøetter-Jensen, L., 2004. “A f i b e r
dosimetry method based on OSL from A l2O3:C for radiotherapy
applications,” Radiat. Meas. 3 8(4–6), 809–812.

G e o rge, G.W., Cieslak, T.J., Pavlin, J.A., and  Eitzen, E.M.,
1997. “Biological warfare: a historical perspspective,” J A M A
2 7 8, 412–417.

Glasstone, S., and Dolan, P.J., Eds., 1977. The Effects of Nuclear
Weapons. Third edition. U.S. Department of Defense and
Department of Energ y.

Gledhill, B.L., and Mauro, F., Eds., 1991. New Horizons in
Biological Dosimetry. New York: Wi l e y - L i s s .

Goans, R.E., 1985. “Quantitative assessment of burn wound
progress,” M a ryland Med. J. 3 4, 576.

Goans, R.E., et al., Ultrasonic Technique for Characterizing Skin
B u r n s, U.S. Patent 4,080,960 (May 28, 1978).

Goans, R.E., and Cantrell, J.H., Jr., 1978. “Ultrasonic
characterization of thermal injury in deep burns,” in Pro c e e d i n g s
of the Third International Symposium on Ultrasonic Imaging and
Tissue Characterization. National Bureau of Standards.

Goans, R.E., Cantrell, J.H., Jr., and Meyers, F.B., 1977.
“Ultrasonic pulse echo determination of thermal injury in deep
dermal burns,” Med. Phys. 4, 259.

Goans, R.E., and Wald, N., 2005. “Radiation accidents with
multiple organ failure in the United States,” in P roceedings of the
Advanced Workshop on Multi-organ Failure in Radiation
A c c i d e n t s. Ulm, Germany: University of Ulm. Accepted by B r i t .
J. of Rad.

Goans, R.E., 2005. Presented at the 2005 Health Physics Midyear
Symposium in New Orleans, LA.

Goans, R.E., 2004. “Medical lessons from U.S. and international
radiation accidents,” Chapter 21. P roceedings of the 2004 Health
Physics Society Summer School. in Medical Physics Publishing.

Godfrey-Smith, D. I., and Pass, B.A., 1997. “A new method of
retrospective biophysical dosimetry: optically stimulated
luminescence and fluorescence in dental enamel,” Health Phys.
7 2(3), 390–396.

G r a y, J.W., and Pinkel, D., 1994. “Fluorescence in situ
hybridization in cancer and radiation biology,” Rad. Res. 1 3 7,
2 7 5 – 2 8 9 .

G u s e v, I.A., Guskova, A.K., and Mettler, F.A., (2001). M e d i c a l
Management of Radiation A c c i d e n t s, New York: CRC Press.

Hayata, I., Kanda, R., Minamihisamatsu, M., Furukawa, M.,
Sasaki, M.S., 2001. “Cytogenetic dose estimation for 3 severely
exposed patients in the JCO criticality accident in Tokaimura.” J .
Radiat. Res. 4 2, S149–155.

H u n t l e y, D.J., Godfrey-Smith, D.I., and Thewalt, M.L.W., 1985.
“Optical dating of sediments,” N a t u re 3 1 3(5998), 105–107.

Huston, A.L., Justus, B.L., Falkenstein, P.L., Miller, R.W., Ning,
and H., Altemus, R., 2001. “Remote optical fiber dosimetry, ”
Nucl. Instrum. Methods. Phys. Res. B 1 8 4, 55–67.

IAEA, 2001. Cytogenetic Analysis for Radiation Dose
Assessment: A M a n u a l. Vienna, Austria: International A t o m i c
E n e rgy A g e n c y.

IAEA, 2005. Generic Pro c e d u res for Medical Response During a
Nuclear or Radiological Emerg e n c y, Vienna, A u s t r i a :
Inernational Atomic Energy A g e n c y. 

I C R P, 1996b. Conversion Coefficients for Use in Radiological
P rotection against External Radiation, Publication 74. Oxford:
P e rgamon Press.

I C R P, 1955. “Recommendations of International Commission on
Radiological Protection,” Brit. J. Radiol. (Suppl. 6).

I C R P, 1979. Limits of Intakes of Radionuclides by Wo r k e r s.
Publication 30, Part 1. Oxford: Pergamon Press.

I C R P, 1986. The Metabolism of Plutonium and Related Elements,
Publication 48, Oxford: Pergamon Press.

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 24



References

25

I C R P, 1988a. Limits of Intakes of Radionuclides by Wo r k e r s,
Publication 30, Part 4, Add., New York: Pergamon Press.

I C R P. 1980. “Biological effects of inhaled radionuclides,” A n n .
I C R P 3 1(1/2), 4.

I C R P, 1988b. Individual Monitoring for Intakes of Radionuclides
by Workers: Design and Interpre t a t i o n, Publication 54. Oxford:
P e rgamon Press.

I C R P, 1989. Age Dependent Doses to Members of the Public
f rom Intake of Radionuclides, Part 1, Publication 56. Oxford:
P e rgamon Press.

I C R P, 1993. Age Dependent Doses to Members of the Public
f rom Intake of Radionuclides, Part 2, Publication 67. Oxford:
P e rgamon Press. 

I C R P, 1994a.  Human Respiratory Tract Model for Radiological
P ro t e c t i o n, Publication 66. Oxford: Pergamon Press.

I C R P, 1994b. Dose Coefficients for Intakes of Radionuclides by
Wo r k e r s , Publication 68. Oxford: Pergamon Press.

I C R P, 1995a. Age Dependent Doses to Members of the Public
f rom Intake of Radionuclides, Part 3, Publication 69. Oxford:
P e rgamon Press.

I C R P, 1995b. Age Dependent Doses to Members of the Public
f rom Intake of Radionuclides, Part 4, Publication 71. Oxford:
P e rgamon Press.

I C R P, 1996a. Age Dependent Doses to Members of the Public
f rom Intake of Radionuclides, Part 5. Compilation of Ingestion
and Inhalation Dose Coefficients, Publication 72. Oxford:
P e rgamon Press.

I C R P, 1997. Individual Monitoring for Internal Exposure of
Workers: Replacement of ICRP Publication 54. Publication 78.
Oxford: Pergamon Press.

Ikeya, M., and Ishii, H., 1989. “Atomic bomb and accident
dosimetry with ESR: natural rocks and human tooth in vivo
s p e c t r o m e t e r,” Int. J. Rad. Appl. Instrum. A 4 0( 1 0 – 1 2 ) ,
1 0 2 1 – 1 0 2 7 .

Issaq, H.J., Conrads, T. P., Prieto, D.A., Tirumalai, R., and
Veenstra, T.D., 2003. “SELDI-TOF MS for diagnostic
proteomics,” Anal. Chem. 7 5 , 1 4 8 A – 1 5 5 A .

Jain, K.K., 2002. “Proteomics-based anticancer drug discovery
and development,” Technol. Cancer Res. Tre a t. 1, 231–236.

James, S.E., Arlett, C.F., Green, M.H., and Bridges, B.A., 1983.
“Radiosensitivity of human T-lymphocytes proliferating in long
term culture,” Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.
4 4, 417–422.

Jones, I.M., Tu c k e r, J.D., Langlois, R.G., Mendelsohn, M.L.,
P l e s h a n o v, P., and Nelson, D.O., 2001. “Evaluation of three
somatic genetic biomarkers as indicators of low dose radiation
e ffects in clean-up workers of the Chernobyl nuclear reactor
accidentl,” Radiat. Prot. Dosimetry 9 7, 61–67.

Jones, S.R., 1985. “Derivation and validation of a urinary
excretion function for plutonium applicable over tens of years
post uptake,” Radiat. Protect. Dosim. 11, 19–27.

Justus, B.L., Ry c h n o v s k y, S., Merritt, C.D., Pawlovitch, K.J., and
Huston, A.L., 1999. “Optically stimulated luminescence radiation
dosimetry using doped silica glass.,” Radiat. Prot. Dosim. 8 4,
1 8 9 – 1 9 2 .

Kaibao, L., et al., 1986. “Investigations on the T L properties of
chemical reagent NaCl,” Radiat. Prot. Dosim. 1 7, 411 – 4 1 4 .

Kanda, R., Minamihisamatsu M., and Hayata, I., 2002. “Dynamic
analysis of chromosome aberrations in three victims of the
Tokaimura criticality accident.” Int. J. Radiat. Biol. 7 8, 857–862.

Kanda, R., Hayata, I., and Lloyd, D.C., 1996. “Easy
biodosimetry for high-dose radiation exposures using drug-
induced, prematurely condensed chromosomes,” Int. J. Radiat.
B i o l. 7 5, 441–446. 

Kang, C.M., Park, K.P., Song, J.E., Jeoung, D.I., Cho, C.K., Kim,
T.H., Bae, S, Lee, S.J., and Lee, Y.S., 2003. “Possible biomarkers
for ionizing radiation exposure in human peripheral blood
lymphocytes,” Radiat. Res. 1 5 9, 312–319.

Karpas Z., Halicz, L.,  Roiz, J., Marko, R., Karorza, E., Lorber,
A., and Goldbart, Z., 1996. “Inductively coupled plasma mass
spectrometry as a simple, rapid, inexpensive method for
determination of uranium in urine and fresh water; comparison
L I F,” Health Phys. 7 1, 6. 

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 25



26

References

Khalifa, M.S., Al Khalifa, I.J.M., and Durrani, S.A., 1986.
“Analysis of thermoluminescence glow curves of minerals
sphene and epidote for radiation damage studies,” Rad. Pro t .
D o s i m. 1 7, 407–410.

Khan, H. M., and Delincée, H., 1995. “Detection of radiation
treatment of spices and herbs of Asian origin using
thermoluminescence of mineral contaminants,” Appl. Radiat.
I s o t. 4 6(10), 1071–1075.

K h a r i t o n o v, S.A., and Barnes, P.J., 2001. “Exhaled markers of
pulmonary disease,” Am. J. Respir. Crit. Care Med. 1 6 3,
1 6 9 3 – 1 7 2 2 .

Klein, D.M., Yukihara, E.G., Bulur, E., Durham, J.S., A k s e l r o d ,
M.S., and McKeever, S.W.S., 2004. An Optical Fiber Radiation
Sensor for Remote Detection of Radiological Materials. IEEE.

Krahenbul, M.P., and Slaughter, D.M., 1998. “Improved
methodology for measuring plutonium burden in human urine
using fission track,” J. Radioanal. Nucl. Chem. 2 3 0, 153.

Krieg, R.C., Fogt, F., Braunschweig, T., Herrmann, P. C . ,
Wollscheidt, V., and Wellmann, A., 2004. “ProteinChip A r r a y
analysis of microdissected colorectal carcinoma and associated
tumor stroma shows specific protein bands in the 3.4 to 3.6 kDa
range,” Anticancer Res. 2 4, 1791–1796.

K u k a r, T., Eckenrode, S., Gu, Y., Lian, W., Megginson, M., She,
J.X., and Wu, D., 2002. “Protein microarrays to detect
protein–protein interactions using red and green fluorescent
proteins,” Anal. Biochem. 3 0 6, 50–54.

Kurz, E.U., and Lees-Miller, S.P., 2004. “DNA d a m a g e - i n d u c e d
activation of ATM and ATM-dependent signaling pathways,”
D N A R e p a i r. 3, 889–900.

Langham, W.H., Bassett, S.H., Harris, P.S., and Carter, R.E.,
1980. “Distribution and excretion of plutonium administered
intravenously to man,” Health Phys. 3 8, 1031–1060.

Leggett, R.W., and Eckerman, K.F., 1987. “A method for
estimating the systemic burden of Pu from urinalysis,” H e a l t h
P h y s. 5 2, 337–346.

Leslie, M.D., and Dische, S., 1992. “Changes in serum and
salivary amylase during radiotherapy for head and neck-cancer–a
comparison of conventionally fractionated radiotherapy with
chart,” Radiotherapy Oncology 2 4, 27–31.

Leggett, R.W., 2001. “Consistent biokinetic models for the
actinide elements,” Rad. Prot. Env. 2 4, 616–622.

Lipshutz, R.J., Fodor, S.P., Gingeras, T.R., and Lockhart, D.J.,
1999. “High density synthetic oligonucleotide arrays,” N a t u re
G e n e t i c s, 2 1, 20–24.

Lloyd, D.C., Edwards A.A., Moquet J.E., and Guerreo-Carbajal,
Y.C., 2000. “The role of cytogenetics in early triage of radiation
casualties.” Appl. Rad. Isot. 5 2, 11 0 7 – 111 2 .

Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo,
M . V., Chee, M.A., Mittman, M., Wang, C., Kobayashi, M.,
Horton, H., and Brown, E.L., 1996. “Expression monitoring by
hybridization to high-density oligonucleotide arrays,” N a t u re
B i o t e c h n o l. 1 4, 1675–1680.

Lubenau and Strom, 2002. “Safety and security of radiation
sources in the aftermath of 11 September 2001,” Health Physics.
8 3, 155–164.

Lucas, J.A, Straume, T., Poggensee, M., Kodama, Y., Nakano,
M., Ohtaki, K., We i e r, H.U., Pinkel, D., and Gray, J., 1992.
“Rapid translocation frequency analysis in humans decades after
exposure to ionizing radiation,” Int. J. Rad. Biol. 6 2, 53–63.

M a c Vitte, T.J., Weiss, J.F., and Browne, E.D., Eds., 1996.
P roceedings of Advances in the Treatment of Radiation Injuries.
Ta rry t o w n, NY: Elseiver Sciences.

McAninch, J.E., and Hamilton, T. F., 1999. M e a s u rement of
Plutonium and Other Actinide Elments at the Center for
Accelerator Mass-Spectro m e t ry: A Comparative Assessment of
Competing Te c h n i q u e s. [UCRL-ID-133118]. Lawrence
Livermore National Laboratory, Livermore, CA.

Meek, D.W., 2004. “The p53 response to DNA damage,” D N A
R e p a i r. 3, 1049–1056.

Mendelsohn, M.L., Mohr, L.C., and Peeters, J.P., Eds., 1998.
Biomarkers: Medical and Workplace A p p l i c a t i o n s. Wa s h i n g t o n ,
DC: Joseph Henry Press. 

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 26



References

27

M i l l e r, R.W., 1995. “Delayed effects of external radiation
exposure: a brief history,” Radiat. Res. 1 4 4, 160–169.

Miyake, M., Liu, K.J., Walczak, T., and Swartz, H.M., 2000. “I n
v i v o EPR dosimetry of accidental exposures to radiation:
experimental results indicating the feasibility of practical use in
human subjects,” Appl. Radiat. Isot. 5 2, 1031–1038.

Moore, D.H., Tu c k e r, J.D., Jones, I.M., Langlois, R.G.,
P l e s h a n o , V. P., Vorobtsova, I., and Jensen, R., 1997. “A study of
the effects of exposure on cleanup workers at the Chernobyl
nuclear reactor accident using multiple end points,” Radiat Res.
1 4 8, 463–475.

M o s k a l e v, Y. L., Ed., 1974. Distribution, Biological Effects and
Accelerated Excretion of Radioactive Isotopes [ A E C - T R - 7 5 9 0 ] .
Translated from the Russian by the U.S. Atomic Energ y
Commission. Springfield, VA: National Technical Information
S e r v i c e .

M u e l l e r, W., Schubert, J., Benzing, A., and Geiger, K., 1998.
“Method for analysis of exhaled air by microwave energ y
desorption coupled with gas chromatography–flame ionization
detection-mass spectrometry,” J. Chro m a t o g r. B 7 1 6, 27–38.

National Council on Radiation Protection and Measurements,
1980. Management of Persons Accidentally Contaminated with
Radionuclides [NCRP Report 65]. Bethesda, MD: National
Council on Radiation Protection and Measurements.

Okumura, T., Takasu, N., and Ishimatsu, S., et al., 1996. “Report
on 640 victims of the Tokyo subway sarin attack,” Ann. Emerg .
M e d. 2 8, 129–135.

Pallotta, N., Tomei, E., Viscido, A., Calabrese, E., Marcheggiano,
A., Caprilli, R., and Corazziari, E., 2005. “Small intestine
contrast ultrasonography: an alternative to radiology in the
assessment of small bowel disease,” Inflamm. Bowel Dis. 2,
1 4 6 – 1 5 3 .

Park, W. Y., Hwang, C.I., Im, C.N., Kang, M.J., Woo, J.H., Kim,
J.H., Kim, Y.S., Kim, H., Kim, K.A., Yu, H.J., Lee, S.J., Lee,
Y.S., and Seo, J.S., 2002. “Identification of radiation-specific
responses from gene expression profile,” O n c o g e n e. 2 1,
8 5 2 1 – 8 5 2 8 .

Peterson, L.E., 2002. “Factor analysis of cluster-specific gene
expression levels from cDNA microarrays,” Comput. Meth. Pro g .
B i o m e d. 6 9, 179–188.

Peterson, L.E., 2003. “Partitioning large-scale microarray-based
gene expression profiles using principal component analysis,”
Comput. Meth. Prog. Biomed. 7 0, 107–11 9 .

Phillips, G.W., et al., 2004. “Neutron spectrometry using CR-39
track etch detectors,” P roceedings of the 14t h I n t e r n a t i o n a l
C o n f e rence on Solid State Dosimetry, New Haven CT, June
27–July 2.

Polf, J.C., Yukihara, E.G., Akselrod, M.S., and McKeever,
S . W.S., 2004. “Real-time luminescence from A l2O3 f i b e r
dosimeters,” Radiat. Meas. 3 8, 227–240. 

Prasanna, P.G., Escalada, N.D., and Blakely, W. F., 2000.
“Induction of premature chromosome condensation by a
phosphatase inhibitor and a protein kinase in unstimulated human
peripheral blood lymphocytes: a simple and rapid technique to
study chromosome aberrations using specific whole-chromosome
D N A hybridization probes for biological dosimetry, ” Mutat. Res.
4 6 6, 131–141.

Prasanna, P.G., Subramaniam, U. Greenhill G.R., Loats, H.,
Jacocks, J.M., and Jackson, W.E., and Blakely, W. F., 2003.
“Cytogenetic biodosimetry strategy for potential radiation mass
casualties,” in The Health Physics Society Midyear To p i c a l
Meeting on Homeland Defense and Emergency Response.
Washington, DC: Health Physics Society, 218–223.

Pyatkin, E.K., Nugis, V. Y., and Chrikov, A.A., 1989. “Absorbed
dose estimation according to the results of cytogenetic
investigations of lymphocyte cultures of persons who suffered in
the accident at Chernobyl atomic power station,” Rad. Med. 4,
5 2 .

Rabbe, O.G., Ed., 1994. Internal Radiation Dosimetry. Madison,
WI: Medical Physics Publishing. Health Physics Society Summer
S c h o o l .

Ramalho, A . T., and Nascimento, A.C., 1991. “The fate of
chromosomal aberrations in 137 Cs-exposed individuals in the
Goiania radiation accident.” Health Phys. 6 0, 67–70.

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 27



28

References

Radiation Effects Research Foundation, 1983. US–Japan Joint
Workshop for Reassessment of Atomic Bomb Radiation
D o s i m e t ry, Hiroshima, Japan: Radiation Effects Research
F o u n d a t i o n .

Roswell, R.L., Goans, R.E., and Cantrell, J.H., Jr., 1977. H i g h
Resolution Ultrasonic Scanning of Animal and Human Tissue in
vivo [ORNL/TM 5934], Oak Ridge National Laboratory, Oak
Ridge, T N .

Sankaranarayanan, K., 1998. “Ionizing radiation and genetic
risks IX. estimates of the frequencies of Mendelian diseases and
spontaneous mutation rates in human populations: a 1998
perspective,” Mutat. Res. 4 1, 129–78.

Sasaki, M.S., Hayata, I., Kamada, N., Kodama, N., and Kodama,
S., 2000. “Chromosome aberration analysis in persons exposed to
low-level radiation from JCO criticality accident in To k a i m u r a . ”
J. Radiat. Res. 4, S107–11 6 .

S e v a n ́ k a e v, A . V., 2000. “Results of cytogenetic studies of the
consequences of the Chernobyl accident,” Radiat. Biol.
R a d i o e c o l. 4 0, 589–595.

Shigematsu, I., Ito, C., Kamada., M, Akiyama, M., and Sasaki,
H., 1995. Effects of A-Bomb Radiation on the Human Body.
Tokyo, Japan: Hardwood Academic Publishers.

Sies, H., 1997. “Oxidative stress: oxidants and antioxidants,”
Exp. Physiol. 8 2, 291–295.

Sine, R.C., Levine, I.H., Jackson, W.E., Hawley, A.L., Prasanna,
P.G., and Grace, M.B., et al., 2001. “Biodosimetry A s s e s s m e n t
Tool: a post-exposure software application for management of
radiation accidents,” Mil. Med. 1 6 6, 85–87.

Sun, C., and Lee, D., 1999. “Plutonium fecal and urinary
excretion functions: derivation from a systemic whole-body
retention function,” Health Phys. 7 6, 619–627.

Swartz, H.M., Walczak, T., and Iwasaki, A., 2004a. “In Vi v o E P R
dosimetry to quantify exposures to clinically significant doses of
ionizing radiation,” in Abstracts, 14t h International Confere n c e
on Solid State Dosimetry, New Haven, CT, p. 53. 

Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E.,
S a l i k h o v, I., Lesniewski, P., Starewicz, P., Schauer, D., and
Romanyukha, A., 2004b. “Measurements of clinically significant
doses of ionizing radiation using non-invasive in vivo E P R
spectroscopy of teeth in situ,” Appl. Radiat. Isot. 6 2, 293–299.

Tawn, E.J., Whitehouse, C.A., Daniel, C.P., Tarone, R.E.,
Bothwell, A.M., and Fisher, A., 2003. “Somatic cell mutations at
the glycophorin A locus in erythrocytes of radiation workers
from the Sellafield Nuclear Facility,” Rad. Res. 1 5 9, 11 7 – 1 2 2 .

Ta y l o r, D.M., 1995. “Environmental plutonium in humans,”
Appl. Radiat. Isot. 4 6, 1245–1252.

Thompson, L.H., and Schild, D., 2001. “Homologous
recombinational repair of DNA ensures mammalian chromosome
s t a b i l i t y,” Mutat. Res. 4 7 7, 131–153.

Tirumalai, R.S., Chan, K.C., Prieto, D.A., Issaq, H.J., Conrads,
T. P., and Veenstra, T.D., 2003. “Characterization of the low
molecular weight human serum proteome,” Mol. Cell.
P ro t e o m i c s 2, 1096–103.

Tu s h e r, V.G., Tibshirani, R., and Chu, G., 2001. “Significance
analysis of microarrays applied to the ionizing radiation
response,” P roc. Nat. Acad. Sci. 1 7, 17.

UNSCEAR, 1994. United Nations Scientific Committee on the
Effects of Atomic Radiation, Sources and Effects of Ionizing
Radiation, Report to the General A s s e m b l y, with Scientific
Annexes, Adaptive Responses to Radiation of Cells and
O rg a n i s m s . New York, NY: United Nations, 187–272.

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 28



References

29

Voisin, P., Benderitter, M., Claraz, M., Chambrette, V., Sorokine-
Durm, I., and Delbros, M., et al., 2001. “The cytogenetic
dosimetry of recent accidental overexposure,” Cell. Mol. Biol.
4 7, 557–564.

Voisin, P., Barquinero, F., Blakely, B., Lindholm, C., Lloyd, D.,
and Luccioni, C., et al., 2002. “Towards a standardization of
biological dosimetry by cytogenetics,” Cell Mol Biol. 4 8,
5 0 1 – 5 0 4 .

Wa l k e r, R.I., and Cerveny, R.J., Eds., 1989. M e d i c a l
Consequences of Nuclear Wa r f a re. Fall Church, VA: Office of
the Surgeon General. Available at www. a f r i . u s u h s . m i l .

Waselenko, S.K., MacVitte, T.J., Blakely, W. F., Pesek, N., Wi l e y,
A.L., Dickerson, W., Tsu, H., Confer, D., Coleman, N., Seed, T. ,
L o w r y, P., Armitage, J., and Daniak, N., (2004). “Medical
Management of the Acute Radiation Syndrome:
Recommendations of the Strategic National Stockpile Radiation
Working Group,” Ann. Int. Med. 1 4 0 , 1 0 8 7 – 1 0 5 1 .

We r n e r, T., 2001. “Cluster analysis and promoter modelling as
bioinformatics tools for the identification of target genes from
expression array data,” P h a r m a c o g e n o m i c s 2, 25–36.

Woloschak, G.E., and Paunesku, T., 1997. “Mechanisms of
radiation-induced gene response,” Stem Cells. 1 5, 15–25.

Wrenn, M.E., Singh, N.P., and Xue, Y.H., 1994. “Urinary
excretion of 2 3 9Pu by the general population: Measurement
technique and results,” Radiat. Prot. Dosim. 5 3, 81–84.

Yamanaka, C., Ikeya, M., and Hara, H., 1993. “ESR cavities for
in vivo dosimetry of tooth enamel,” Appl. Rad. Isot. 4 4 ( 1 – 2 ) ,
IN3–IN4. 

Yin, E., Nelson, D.O., Coleman, M.A., Peterson, L.E., and
Wyrobek, A.J., 2003. “Gene expression changes in mouse brain
after exposure to low-dose ionizing radiation,” Int. J. Radiat.
B i o l. 7 9, 759–75.

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 29



30

Joint Interagency Working Group Participants 

William F. Blakely, Ph.D. Armed Forces Radiobiology Research Institute

Brooke Buddemeier Department of Homeland Security

Clay Easterly, Ph.D. Oak Ridge National Laboratory

Christine Hartmann-Siantar, Ph.D. Lawrence Livermore National Laboratory

David Hoover, M.D. Department of Homeland Security

Timothy Gondre-Lewis, Ph.D. National Institute of Allergy and Infectious Diseases/
National Institutes ofHealth

Michael A. Noska, Ph.D. Food and Drug A d m i n i s t r a t i o n

Pataje G.S. Prasanna, Ph.D. Armed Forces Radiobiology Research Institute

Narayani Ramakrishnan, Ph.D. National Institute of Allergy and Infectious Diseases/
National Institutes ofHealth

Steven L. Simon, Ph.D. National Cancer Institute/National Institutes of Health

James Smith, Ph.D. Centers for Disease Control and Prevention

Kenneth Turteltaub, Ph.D. Lawrence Livermore National Laboratory

Albert Wi l e y, Jr., M.D., Ph.D. Oak Ridge Institute of Science and Engineering/Radiation 
Emergency Assistance Center/Training Site

Appendix A

Tech Assessment roadmapFinal3_14_06  3/15/06  11:05 AM  Page 30



31

List of Abbre v i a t i o n s

A E C Atomic Energy Commission

c G y centi gray, 0.1 gray

C O S Commercial Off - t h e - S h e l f

C P S Counts Per Second

C W- S O L Continuous-wave Optically Stimulated Luminescence

D N A Deoxyribonucleic A c i d

E P R / E S R Electron Paramagnetic Resonance/Electron Spin Resonance

F I S H Fluorescence In Situ H y b r i d i z a t i o n

G y g r a y

H H A Handheld A s s a y

I A E A International Atomic Energy A g e n c y

I N D Improvised Nuclear Device

I S O International Organization for Standardization

J I W G Joint Interagency Working Group

L F D Lateral Flow Device

L I M S Laboratory Information Management Systems

m R N A Messenger Ribonucleic A c i d

O S L Optically Stimulated Luminescence

P C C Premature Chromosome Condensation

P C R Polymerase Chain Reaction

P O S L Pulsed Optically Stimulated Luminescence

R E A C / T S Radiation Emergency Assistance Center/Training Site

R D D Radioactive Dispersal Device

R L Radio Luminescence

R / N Radiological and Nuclear

S A G E Serial Analysis of Gene Expression

S C T Stem Cell Tr a n s p l a n t

S I R A D ™ Self-Indicating Instant Radiation Alert Dosimeter

S / N S i g n a l - To - N o i s e

T L Thermo Luminescence
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