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Foreword 
The following Master Question List (MQL) was developed by the Department of Homeland Security Science and 
Technology Directorate (DHS S&T) to provide government decision makers with up-to-date information which will 
enable them to appropriately respond to outbreaks caused by ebolaviruses. This MQL summarizes what is known 
and what knowledge gaps exist to address fundamental questions such as, “What is the infectious dose?” and “How 
long does the virus persist in the environment?” The information provided is a succinct summary to facilitate 
structured and scientifically guided discussions across the federal government without burdening them with the need 
to review scientific reports, and to prevent duplication of efforts by highlighting and coordinating research. 

Situation Overview 
Ebolaviruses are zoonotic viruses (viruses that originate in animals) that cause severe and frequently fatal diseases 
in humans and non-human primates (NHPs). There are several species of ebolavirus, but Ebola virus (EBOV), which 
causes Ebola virus disease (EVD), and Sudan virus (SUDV), which causes Sudan virus disease (SVD) have been 
responsible for the most outbreaks. These viruses are endemic in parts of Africa, and although outbreaks have been 
rare and relatively small in the past, they have increased in size and frequency over the past decade. Within the past 
five years, multiple effective vaccines and therapeutics have become available for EVD and have had demonstrated 
efficacy during epidemics in Africa; and although SVD vaccines have lagged, several are now in clinical trials. The 
risk of an epidemic in the United States is low, and experience from the 2013-2016 West African outbreak has 
bolstered response capabilities. 
The most recent outbreak of an ebolavirus occurred in Uganda. The Ugandan Ministry of Health confirmed an 
outbreak of SVD in Mubende District (western Uganda) on September 20, 2022. This was the sixth outbreak 
associated with ebolaviruses in Uganda. All but one has been caused by SUDV. On January 11, 2023, the Ministry 
of Health declared the end of the outbreak. The outbreak covered nine districts (Bunyangabu, Jinja, Kagadi, 
Kampala, Kassanda, Kyegegwa, Masaka, Mubende, and Wakiso) and resulted in 164 cases (142 confirmed, 22 
probable) with 77 deaths. Mubende was the epicenter of the outbreak. The last confirmed case tested negative on 
November 29, 2022, and the last confirmed death was also on November 29, 2022; no new cases have been 
reported since. No confirmed cases were reported outside Uganda. Surveillance will be maintained, and neighboring 
countries remain on alert. A report describing the clinical progression of the index case has been released.  

The cutoff date for information-gathering related to this document was 5/22/2023. 
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Major Findings by Topic Area 
Topic Overview of Current Knowledge 

VIRUS BACKGROUND 

• The ebolaviruses are members of the family Filoviridae, which 
includes Marburg virus, another human pathogen associated with 
severe disease that was first discovered in 1967. 

• Marburg virus is covered under a separate MQL. 
• Filoviruses are filamentous (string-shaped) viruses with RNA 

genomes. 
• The term “Ebola virus” refers specifically to EBOV, formerly 

known as Ebola Zaire, while the term “ebolavirus” includes all six 
viruses in the genus Ebolavirus which are Ebola virus (EBOV), 
Sudan virus (SUDV), Bundibugyo virus (BDBV), Taï Forest virus 
(TAFV), Reston virus (RESTV) and Bombali virus (BOMV). 

• SUDV, BDBV and TAFV are known to cause ebolavirus disease 
(EVD) in humans, while RESTV and BOMV are not known to 
cause disease in humans.  

• EBOV was first isolated in 1976 during an outbreak in Zaire (now 
the Democratic Republic of the Congo [DRC]). 

• SUDV was first isolated in 1976 during an outbreak in what is 
now known as South Sudan. 

INFECTIOUS DOSE 

• The infectious dose for any ebolavirus in humans is not well 
established but is known to be low. 

• Estimates of infectious dose range from 10 to about 100 
infectious particles. 

• The route of infection may impact the amount of virus required to 
cause an infection.  

• Mucosal and respiratory exposures generally tend to require 
higher doses than percutaneous exposures (i.e., exposure via 
injection or through a break in the skin). 

TRANSMISSIBILITY 

• Outbreaks are initiated by spillover events in which a human 
comes in contact with an infected animal, usually from hunting or 
other forest activities involving contact with animals. 

• The bushmeat trade has been implicated in transmission 
throughout Africa. 

• Transmission is typically via contact with contaminated bodily 
fluids of an actively symptomatic person. 

• Contact with mucous membranes or percutaneous exposure is 
required for infection. 

• Caregivers and those involved in handling cadavers are at the 
highest risk of infection. 

• Hospitals and clinics not using appropriate personal protective 
equipment (PPE) and administrative and engineering controls for 
care of EVD patients can be foci of new infections. 

• Contact with fomites (inanimate objects contaminated with 
infectious agents) is a low-risk mechanism of transmission in 
public places, but in healthcare settings, contaminated items 
associated with patient care and waste are a high-risk 
mechanism. 
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Major Findings by Topic Area 
Topic Overview of Current Knowledge 

• The risk of airborne transmission of EBOV by aerosol particles 
(small particle) during the course of a naturally occurring infection 
is considered to be minimal. 

• Large droplets generated from an infected individual (i.e., 
coughing, sneezing, vomiting, experiencing diarrhea) could 
transmit the virus to another individual in close proximity (a few 
feet). 

• Patients are normally no longer contagious after recovery, but 
prolonged persistent infection is known to occur (see relevant 
section for details). 

• Transmission without direct contact from confirmed cases has 
been observed. The mechanism of this transmission is unclear. 

HOST RANGE 

• Bats, and in particular three species of fruit bat (Epomops 
franqueti, Myonycteris torquata, and Hypsignathus monstrosus), 
are the likely reservoirs of ebolaviruses. 

• Bats infected with filoviruses do not develop disease. 
• Other mammals including non-human primates (NHPs), dogs, 

and pigs can be naturally infected, but are not considered 
reservoirs. 

• Habitat disruption due to human activity is increasing the 
frequency of contact with animals potentially infected with 
ebolaviruses. 

• Rodents are not naturally susceptible to any filovirus. Extensive 
adaptation of the virus in a laboratory is required to infect 
rodents. 

INCUBATION PERIOD 

• The incubation period can range from 2-21 days but is typically 
3-14 days.  

• Incubation period may vary depending upon the route of 
transmission. 

• Percutaneous exposures (such as through a needlestick or break 
in the skin) have been associated with shorter incubation periods 
than mucosal exposures. 

• Outbreaks are considered to be over when two maximum 
incubation periods have passed without the detection of a new 
case (42 days). 

• The incubation and infectious periods for SUDV are similar to 
EBOV. 

CLINICAL 
PRESENTATION 

• Diseases caused by ebolaviruses present as severe febrile 
illnesses with abrupt onset. 

• Case fatality for EVD is variable, but high, ranging from 25-90%, 
depending upon the virus and the level of care provided. The 
average fatality for EVD is 66%. 

• Case fatality for SVD is typically lower than EVD, averaging 50%. 
• Symptoms include fever, malaise, exhaustion, nausea, vomiting, 

diarrhea, abdominal pain, sore throat, and headache. 
• Many patients develop a characteristic rash (known as a 

maculopapular rash) approximately five days after disease onset. 
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Major Findings by Topic Area 
Topic Overview of Current Knowledge 

• This initial cluster of symptoms resembles many tropical 
diseases, including yellow fever, malaria, and Lassa fever, which 
makes clinical diagnosis of EVD extremely difficult outside of a 
known outbreak and requires laboratory diagnostics to confirm. 

• Neurological symptoms such as delirium or coma can occur in 
the later stages of the disease. 

• Hemorrhagic (bleeding) symptoms do not always occur, and 
typically appear only late in the course of the disease. 

• Multiple organ dysfunction and hypovolemia (low blood pressure 
secondary to fluid loss from vomiting and diarrhea) are the most 
common proximal causes of death. 

• Hemorrhagic symptoms are more common in severe disease, but 
patients do not lose enough blood to progress to a life-
threatening state. 

• Patients typically die or begin to recover within 8-12 days of 
disease onset.  

• High-quality supportive care can significantly improve outcomes. 
• Asymptomatic infections are estimated to occur in less than 5% 

of infections. 
• Patients are considered to be non-infectious after two sequential 

negative polymerase chain reaction (PCR) tests. 

PERSISTENT 
INFECTION 

• In some instances, the virus can be detected in patients for over 
two months after the disease resolves.  

• Studies of patients after the 2013-2016 West African outbreak 
have detected EBOV in patient semen up to 18 months after 
recovery, but it appears that most patients clear the virus entirely 
within six months. 

• Infections have been linked to sexual transmission of EBOV via 
the semen of recovered patients. 

• Prolonged persistence of the virus does occur. The 2021 
outbreak in Guinea was linked to reactivation of a persistent 
infection in a patient from the 2013-2016 outbreak. 

• The biology of this phenomenon is poorly understood, but it is 
believed to be linked to long-term infection of so-called 
“immunologically privileged” tissues such as the testes and eyes 
that are not subject to surveillance by the immune system. 

CLINICAL DIAGNOSIS 

• Definitive diagnosis is via quantitative real-time (qRT)-PCR 
detection of viral RNA in a patient sample. 

• Patients will become PCR positive within a few days of infection. 
• Lateral flow antigen detection assays are available for rapid 

preliminary diagnosis. 
• Enzyme-linked immunosorbent assay (ELISA) methods for 

antibody detection are reliable but are not useful for early and 
pre-symptomatic diagnosis. 

• Diagnosis by viral culture should never be attempted outside of a 
biosafety level 4 (BSL4) laboratory. 
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Major Findings by Topic Area 
Topic Overview of Current Knowledge 

• Other testing methodologies are available or are in development, 
but are either not yet approved, or require specialized resources. 

MEDICAL 
TREATMENT 

• Although specific treatments for EVD exist, intensive supportive 
care remains essential to effective treatment. 

• Vaccines can be used as post-exposure prophylaxis (PEP) in 
conjunction with other therapeutics but may not be as useful in 
patients who have already begun to show symptoms. 

• Two U.S. Food and Drug Administration (FDA)-approved 
monoclonal antibody (mAB) treatments exist and have 
demonstrated efficacy in humans against EBOV. 

• No small molecule antiviral drug exists, though several have 
been tested and failed human trials despite promising results in 
animal studies. 

• No approved therapeutics for SVD exist. However, a combination 
therapy using remdesivir and an antibody-based treatment has 
shown promise in NHPs. This treatment has been made 
available to Ugandan health authorities by the United States. 

VACCINES 

• The FDA and European Medicines Agency have approved 
Ervebo, Merck’s single-dose EBOV vaccine: 
o This vaccine is highly effective with reported efficacy >95%. 
o Duration of protection is not known. 
o Adverse reactions are common. Nearly all recipients report 

some sort of adverse reaction, with some reporting more 
serious events. 

• The European Medicines Agency approved Zabdeno and 
Mvabea, Janssen/Johnson and Johnson’s two-dose vaccine. 
o Efficacy is slightly lower than Ervebo, but the vaccine appears 

to be better tolerated. 
o Duration of protection is not known. 

• Ring vaccination, a strategy in which contacts of patients and 
subsequent contacts are vaccinated, has been used with 
considerable success during outbreaks to contain transmission. 

• The expense and adverse event rate associated with the 
vaccines may limit their use outside of outbreak control. 

• In the United States, laboratory workers, individuals who will 
have contact with EVD patients, and healthcare personnel at 
Regional Ebola and Other Special Pathogen Treatment Centers 
(RESPTC) and Laboratory Response Network facilities are 
eligible for vaccination. 

• No vaccines specific to SUDV are approved for use. 
o The World Health Organization (WHO) and Ugandan Ministry 

of Health initiated a clinical trial in December 2022 to evaluate 
three vaccine candidates, which are: Sabin Vaccine Institute’s 
ChAd3-SUDV, BiEBOV (Oxford University) and the Merck 
SV-SUDV vaccine. 
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Major Findings by Topic Area 
Topic Overview of Current Knowledge 

FORECASTING 

• The risk of an EVD or SVD outbreak in the United States is 
considered low. 

• Forecasting was critical for decision support during the 2013-
2016 outbreak. 

• Current models account for the impact of vaccines and other 
interventions such as contact tracing and safe burial. 

• Ensemble forecasts incorporating multiple diverse models 
outperform single-model forecasts. 

• Data quality and timeliness have been limiting factors for the 
utility of real-time modeling. 

ENVIRONMENTAL 
STABILITY 

• EBOV can remain infectious in most liquids (blood, urine, semen, 
wastewater) for 5-8 days. 

• EBOV persists on hard surfaces for up to eight days, but is less 
stable under high humidity/temperature, which has been shown 
to reduce persistence to 1-3 days. 

• The virus appears to be less persistent (typically less than a 
week) on some soft materials, such as cotton cloth. 

DECONTAMINATION 

• Disinfectants on the U.S. Environmental Protection Agency 
(EPA) Lists L or Q are recommended for use with EBOV. 

• Due to the extremely low infectious dose of EBOV, greater than 
typical inactivation efficiency is required. 

• Chlorine bleach is an extremely effective disinfectant. 
• Germicidal ultraviolet (UV) light, chlorine dioxide, and vaporized 

hydrogen peroxide are useful for decontamination of rooms. 
• The presence or absence of viral RNA should not be used as an 

indicator of the presence of infectious virus prior to or following 
decontamination, as this parameter does not equate to infectious 
virus. Testing methods that utilize infectivity as a readout should 
be used to determine efficacy.  

• Following contact times for decontamination when using wipes is 
critical, as the virus can be transferred between surfaces by 
inappropriately used disinfecting wipes. 

PERSONAL 
PROTECTIVE 

EQUIPMENT (PPE) 

• The U.S. Centers for Disease Control and Prevention (CDC)-
recommended PPE for persons caring for a patient with 
confirmed EVD includes single-use and disposable PPE, and 
respiratory protection in the form of a powered air-
purifying respirator (PAPR) or National Institute for Occupational 
Safety and Health (NIOSH)-certified N95 respirator. 

• Respiratory protection is not required by CDC recommendations 
for caring for a patient under investigation (PUI) of EVD who is 
clinically stable, and not exhibiting symptoms. 

• Detailed instructions for the recommended procedures for 
donning and doffing of PPE are available from CDC. 

• The risk for errors and self-contamination is highest in the doffing 
phase. Consistent and correct use of PPE, reinforced with 
repeated training and practice, is key to minimizing exposure.  
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Major Findings by Topic Area 
Topic Overview of Current Knowledge 

• Use of full-body PPE in Ebola treatment units (ETUs) presents a 
number of issues, including heat exhaustion, reduced sensory 
perception, and reduced dexterity. Recent tests suggest that the 
use of cooling clothing made with phase-changing materials can 
partially alleviate heat-related stresses. 

GENOMICS 

• EBOV is one of four members of the genus Ebolavirus 
(collectively known as ebolaviruses) known to cause disease in 
humans. 

• Since humans are dead-end hosts for ebolaviruses, variants 
associated with outbreaks do not persist in nature after the 
outbreak ends, and do not “spill back” into the animal reservoir of 
the virus. 

• The characteristics of the virus (e.g., virulence, efficacy of 
transmission) are similar among outbreaks. 

• EBOV evolves slowly in its animal reservoir and during recent 
outbreaks. Mutations associated with adaptation to humans 
appeared only after relatively long chains of successive human-
to-human transmission. 

• Sequences were not publicly available for the SUDV outbreak in 
Uganda as of May 2023. 

VIRUS IMPORTATION 

• Air travel is a concern for importation of EVD from infected 
passengers. 

• Undetected importation can result in local transmission within 
receiving healthcare facilities if they are not adequately prepared, 
as observed in Dallas, Texas in 2014. 

• The air travel restrictions put into place during the 2013-2016 
EVD epidemic were effective in preventing export of EVD from 
Africa but were not sufficient to entirely prevent spread.  

• Modeling suggests that airport screening alone may not be able 
to detect the majority of EVD cases. 

• To avoid importation, controlling the virus in the country of origin 
is critical. 

• The most effective air passenger screening occurs when applied 
at the embarkation airport where infected air travelers are most 
likely to depart. 

• Importation of medically evacuated EVD patients for treatment in 
designated healthcare facilities does not pose a significant risk of 
transmission within the United States. 

NON-
PHARMACEUTICAL 

INTERVENTIONS (NPI) 

• Until recently, non-pharmaceutical interventions (NPIs) were the 
sole means of controlling EBOV outbreaks, which include contact 
tracing, establishment of ETUs, changes in burial practices, and 
isolation of infected individuals. These steps were key to 
stopping the 2013-2016 West African EVD epidemic. 

• Community support and buy-in/cooperation is critical for 
enhancing efficacy of NPIs. 
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Major Findings by Topic Area 
Topic Overview of Current Knowledge 

U.S. HEALTH SYSTEM 
CAPACITY 

• Care of symptomatic EVD patients is staff- and resource-
intensive. 

• Patients with symptomatic disease require advanced treatment in 
an intensive care unit (ICU) setting, and ICU beds are an 
extremely limited resource.  

• Infection control measures required to prevent hospital-acquired 
transmission (e.g., increased staff workload) are demanding. 

• The United States has the capacity to handle a certain number of 
imported cases (generally no more than seven at any given time) 
if they are identified prior to significant transmission. 

• Within the United States, 10 specialized RESPTC have been 
established, with one in each of the 10 U.S. Health and Human 
Services (HHS) regions; there are plans to add 2-3 more. 

• Early identification of EBOV clusters and rapid control via contact 
tracing can limit outbreak size. 

• Nosocomial (hospital-acquired) transmission presents a 
significant risk to staff and non-EVD patients when large 
numbers of EVD patients are treated in the same facility. 

• In Africa, dedicated ETUs are utilized to treat large numbers of 
EVD patients outside of normal hospitals, though due to the lack 
of advanced equipment and trained staff, patient outcomes do 
not match those achieved in ICUs present in Western countries. 

• The ability of U.S. healthcare facilities to adequately handle a 
large number of EVD patients is unknown, but prior experience 
with a single patient at a non-specialty facility suggests that most 
facilities are unprepared or underprepared. 
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Infectious Dose 
How much agent will make a healthy individual ill? 

What do we know? 
• The infectious dose for EBOV in humans is not established. However, based upon 

experimental data in multiple animal models, it is likely to be extremely low, possibly fewer 
than 10 infectious units. The infectious dose also likely varies by route. Median lethal dose 
(LD50) values for virus delivered via injection are typically about one log lower than LD50 values 
for mucosal (e.g., intranasal, oral) routes. Differences in animal model susceptibility likely 
contribute to this broad distribution. 

• Multiple EBOV infection animal studies suggest that virus particle infectivity can be affected by 
repeated viral passages in cell culture as it alters the particle-to-plaque forming unit (PFU) 
ratio. Higher passages result in a lower particle-to-PFU ratio, which leads to decreased 
potency in a lethal macaque model. Because of testing of viral titer by plaque assay alone, two 
different stocks of the same virus could have the same PFU, but different levels of infectivity, 
causing variation in the reported lethality of the strain. Additional studies should monitor viral 
stocks prior to infection.1 
o Median tissue culture infectious dose (TCID50) units and PFU, two measures of viral 

quantity commonly used in this document, may be interconverted by multiplying TCID50 
units by 0.7 to derive the PFU equivalent.  

• Infectious dose determinations have not been made for SUDV, though aerosol and 
intramuscular challenges with 1000 PFU were lethal in cynomolgus macaques.2-3 

• Experimental aerosol studies in marmosets with EBOV-Kikwit found 4-27 TCID50 to be 
infectious with clinical signs similar to that observed in humans and other NHP models.4  

• Aerosol and intranasal (IN) inoculation of EBOV-Makona in cynomolgus macaques found a 
dose of 64 PFU only 83% lethal with variability in disease onset when administered by these 
routes.5 Similar studies with lower doses are needed to better understand the variability of 
infection. 

• Additional studies in cynomolgus macaques when exposed to EBOV-Kikwit strain, by the IN 
route found the LD50 = 10 PFU6 to 65 PFU;7 however, lower values were not tested to 
determine the median infectious dose (ID50). Experimentally, the clinical course seen for 
cynomolgus macaques when exposed intranasally more closely mimicked clinical disease 
seen in humans, suggesting this to be a good model for study.6-7  

• EBOV (Kikwit variant) in cynomolgus macaques has an ID50 < 4.2 PFU, as animals exposed to 
0.8 and 4.2 PFU by the aerosol route survived, but aerosol doses of 2, 11, and 128.3 PFU 
were lethal.8 

• Cynomolgus macaques experimentally infected with EBOV-Makona at 10 PFU by the oral or 
conjunctival route showed low to no infection with no clinical disease; however, 100 PFU 
administered orally was lethal. Conversely, 100 PFU by the conjunctival route was not lethal, 
suggesting that both the viral titer and transmission route play a role in infection.9 

• Rhesus macaques challenged with 1,000 TCID50 (~700 PFU) EBOV-Makona by different 
routes of infection (intraesophageal [oral], intratracheal, aerosol [nebulizer], and intramuscular) 
had variable results on transmission. Measurements of viral load from shedding and 
seroconversion of animals showed that viral loads determine the transmission potential in both 
intramuscular and intratracheal models. Intraesophageal infection did not result in clinical 
disease or seroconversion. Aerosol infection resulted in subclinical infection in challenged 
animals, and seroconversion in naïve animals exposed to challenged animals, suggesting 
both transmission route and viral load impact infection.10 

• Experimental studies in ferrets determined that a dose as low as one PFU caused infection 
when inoculated by the oronasal route, but not by the ocular route.11 
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• Guinea pig studies with EBOV-Makona variant not adapted to guinea pigs showed survival at 
a high dose of 3.5 x 105 PFU, but proved lethal when given a low dose of guinea pig-adapted 
EBOV-Makona of 3.5 PFU, suggesting they could be an appropriate animal model once the 
strain is adapted in that species.12-13 

• EBOV-Zaire is lethal when inoculated into newborn BALB/c mice via intraperitoneal (IP) 
inoculation, but not when inoculated into adult (>8-15 day old) mice. Mouse-adapted EBOV 
was highly infectious and lethal in adult mice when injected via IP; the adapted virus had a 
LD50 of approximately one virion and infected mice showed symptoms mimicking those 
observed in NHPs with EBO-Zaire. In contrast, adult mice injected subcutaneously, 
intradermally, or intramuscularly with mouse-adapted EBOV did not show symptoms, even 
with doses as high as 106 PFU. While mice did not show symptoms, EBOV virions were 
disseminated to lymph nodes, but the mice appeared to develop a protective immune 
response when injected by these routes.14 

• EBOV-Makona, when administered IP to A129 interferon α/β receptor-deficient immune-
deficient mice (A129 mice), was lethal, with an extremely low ID50 of approximately 0.002 
TCID50 (0.0014 PFU).15  

• Additional studies in the same A129 mice where EBOV was administered by aerosolization 
found significant variation in lethal dose when animals were exposed to 100 TCID50 (70 PFU) 
by IP and 10 TCID50 (7 PFU) among three strains. At this exposure dose, EBOV-Ecran was 
90% lethal, EBOV-Kikwit was 70% lethal, and EBOV-Makona was 50% lethal. There were 
significant differences in lethality when comparing IP and aerosolized routes of infection, 
suggesting that dose and route play a role in disease. This model may be useful in future 
virulence studies when new variants are identified.16 

What do we need to know? 
• What is the human infectious dose for different routes of infection: mucus (aerosol, lung), 

cutaneous (skin contact), or oral (consumption through food/water)? 
• Does the human infectious dose vary among different sub-populations by age, 

immunocompromised status, sex, or other factors? 
• Does the human infectious dose vary by virus variant? 

Transmissibility 
How does it spread from one host to another? How easily is it spread? 

What do we know? 
• Ebolavirus outbreaks are initiated through a spillover event in which a human comes into 

contact with an animal reservoir.17-18 
o The index case is often a forest worker, hunter, or an individual known to have contact with 

wildlife.18-22 
o Hunting, handling, and consumption of bushmeat are potential routes of spillover.18, 23 

• Virus is transmitted from person to person via contact with the bodily fluids of an actively 
symptomatic individual or cadaver. Contact with mucous membranes, breaks in skin, or 
percutaneous (e.g., needlestick) exposure is required.24 
o Potentially infectious fluids include blood, sweat, saliva, feces, urine, semen, and breast 

milk.24-26 
o Pre-symptomatic individuals cannot transmit the virus.27  
o EBOV can be persistent in semen and be potentially transmitted sexually several months 

post-infection.28 
o There is evidence that suggests that the route of infection has significant effects on an 

individual’s ability to transmit the virus. NHPs infected via aerosol or mucosal routes 
transmitted the virus more efficiently via the mucosal route than intramuscular-challenged 
NHPs in a recently published study.10 
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• Caregivers and those involved in handling cadavers are at the highest risk of infection.17, 29-32 
o Clusters of cases tend to form within family groups due to heavy reliance on family 

members for care.31 
o Traditional funeral rites in many EBOV-endemic regions of Africa involve significant contact 

with the cadaver, which poses an extremely high risk of transmission, as bodily fluids of 
cadavers are highly infectious.31 

o In industrialized countries, medical examiners and those performing autopsies are at risk.33-

35 
• Hospitals and clinics without training and equipment to handle EVD cases are frequently the 

source of transmission. 
o Healthcare workers are at particularly high risk, and represent a large percentage of cases 

in large outbreaks.29-30, 36 
o Reuse of needles has been a significant mechanism of hospital-acquired transmission.37 
o Waste from patient care contaminated with bodily fluids is treated as highly infectious until 

sterilized.38  
• There may be a dose-dependent relationship with disease severity, where the highest risk of 

infection and severe illness is associated with direct contact with patients or bodily fluids, while 
minimal or indirect contact (e.g., sleeping in the same room, eating the same meals) is 
associated with a lower likelihood of infection and decreased severity of disease.39 
o EVD transmission without direct contact with EVD cases has been observed, suggesting 

that exposure to asymptomatic or unrecognized EVD cases may be involved.32, 39 
• Fomites are a low-risk mechanism of transmission in public places, but contaminated PPE is 

highly infectious.24-25, 38, 40  
• Aerosol transmission via respiratory droplets (in the manner of SARS-CoV-2/COVID-19) does 

not appear to occur naturally. 
o Consensus from epidemiologic evidence is that ebolavirus aerosols do not contribute to 

normal transmission.18  
o Some animal studies have shown aerosol transmission to and between NHPs, though 

transmission may have been through fomite, large droplet, or cross-contamination instead 
of respiratory droplet transmission.32, 41-42 

o Aerosols generated by aerosol-generating medical procedures (intubation, patient 
ventilation, surgery, suctioning, surgical laser or power tools, and any methods inducing 
patient coughing or respiratory aerosolization) pose a transmission risk to those involved.43 

• Large droplets of fluids generated by coughing, for example, could transmit the virus to 
individuals in close contact (~3 feet) with the patient. 
o Droplets would need to contain contaminated bodily fluids to be infectious.32 
o In one study, facial spray exposure in macaques led to no clinical symptoms, but subjects 

developed antibodies.10 
• Large droplets do not remain suspended in the air,44 meaning that only individuals in close 

proximity to the patient are at risk from infection via this route.  
• A recently published study found that intraesophageal exposure was not infectious in 

macaques.10 
• Individuals are typically no longer contagious after recovery, but prolonged persistence in 

patient semen and the vitreous humor of the eye is known to occur.45 
• Patients normally remain in medical facilities until they are PCR negative for EBOV by two 

sequential tests.17 
What do we need to know? 

• What is the risk of transmission via droplets? 
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• What is the frequency of sexual transmission and other forms of atypical transmission of 
EBOV? 

• What is the frequency of true “superspreader events” during an EBOV outbreak? 
Host Range 

How many species does it infect? Can it transfer from species to species? 
What do we know? 

• Bats, particularly fruit bats, are the likely natural reservoir of the virus.18 Bats infected with 
filoviruses do not develop the disease.46 
o Viral RNA has been detected in the fruit bat species Epomops franqueti, Myonycteris 

torquata, and Hypsignathus monstrosus.21  
o Anti-EBOV antibodies have been identified in at least nine47 species of fruit and 

insectivorous bats.18, 48 
o The geographic distribution of E. franqueti, M. torquata and H. monstrosus overlaps with 

nearly all of known EBOV spillover events and outbreak sites, further suggesting that these 
species could be part of the natural reservoir of EBOV.47  

o Anti-EBOV antibodies and viral RNA were reported in Miniopterus inflatus, an insectivorous 
bat in West Africa, but no further confirmation or data was provided.49 

o Bombali virus (BOMV), a new member of the genus Ebolavirus, was detected via 
sequencing in the insectivorous bat Mops condylurus, and anti-EBOV antibodies have 
been repeatedly isolated from this species.50 Initial studies in humanized mice using 
infectious BOMV show similar behavior to the apathogenic (in humans) RESTV, suggesting 
that it has low pathogenic potential in humans.51. However, given that these animals live in 
close proximity with humans, it is unlikely that they are the definitive reservoir of EBOV.50 

• Other mammals, including NHPs (apes in particular), dogs, pigs, and potentially duikers (a 
type of small forest antelope) can be naturally infected, but are dead-end hosts. 
o EBOV causes epizootics among great apes.22, 52-53 
o EBOV is readily transmitted between NHPs.18 
o Dogs were found to have been infected during the 2013-2016 outbreak via serosurveys, 

but did not appear to develop the disease.54 
o Pigs are susceptible and can transmit the virus to other pigs and to NHPs.55 
o Although frequently cited as a host species, only a single individual duiker has ever tested 

positive for EBOV, and then only by a single method (PCR).52 
o Porcupines have been suggested as potential intermediate hosts, though no infected 

porcupine has ever been identified.56-57 
• Most animals are likely infected via exposure to bats (feces or urine are probable routes).18 
o Bat-to-human transmission has been the definitive cause of multiple Marburg virus spillover 

events, a closely related virus to EBOV.18 
o Bat-to-human transmission has been strongly suspected in at least two EBOV outbreaks, 

including the 2013-2016 outbreak in West Africa.58-59 
o NHP-to-human transmission has been suspected in the initiation of several EBOV 

outbreaks.18 
• Habitat disruption via human activity has led to increased spillover risk.60 
o Deforestation is a particularly important factor.60 

• Varying degrees of susceptibility have been demonstrated for several species of snake.61-62 
o Some snake species are susceptible following a point mutation in the receptor NPC1.62 
o Boid snakes (boas, pythons, and anacondas) may be susceptible to infection without 

adaptation of either the host or virus.61 
• NHPs are the ideal animal model for research purposes. Ferrets are also suitable models of 

EVD, and do not require adaptation of the virus. Commonly used small animal models include 
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guinea pigs, Syrian golden hamsters, and mice, but these models require adaptation of the 
virus in order to produce lethal infection.63 
o All rodents require adaptation of the virus in order to produce a lethal infection.63-65 
o Rodents are generally an inadequate model of EBOV disease presentation.13, 63-67 
o Ferrets and NHPs offer the best approximation of human disease.63-65 

• EBOV VP24, a minor matrix protein, appears to be a key factor in determining host range.68-70 
o Rodent-adapted viruses feature mutations in VP24.69-70 
o Structural changes in VP24 appear to be responsible for lack of disease in humans infected 

with RESTV, another species in the genus Ebolavirus.68 
What do we need to know? 

• Which species of bat(s) are the natural reservoir(s) of EBOV? 
• How does the ecology of EBOV and its reservoir host(s) impact the frequency of human 

outbreaks? 
• Do snakes or other reptiles play any role in the ecology of EBOV? 
• What are the restriction factors that determine host range? 

Incubation Period 
How long after infection do symptoms appear? Are people infectious during this time? 

What do we know? 
• The generally accepted incubation period following exposure to EBOV is 2-21 days.71 
o Based on a literature survey, EBOV had an incubation period distribution of 5.3-12.7 days, 

SUDV had a distribution of 3.35-14 days, and Bundibugyo virus had a distribution of 6.3 
days.72 

o Children appear to have shorter incubation periods, with an average of 6.9 days in children 
younger than one year old, and 9.8 days in children aged 10-15 years old.73 29 

 
Year Location Virus Incubation 

Period (days) 
1995 DRC EBOV 6.2 (range 5-8)75 
2009 DRC EBOV 12.778 

2013-2016 West Africa EBOV 9.7 (range 6-
15)80 81-84 

1976 Sudan SUDV 7-1474 
2000 Uganda SUDV 6 (range 1-16)29 
2007 Uganda BDBV 6.3 (range 5.2-

7.3)77 
2012 DRC BDBV 11.379 

 
• In the 2014 EVD outbreak in West Africa, fatal cases had shorter incubation periods (7 days) 

than nonfatal cases (8.5 days).84 
• Incubation periods vary depending on routes of transmission. The mean incubation period 

reported for all routes of transmission was 6.22 ± 1.57 days and 5.86 ± 1.42 days for 
percutaneous transmission specifically.86 
o Cynomolgus macaques exposed to aerosolized EBOV developed a fever in ~3.9 days.87 
o Monkeys exposed via IP injection to EBOV developed symptoms after 3-4 days,88 which is 

an incubation period shorter than that of the Salisbury scientist who accidentally inoculated 
himself and had an incubation period of 6 days.89  

• Estimates of the infectious period range from ~3 days to over 14 days, with most estimates 
being between 4-6 days.85 

• The incubation and infectious periods for SUDV are similar to EBOV (typically 3-14 days, 
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range 2-21 days).3, 74, 90 
What do we need to know? 

• Are there signs or symptoms to suggest that a patient is infected prior to them becoming 
infectious?  

Clinical Presentation 
What are the signs and symptoms of an infected person? 

What do we know? 
• Disease caused by ebolaviruses presents as a severe febrile illness with abrupt onset.17, 91 
• Typical symptoms include fever, malaise, prostration, nausea, vomiting, diarrhea, abdominal 

pain, sore throat, and headache.17, 91-92 
o This cluster of symptoms is typical of multiple hemorrhagic fever viruses.91 
o Patients lose large amounts of fluid due to vomiting and diarrhea, leading to hypovolemia 

and electrolyte imbalance.17, 93 
o Although rare, patients occasionally present with hiccups, jaundice, and photophobia.94-95 

• Presentation makes disease caused by ebolaviruses difficult to distinguish from other common 
tropical diseases, such as malaria and yellow fever.27, 91  
o This difficulty commonly delays identification of ebolavirus outbreaks.23 
o Diagnosis requires laboratory testing.17 
o Unrecognized EVD may account for up to 8.7% of contacts, complicating contact tracing 

and suggesting the need for wider testing during outbreaks.96 
• EVD-specific signs may be less prevalent in vaccinated individuals testing positive for EVD on 

or after day three post-symptoms, including abdominal pain, difficulty swallowing, vomiting 
blood, bloody stools, breathlessness and bleeding gums.97 

• Many patients develop a maculopapular rash approximately five days after the onset of 
symptoms.17, 91 
o This rash can be difficult to observe in patients with dark skin tones.91 

• Delirium, obtundation (drowsiness, lethargy, reduced responsiveness, etc.), and coma are 
typical features as the disease progresses.27, 91 
o Neurological manifestations may persist after infection is cleared, including memory loss, 

headache, cranial nerve issues, tremors, and seizures.98 
• Liver enzymes, blood urea nitrogen, creatinine, clotting time, and d-dimers will be elevated, 

and fibrinogen and platelet counts are typically depressed.91 
• Hemorrhagic manifestations appear later in the course of the disease and are more common 

in severe cases. Significant bleeding is rare, and patients do not die of blood loss.17, 91 
o Typical hemorrhagic signs include petechiae (distinct spots that appear on the skin) and 

ecchymoses (skin discoloration), oozing from injection sites, subconjunctival hemorrhage, 
and gingival bleeding.17, 91 

• Multiple organ dysfunction and disseminated intravascular coagulation are common features 
of severe disease.17, 91 
o Liver and kidney failure are common.93 
o Disseminated intravascular coagulation is a result of cytokine storm induced by infection of 

immune cells.93 
• Death normally occurs within 8-12 days of disease onset and is typically the result of 

hypovolemic shock due to non-hemorrhagic fluid loss.17, 91, 93 
• Case fatality for EVD is variable, but high (25-90%, skewing heavily toward the upper end). 

High-quality medical intervention such as fluid resuscitation and advanced supportive care 
including dialysis significantly reduces mortality.17, 91, 93 
o Case fatality for SUDV tends to be lower, averaging ~55%.99 
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o Fatality rates depend on a number of factors, including the particular variant responsible for 
the outbreak and patient variables such as age and general health.17, 93  

• Asymptomatic infections are rare, but do occur at a low rate; typically between 2.6-7.5% 
among contacts of patients.100 Some (11/24) asymptomatic individuals showed early and 
strong inflammatory responses, with viral RNA may be detectable for up to two weeks.101  

• EBOV can be detected in clinical specimens (e.g., ocular fluid, saliva, stool, semen, breast 
milk, tears, nasal blood, and skin swabs).25, 102-103 
o EBOV RNA was detectable for 70 days in oral, nasal, ocular, urogenital, rectal, skin, and 

blood (pooled in the body cavity) swab samples and tissue biopsy specimens from the liver, 
spleen, lung, and muscle of the corpses of five cynomolgus macaques. Viable virus was 
detectable from the body cavity for one week after death.33 

o Breast milk and semen samples were found to be positive at days 15 and 40 after disease 
onset, respectively, when EBOV was already cleared from the blood.25 

o Modeling based on semen samples from 26 patients predicts (90% certainty) that 50-90% 
of men will clear EBOV RNA from seminal fluid at 115-294 days (respectively) post disease 
onset.103 

o Infectious EBOV was detected in a patient’s aqueous humor (ocular fluid) 63 days after 
recovery of the disease.102 

o EBOV RNA could be detected for up to 33 days in vaginal, rectal, and conjunctival swabs 
of one patient and up to 101 days in the seminal fluid of four patients, and infectious virus 
was detected 82 days after disease onset in the seminal fluid of one patient.104 

o A Sierra Leone outbreak survivor had EBOV RNA recovered from vaginal fluid up to 
36 days after symptom onset.105 

What do we need to know? 
• Is fever a useful indicator for the ability of a patient to transmit the virus? Is a patient ever able 

to transmit the virus after developing less noticeable symptoms, but prior to becoming febrile? 
• Can individuals who remain asymptomatic throughout the course of infection transmit the 

virus? 
• Is there a naturally immune population? 
• Are there unique biomarkers that can be used for early detection of infection? 

Persistent Infection 
What is the biology and how does it impact outbreak response? 

What do we know? 
• In the 2013-2016 EVD outbreak in West Africa, it was found that the virus may persist in 

semen for up to two months, and possibly much longer. 
o Multiple sexually transmitted cases of EVD occurred during the outbreak.103, 106-108 
o “Flare ups” of local transmission may occur near the end of epidemics due to sexual 

transmission from recovered patients.106-107 
• EBOV was detected in the semen of 75% of male EVD survivors from the Sierra Leone 

outbreak after six months, and 27% of survivors at nine months.28, 109 4% of a sampling of men 
had EBOV RNA detected at 16-18 months after recovery, though another report found a 
shorter duration of 9-12 months.110-112 
o EBOV RNA was detected in a human immunodeficiency virus (HIV)-positive man’s semen 

over 18 months after recovery from the disease.113  
o EBOV RNA was found in the seminal fluid of an EVD survivor approximately 18 months 

after onset of disease, and was sexually transmitted between ~7-17 months after onset of 
symptoms.114-115 

o Longer persistence in semen appears to be associated with severe acute disease, as well 
as in older men (>35 years).28 
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o While sexual transmission chains have been verified and linked to EBOV RNA, isolation of 
infectious EBOV from semen has only been reported from five EVD survivors. Infectious 
virus was isolated out to 70 days post-EVD onset.116 

• Various proposed mechanisms of viral persistence in humans include “hiding” from the body’s 
immune system in parts of the body, the virus entering a latent (non-replicating) state, 
defective virus genomes modulating replication, or reduced virus replication.45 
o Defective EBOV genomes were found in the testes of EBOV-infected NHPs. Testes are 

one of the human organs thought to allow persistence of the virus.117 
o A primate cell line was persistently infected with EBOV due to defective interfering particles 

(virus-like particles that cannot replicate in the absence of a functional viral genome).118 
o Viable EBOV was recovered from the patients’ aqueous humor of the eye nine weeks after 

viremia was cleared. This was associated with uveitis (a serious eye inflammation) in the 
patient.102  

• Reactivation of infection has been observed from persistent virus in cerebrospinal fluid.119 
• The 2021 outbreak in Guinea appears to have occurred as a result of transmission from a 

patient with a reactivated persistent infection from the 2013-2016 outbreak.120 
o Sequencing of virus from 12 patients found extremely low levels of sequence divergence 

from the virus associated with the prior outbreak.120 
o This finding makes spillover an unlikely initiating event for this outbreak.120 
o This finding suggests prolonged persistent infection occurs with low levels of viral 

replication.120 
• Persistent EBOV infection was detected in the ventricular system of the brain in 7 of 36 rhesus 

macaques post-mAb treatment after surviving EBOV infection.121 
• In Liberia, 126 male participants all tested negative for EBOV RNA in their blood when tested 

30 months after EBOV onset. One participant still tested positive for EBOV RNA in his 
semen.122 

What do we need to know? 
• What is the duration of persistence of virus in tissues where it can survive after clearance of 

systemic infection? 
• What percentage of EBOV survivors with persistent detectable EBOV RNA in semen and 

ocular fluid, for example, are still infectious? In other words, how often does persistent PCR 
positivity equate to persistent infectivity? 

Clinical Diagnosis 
Are there tools to diagnose infected individuals and when are they effective? 

What do we know? 
• Clinical diagnosis can occur within a few days of infection. Various test modalities are 

available.17, 92 
o Viral Hemorrhagic Fever clinical diagnosis is considered for any patient presenting with 

severe acute febrile illness and evidence of vascular instability. Confirmed diagnosis 
requires both meeting case definition and positive laboratory tests.93 

• qRT-PCR is the current standard diagnostic test for EBOV and is useful for rapid disease 
diagnosis.17, 92, 123 
o Multiplex PCR and oligonucleotide microarray technology have been developed that can 

detect and differentiate between EBOV and other hemorrhagic fever viruses.124 
o A systematic review of 14 studies conducted in Angola, Guinea, Liberia, and Sierra Leone 

from 2005-2015 indicated that q-PCR on admission was the most commonly used method 
for clinical diagnosis of EVD.125 

• Lateral flow immunoassays (point-of-care, single-use) have been developed for EBOV.126 
o A new immunoassay targeting secreted EBOV glycoprotein (Ebola sGP Detection Kit) 
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provides rapid diagnosis of EVD, with a specificity of 100% and a sensitivity of 85.7%. This 
assay’s EBOV detection limit is ~10 times lower than the seven WHO-approved in vitro 
detection tests.127 No other lateral flow diagnostic test demonstrates as low of a detection 
limit for EBOV from infected NHPs.128 

o EBOV sGP has been detected as early as four days post-infection in NHP samples in an 
ELISA test.129 

o A new immunoassay using optical micro-ring resonators specifically targeting EBOV sGP in 
a sandwich ELISA rapidly detected EBOV infection with a limit of detection (LOD) of 1.00 
ng/mL in 1% serum.130 

• Antibody detection/ELISA tests have been used in EBOV diagnostics for more than 20 years, 
and are sensitive and specific.17, 131 
o Human anti-EBOV GP immunoglobulin G (IgG) ELISA developed by the Filovirus Animal 

Nonclinical Group is used in multiple laboratories.132-133  
o The ReEBOV® Antigen Rapid Test (ReEBOV RDT®) using polyclonal antibodies specific for 

EBOV VP40 antigen has been validated by the WHO and FDA.134 
o The EBOV D4 immunoassay uses M13 phage display to increase antibody sensitivity, and 

showed higher sensitivity than RT-PCR by detecting EBOV in IM-challenged NHPs (1000 
PFU) one-day post-infection (LOD of 20 pg/mL) compared to RT-PCR and infection (PFU) 
assays that signified infection by day three.128 

o Antigen detection sensitivity declines 1-2 weeks after the onset of symptoms, making late-
stage serum diagnosis less reliable.135 

• Viral isolation followed by electron microscopy, plaque reduction neutralization testing, or 
immunofluorescence provides definitive diagnosis, but requires specialized resources.17, 136 
o An EBOV fluorescence reduction neutralization assay testing for neutralizing antibodies 

has been developed that requires a small sample volume with the potential of being 
automated.137 

• A CRISPR-CAS13a Specific High-sensitivity Enzymatic Reporter unlocking (SHERLOCK) 
platform has been developed to provide field testing for EBOV in real time, but it has not been 
FDA-approved for detection of EBOV, though it has received an emergency use authorization 
for SARS-CoV-2.138 

• The U.S. Department of Defense (DoD) has developed EBOV diagnostic assays.139  
What do we need to know? 

• How can the dissemination and availability of diagnostics and relevant training be improved?  
• Do current assays lose sensitivity due to viral mutations? 
• For immune- or PCR-based assays, do they cross-react or detect all EBOV isolates and 

species? 
• Can the period between initial infection and diagnostic detection be shortened? 
• Can viral RNA and antibody detection methods be validated in domestic animal species? 

Medical Treatment 
Are there effective treatments? 

What do we know? 
• Intensive supportive care remains essential for EVD treatment.17  
o Intensive supportive care was associated with improved survival and less time in ETUs in 

Sierra Leone during the 2013-2016 EBOV outbreak.140 
o A recently proposed remote controlled optimized pulse-pressure fluid resuscitation 

treatment may provide an innovative approach to providing supportive care for EVD 
patients in low resource settings.141 
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• Vaccines can be used as post-exposure prophylaxis (PEP) and in conjunction with other 
therapeutics, but may be less appropriate for use in patients who have already begun to show 
symptoms.17, 142-143 
o An EVD patient in the DRC treated with rVSV-ZEBOV recovered within 14 days. He 

relapsed six months later with acute EVD that led to transmission of 91 additional EVD 
cases.143 

o Rhesus monkeys vaccinated with rVSV-ZEBOV were challenged one day post-vaccination 
with a lethal dose of EBOV, immediately followed by treatment three days post-exposure 
with MIL77 (a 3-mAB cocktail), and did not become ill and all survived.142 

• REGN-EB3 (INMAZEB, Regeneron Pharmaceuticals), a combination of three human mAbs 
(atoltivimab, maftivimab, and odesivimab) targeting EBOV glycoprotein, is the first FDA-
approved EVD treatment.144-145  
o Trials of REGN-EB3 show a 28-day mortality rate 17.8% lower than for the antibody 

cocktail ZMapp, which was used successfully in the 2013-2016 epidemic. A 15-day median 
time to the first negative EBOV RT-PCR test in REGN-EB3 was observed in recipients 
compared to 27 days in the ZMapp group.144 

o A recent study of PEP used REGN-EB3 and another antibody, Mab114, to treat 23 un-
vaccinated patients who were in contact with EVD patients within one day. After 14 days 
post-contact, none of the patients developed EVD, and all produced negative PCR tests.146 

o Another recent clinical study supports the improved efficacy of Mab114 and REGN-EB3 
over ZMapp and the antiviral drug remdesivir.95 

• Ebanga, a human mAb (Ansuvimab-zykl), has been approved by the FDA for the treatment of 
Ebola Zaire virus.147 
o A trial of Ebanga (mAb1114) in 2018 showed a decreased 28-day mortality rate (35.1%) 

and reduced time to negative RT-PCR test (16 days) when compared to ZMapp (49.7%, 27 
days).  

• Early treatment (with either Ebanga, Remdesivir, Mab114, and ZMapp) is effective at reducing 
the case fatality rate; for each day symptoms persistent prior to enrollment, patient odds of 
death increased by 11%. Only 19% of patients who sought treatment within one day of 
symptom onset died, compared to 47% of patients who sought treatment after five days of 
symptoms.148-149 

• Clinical trials of antiviral drugs such as remdesivir and favipiravir have generally found limited 
or inconclusive evidence for efficacy.17, 148, 150 
o BCX4430 (a broad spectrum antiviral nucleoside analogue)151 has also been used with 

inconclusive results.152  
o The antiviral Brincidofovir was used unsuccessfully to treat four EVD patients, who all died 

from EVD.153-154  
• Plasma from EVD survivors (containing antibodies to EBOV) is frequently used as a final 

treatment measure, but evidence for efficacy is lacking.155-156 
• No approved therapeutics for SVD exist. However, a combination therapy using remdesivir 

and MBP134, an antibody-based treatment, has shown promise in NHPs.157 
o The United States has provided this treatment to Uganda as part of its response to the 

SVD outbreak.158 
What do we need to know? 

• Can methods be developed to address the gap between successful animal trials and efficacy 
in humans? 

• What additional non-specific treatments (i.e., supportive care measures) can be implemented 
to improve patient outcomes? 

• Would a sufficient supply of FDA-approved therapeutics be available in the event of an 
outbreak in the United States?  
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Vaccines 
Are there effective vaccines? 

What do we know? 
• The U.S. FDA approved Merck’s Ervebo (rVSV-ZEBOV) vaccine in 2020. The European 

Medicines Agency licensed Ervebo in 2019 and Zabdeno and Mvabea (Ad26.ZEBOV/MVA-
BN-Filo) by Janssen/Johnson & Johnson (J&J) in 2020. Adverse events remain a concern. 
o Merck’s rVSV-ZEBOV/Ervebo is a live attenuated vaccine given as a single dose and is 

approved for use in individuals 18 years of age and older.159 This vaccine is a vesicular 
stomatitis virus (VSV)-based vaccine expressing the glycoprotein of EBOV (rVSV-
ZEBOV).160 
 Adverse events associated with Ervebo are extremely common, and include headache 

(37%), feverishness (34%), muscle pain (33%), fatigue (19%), joint pain (18%), 
nausea (8%), arthritis (5%), rash (4%) and abnormal sweating (3%).161-162 

 Serious side effects have also been noted, and recipients of the vaccine should be 
monitored for anaphylactic responses for 30 minutes after administration.163-164 A small 
study identified that most immunized individuals (rVSV-EBOV) reported at least one 
adverse event (105/109 respondents), with an average of three adverse events per 
person; four (4/109 respondents) experienced serious adverse events.165 

 A booster dose of Ervebo may extend the duration of protection, and can be given six 
months or more after the initial dose.162-166 

 In November 2019, Merck’s vaccine gained conditional approval from the European 
Commission and was given to hundreds of thousands of people to control the 2019 
outbreak in the DRC.160, 167 Following clinical trials to assess safety in 15,000 people, 
the Merck vaccine was also approved by the FDA in December 2019.161 

 Analyzing Merck’s data from 90,000 vaccinated individuals, the efficacy is 97.5% at 
10 days after vaccination.160, 168 The duration of protection, or level of protection for 
immunocompromised, pregnant, or elderly (over 65 years) patients, is unknown.163-164 
Follow-up serological studies to assess the duration of immunogenicity in vaccinated 
individuals showed 87.2% had an antibody response after 21 days, with 95.6% of 
those showing antibody persistence after six months.169 

 While Merck’s Ervebo vaccine is not licensed for use as a PEP, it has been used in 
ring vaccination campaigns in areas of active infection and has likely been 
administered to individuals with recent exposure to EBOV. The Phase III efficacy study 
that was conducted in these areas found no new cases of EVD 10 days after 
vaccination, suggesting that the vaccine was likely effective as PEP. This is consistent 
with nonclinical data that when Ervebo is given as PEP following infection in animal 
models there was partial protection.170 

o J&J’s Ad26.ZEBOV/MVA-BN-Filo (Zabdeno/Mvabea) is given as two doses, eight weeks 
apart, and is approved for use in individuals that are one year and older.159 The regimen 
consists of two vaccines: an adenovirus-vectored vaccine encoding the glycoprotein of 
EBOV followed by a booster shot with a Modified vaccinia Ankara–vectored vaccine 
encoding glycoproteins and a nucleoprotein from several types of ebolavirus.160 
 J&J’s vaccine received European approval in July 2020,171 and prequalification by the 

WHO in 2021172, but is not currently FDA-approved. 
 When assessed at 21 days following the second dose, J&J’s vaccine induced an 

antibody response in 98% of recipients, which persists for at least two years. 
Participants who received an additional booster after two years showed a rapid and 
strong response. Efficacy studies remain incomplete as the outbreak ended prior to 
their conclusion.173-174  

 An efficacy study, the first to include pregnant women, was planned in the DRC for 
November 2019 to February 2022 but was cut short in 2020 due to conditions not 
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conducive to the trial (the outbreak was poorly controlled, and the COVID-19 pandemic 
began during the trial). However, the participants are still being observed for 
immunogenicity, safety, and impact on birth outcomes in pregnant women, as well as 
immunogenicity of a delayed second dose.175 

o Two additional vaccines, Ad5-EBOV (lyophilized vaccine) and GamEvac-Combi vaccine 
have been developed and approved for use in China and Russia, respectively. However, 
these are not licensed for use in other countries. Roughly 10 additional vaccines worldwide 
are currently in development and being tested in Phase I–III clinical trials, including 
vaccines being developed by GlaxoSmithKline, Mapp Biopharmaceuticals, Novavax, 
Gilead, Regeneron, Moderna, and others.176 

o University of Oxford’s single-dose vaccine candidate ChAdOx1 biEBOV is currently in 
clinical trials to test for safety and immunogenicity against both Zaire and Sudan Ebola 
Virus species.177-178 

• Two studies conducted in 2018 followed participants for over 12 months to evaluate the safety 
and immunogenicity of three different vaccine regimens. One study included 1400 adults and 
the other 1401 children (1-17 years old). Vaccine regimens evaluated were: J&J’s 
Ad26.ZEBOV followed by MVA-BN-Filo 56 days later, Merck’s rVSVΔG-ZEBOV-GP followed 
by placebo 56 days later, and Merck’s rVSVΔG-ZEBOV-GP followed by a second dose of 
rVSVΔG-ZEBOV-GP 56 days later. Although there was no universally accepted correlation of 
protection, all three regimens elicited significant antibody titers by day 14 and antibodies 
remained detectable for a year. All three vaccine regimens also had good safety profiles in 
adults as well as in children as young as one year.179-180  

• During recent outbreaks, a “ring vaccination” strategy has been used to attempt to contain 
transmission.  
o During outbreaks, the single-dose Merck vaccine Ervebo was given preventatively to front-

line healthcare workers, individuals exposed to a known case, and any secondary 
contacts.160, 181 Of the 5,837 individuals that immediately received the vaccine, there were 
zero cases of infection onset after 10 days following injection. In comparison, 23 cases 
developed in a control group whose vaccination was delayed.182 

o The slower-to-immunity, two-dose J&J vaccine has been used in a role complementary to 
the Merck vaccine, in which it was given to occupants of villages on the outskirts of ongoing 
infections,159 which targets at-risk populations, but not currently involved in an active 
infection.183  

• There are challenges in ebolavirus vaccine development. Since conventional trials for efficacy 
would not be ethical, trials rely on the FDA “animal efficacy rule,” and there are issues with 
safety and antibody immune response shown in humans.184 
o Challenges in vaccine approval result from lack of controlled clinical trials and participants, 

such as the J&J trials, which ended prematurely when the outbreak was contained.173-174 
There is also a lack of a commercial market for the end product, which is supplemented by 
government funding for development.176 

o Despite having a large population at risk, EVD remains a rare disease, but comes with a 
significant health and financial impact. The cost-benefit and population safety analysis 
need to be considered when developing vaccination strategies.185  

o Vaccine efficacy data may vary depending on region due to factors such as improper 
storage in areas with resources, general health and nutrition of the population in the region, 
prevalence of immunosuppressive conditions such as HIV, and the serological profile of a 
population based on prior exposure to other filoviruses in the area.169 

• There are several studies in the early stages of developing a non-reproducing multi-epitope 
vaccine against EBOV.186-188 
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• The U.S. CDC recommends pre-exposure vaccination with Ervebo for the following subsets of 
the U.S. population that are at the highest risk for occupational exposure: adults that are18 
and older who are involved in the Ebola outbreak response or patient transport, healthcare 
workers at designated Ebola treatment centers in the U.S., and laboratory staff working with 
EBOV at BSL-4 facilities.189 

• No vaccines specific to SUDV are approved for use. 
o Three vaccine candidates have reached human trials.190  
o The most advanced candidate is GlaxoSmithKline’s chimpanzee adenovirus (ChAd) 

vectored vaccine. The license for this vaccine was donated to the Sabin Vaccine Institute, 
which was contracted by the U.S. Biomedical Advanced Research and Development 
Authority to develop the vaccine. One hundred doses are currently ready for use, with 
40,000 doses in bulk form awaiting completion.190  

o The other two candidates are another ChAd vaccine developed by the University of 
Oxford,177 and the Johnson and Johnson vaccine developed for EBOV, which may offer 
some protection against SUDV.190  

o Merck produced a batch of a VSV/SUDV-GP vaccine in 2015-2016 using the same 
technology as Ervebo. This vaccine has not been tested in humans. 100,000 doses exist in 
bulk form, and Merck intends to complete them and make them available to the WHO for 
potential use in clinical trials in Uganda.191 

o Uganda’s Makerere University, with Uganda’s Ministry of Health and the WHO, began 
conducting a clinical trial in December 2022 called Solidarity Against Ebola that will 
evaluate three vaccine candidates against SUDV. The vaccines tested are: Sabin Vaccine 
Institute's ChAd3-SUDV, Oxford University/Jenner Institute/Serum Institute of India’s 
cAdOx1 biEBOV, and Merck/IAVI’s SV-SUDV.192 

What do we need to know? 
• What is the efficacy of the vaccines when used for PEP? 
• What is the actual efficacy of the vaccines for pre-exposure prophylaxis? 
• What is the impact and safety of vaccines on pregnant or lactating women? 
• How long are the vaccines effective? What is the onset and duration of protection?  
• What are the correlates and thresholds of protection? In other words, what types of vaccine-

induced immune responses are responsible for preventing infection and disease, and how 
strong do these responses have to be? 

• How often do breakthrough infections occur?  
• Can the current vaccines or vaccines in development provide any protection from ebolaviruses 

other than EBOV, such as SUDV? 
• Are there additional unknown adverse effects? 
• Are there vaccine-related risks that are dependent on the various routes of exposure to 

EBOV?  
Forecasting 

How effective are models at predicting outbreak trajectories? 
What do we know? 

• The risk of a large EVD outbreak in the United States is considered to be low. 
o During the 2013-2016 EVD epidemic in West Africa, the U.S. was estimated to have a less 

than 25% chance of importing an EVD case near the peak of the epidemic, with predicted 
outbreak sizes resulting from a single imported case typically being fewer than 100 
individuals.193 

• Forecasting was critical during the 2013-2016 West African EVD epidemic, highlighting the 
potential magnitude of the unmitigated epidemic and decision support as the epidemic 
unfolded. 
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o There are a number of different model types used to forecast EVD outbreaks and 
epidemics, including compartmental (e.g., Susceptible-Exposed-Infectious-Removed 
[SEIR]) models,194-195 agent-based models,196 phenomenological models,82 network 
models,197 and point process models.198 

• A number of factors tend to improve the accuracy of EVD forecasts, including clustering of 
cases within households, transmission in hospitals and among healthcare workers, and 
transmission at funerals.  
o In the 2013-2016 EVD epidemic, assessing the potential final epidemic size in the early 

stages of the outbreak was difficult because the long-term effects of public health 
interventions and changes in human behavior were unknown.199  

o There was substantial variation in EBOV transmission among districts within affected 
countries during the 2013-2016 epidemic,199 limiting the utility of national-level forecasts, 
which generally predicted large final epidemic sizes.200 Indeed, early epidemic dynamics 
within countries were sub-exponential and better represented by polynomial growth 
terms,201 growing more slowly than data aggregated at the national level would predict. 

o Agent-based models, where populations are represented at the individual level, were 
generally able to predict key features of the 2013-2016 EVD epidemic199 such as high 
spatial clustering (e.g., hospitals, households, and funerals)196 and the beneficial effect of 
isolation in ETUs.80 

o As a result of these transmission patterns (e.g., hospitals, homes, and funerals), models 
estimated substantial clustering of EVD cases (e.g., non-random mixing through the 
population).202 This clustering can affect forecasting results, particularly for location-specific 
predictions of necessary resources.202 

o Funerals were a large initial driver of the 2013-2016 EVD epidemic, though their 
importance decreased over time as a result of information dissemination and mitigation 
measures.203-204 

o The 2013-2016 EVD epidemic was characterized by high levels of infection in hospitals204 
and among healthcare workers.203 

• Forecasts now account for the impact of vaccines (e.g., ring vaccination strategies). 
o Ring vaccination has been shown to be an effective way to mitigate EVD outbreaks.205 
o Vaccination of healthcare workers in high-risk areas may also be an effective strategy for 

mitigating outbreaks.206 
• Ensemble forecasts outperformed individual forecasts during the 2013-2016 EVD epidemic. 
o Ensemble forecasts, where several individual forecasts are combined with a statistical 

model,207 often provide more accurate predictions than their constituent forecasts,208 even 
for ensembles of relatively simple phenomenological models.209 

o EVD forecasts may benefit from a multi-model approach, whereby different model types 
(e.g., logistic, Richards) are fit to different time periods to enhance forecast accuracy.210 

• Real-time EVD forecasts have been limited by timely and accurate data. 
o Forecasts reliant on fitting deterministic models (e.g., exponential growth) to cumulative 

data are prone to overestimate confidence in key model parameters, resulting in inaccurate 
forecasts that underestimate uncertainty.211 

o Most EVD forecasts during the 2013-2016 epidemic relied on publicly available data 
published by the WHO or the countries affected by the epidemic, highlighting the need for 
fast, accurate, and open-access publication of data.212 The CDC Ebola modeling response 
team noted a lack of timely, accurate data as a key challenge to making accurate 
forecasts.213 

o It may be possible, however, to use non-traditional datasets (like the email listserv ProMed 
mail and the outbreak visualization tool HealthMap) to forecast short-term Ebola incidence 
in real time.214 
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o In the 2013-2016 EVD epidemic, forecasts that were made earlier and with longer time 
horizons had lower accuracy.212 

o Complex models with more parameter inputs were not necessarily more accurate than 
simpler forecasting models during the 2013-2016 EVD epidemic,208, 212 though additional 
model parameters are usually needed for finer-resolution forecasts.208 

o One limitation in forecasting the 2013-2016 EVD epidemic was the initial lack of information 
on contact networks, which showed a high degree of clustering and superspreading that 
was not visible in previous, smaller EVD outbreaks.203  

What do we need to know? 
• How do forecast models effectively incorporate long-lasting maintenance of infectious virus in 

human fluids? 
• How many imported EVD cases are necessary to spark significant outbreak risk in the United 

States? 
• How do local and regional conflicts affect the size and duration of EVD outbreaks? 
• How can EVD forecast models avoid model overfitting (a modeling error that arises from 

overdependence on making the model outputs fit existing data), particularly when used early 
in an outbreak to estimate potential growth? 

Environmental Stability 
How long does the agent live in the environment? 

What do we know? 
• EBOV maintains infectivity in whole blood and plasma after five days, even when the blood is 

stored at higher temperatures.215 
o EBOV remains infectious in liquid blood in syringe needles up to 190 days.216 
o EBOV in blood also remains infectious on banknotes for up to six days.216 

• EBOV loses all infectivity in urine and semen at 37°C by 4-5 days and five days, 
respectively.215 

• EBOV remains viable in wastewater for at least eight days.217 
o EBOV remains viable in water for three (27°C) to six (21°C) days, depending on the 

temperature of the water.218 
• Aerosol stabilities of the EBOV Kitwit and Makona variants were determined, resulting in 

similar decay rates between 1 and 2% per minute and an approximate half-life of 43 minutes.16 
• EBOV remains viable on some surfaces (wood, plastic, stainless steel, glass, some PPE) 

longer than others (cotton). EBOV remains viable potentially up to eight days on some 
materials such as stainless steel, and up to three weeks in liquids and on plastic and glass 
surfaces.218-222 
o At an ETU in Sierra Leone, EBOV RNA was detected on material and surfaces that was in 

direct contact with patients (clothing, blankets, pit latrines). No RNA was detected on 
chlorine tap handles and ceiling fan blades. RNA was also found in bodily fluids and visibly 
bloodied soaker pads.223 

o A 4-log inactivation of EBOV on glass (22°C, 30-40% humidity, no light) required 5.9 
days.221 

o EBOV persisted on surfaces for 1-3 days (27°C 80% relative humidity [RH]).220 
o There was no difference in the stabilities of aerosolized Mayinga 1976 EBOV and Makona 

2014 EBOV over three hours at 22°C and 80% RH. Both viruses remained viable, and was 
comparable to the stability of EBOV dried on surfaces at 27°C.224 

What do we need to know? 
• What are the best surrogates for persistence testing?  
• Are surrogates used for decontamination testing also acceptable for use in persistence 

testing? 
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Decontamination 
What are effective methods to inactivate the agent in the environment? 

What do we know? 
• Disinfectants on EPA Lists L or Q are recommended for use with EBOV.225-226 
• Decontamination studies need to show complete eradication of infectious virus due to the low 

infectious dose for EBOV. 
o There have been recent modifications to TCID50 assay methodologies to accommodate the 

ability to show eradication even in the presence of chemical cytotoxicity such as serial 
passaging.227 

• It is critical that correct contact times for wipes are used, as improper use may result in 
transfer of virus between surfaces. 
o Accelerated hydrogen peroxide-impregnated wipes demonstrated secondary transfer of 

EBOV up to 0.5 log10 TCID50/mL when contaminated steel surfaces were wiped for 
30 seconds. Wipes containing a single quaternary ammonium compound transferred up to 
0.8 log10 TCID50/mL EBOV when wiped for five seconds, but EBOV was undetectable 
when wiped for 15 seconds or longer.228 

• Chlorine disinfectants are effective and widely used for routine/daily disinfection of non-porous 
surfaces (floors, bedside surfaces, equipment).  
o At least 0.5% sodium hypochlorite and a contact time of at least five minutes.219, 229-232 
o Contact time and concentration are key for effective disinfection. Even a high concentration 

(1%) of sodium hypochlorite did not decontaminate EBOV-contaminated surfaces within 
one minute of contact time.219  

o Effective against EBOV variants (Mayinga, Kikwit, Makona); however, differing disinfection 
characteristics are observed with lower (below 0.1% sodium hypochlorite) 
concentrations.230 

• Other commonly used disinfectants have shown varying effectiveness of EBOV inactivation on 
non-porous surfaces (e.g., stainless steel, aluminum). 
o 67-70% ethanol is effective at inactivating EBOV within 5-10 minutes.219, 230 
o Chloroxylenol (≥0.12%) is effective at inactivating EBOV within five minutes.227, 233 
o Commonly used military aircraft disinfectants showed varying effectiveness at EBOV 

inactivation on seat belts and aluminum surfaces.231 
o Povidone iodine (PVP-I) formulations (e.g., 7.5% PVP-I surgical scrub, 10% PVP-I solution, 

or 3.2% PVP-I and 78% alcohol solution) are >99.99% effective against EBOV at a 15-
second exposure time.234 

o Quaternary ammonium compounds (QAC) MicroChem Plus (5%) and Forward (5%) 
reduced infectious EBOV by >99.99% at 15-30 seconds when mixed in liquids being 
tested. Efficacy of QACs was diminished if the diluted solution was stored for up to one 
week.235 

• Chlorine dioxide,236 vaporized hydrogen peroxide fumigation,237-238 or UV germicidal 
irradiation239 can be used to decontaminate medical equipment and isolation units. 
o Degree of soiling of material can reduce effectiveness of fumigation methods; prior physical 

cleaning is required.239 
o UV germicidal irradiation inactivates EBOV at an exposure level of >17 mJ/cm2.239 Areas 

with higher contamination (e.g., bathrooms, patient rooms) should be treated with higher 
exposures (>800 mJ/cm2).240 

o The process of decontamination requires nearly one week from the time the patient exits 
the room to when personnel can enter without PPE.240 

o Decontamination with vaporized hydrogen peroxide fumigation can be completed in 
three working days – approximately half the time of formaldehyde decontamination 
procedures.237 
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o Field decontamination kits utilize chlorine dioxide and can sterilize ebolavirus-contaminated 
medical equipment at remote clinical sites over a 30-60-minute period.236 

o Surrogate studies suggest that chlorine dioxide gas may not be effective at inactivating 
EBOV present in body fluids.241 

• Surrogate agents are required for efficacy testing of EBOV in lower containment laboratories. 
Multiple surrogates are used for efficacy testing.236-237, 241 234, 238, 242-246 
o Geobacillus stearothermophilus dried onto metal disks and sealed inside Tyvek pouches237 

were used to evaluate terminal sterility of patient care areas.  
o Bacterial spores often provide the standard test assay for sterility and/or decontamination 

of units, primarily because spores exhibit more resistance to chemical and physical 
decontamination methods than EBOV.236  

o Bacteriophage Phi 6 may be a conservative surrogate for EBOV,238, 242-243 but suitability 
may be dependent on temperature and media compositions.247 

o Modified vaccinia virus Ankara (MVA) was shown to be a suitable surrogate for EBOV in 
efficacy testing with PVP-I solutions.234 

• Environmental sampling of viral genomic RNA should not be used to evaluate infectious virus 
contamination. 
o High amounts of viral RNA may remain on surfaces despite complete inactivation of 

infectious particles. Evaluation of effective decontamination should be determined or 
corroborated by quantifying infectious virus.230 

What do we need to know? 
• What are the best practices for disinfecting EBOV-contaminated porous materials (i.e., seat 

fabric, bedding, seatbelts)? 
• What disinfection procedures should be used for equipment used during transport of EBOV-

confirmed or PUI patients between treatment facilities and medical evacuation? 
Personal Protective Equipment (PPE) 

What PPE is effective and who should be using it? 
What do we know? 

• CDC’s PPE guidance differentiates between confirmed EVD cases/PUIs for EVD who are 
clinically unstable or exhibiting bleeding, vomiting, or diarrhea,248 and PUIs that are clinically 
stable and not exhibiting bleeding, vomiting, or diarrhea.249 
o Variations in PPE should be avoided within a specific facility. 

• CDC-recommended PPE for caring for a patient with confirmed EVD249 includes single-use, 
disposable PPE and respiratory protection in the form of a PAPR or NIOSH-certified N95 
respirator.250-251 
o Single-use disposable impermeable gown or coverall, examination gloves with extended 

cuffs (two pair), boot covers that extend to at least mid-calf, and an apron that covers the 
torso to the level of mid-calf should be used over the gown or coveralls if the coverall has 
an exposed, unprotected zipper in front. 

o Standardized attire should be worn under PPE (e.g., scrubs and dedicated washable 
footwear). 

• CDC-recommended PPE for caring for a PUI who is clinically stable, and not exhibiting 
bleeding, vomiting, or diarrhea includes single-use, disposable PPE. Respiratory protection 
(PAPR or N95 respirator) is not required, but a face shield should be worn.249 

• Detailed instructions for the recommended procedures for donning and doffing of PPE are 
available from CDC.249, 252 
o A trained individual should observe donning and doffing to confirm and document that each 

step has been completed correctly.  
o Designated areas separate from the patient care area should be dedicated to donning or 
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doffing of PPE.  
o Use of a checklist and closed loop communication strategy can result in a more deliberate 

and mindful doffing process.253-254 
o It is crucial that facial and respiratory protection is removed last for safe doffing.255 

• The risk for errors and self-contamination is highest in the doffing phase.40, 256-259 Consistent 
and correct use of PPE, reinforced with repeated training and practice, is key to minimizing 
exposure.  
o Ambiguity is a common reason for guideline non-compliance.253, 260 
o Highest risks for contamination were related to hand hygiene (insufficient duration, failure 

to properly disinfect).261 
o Frequent sanitizing of gloves with an alcohol-based hand-sanitizer (or 0.5% chlorine) is 

recommended.258, 262-264 
o Reinforced training programs reduce risk.265-269 
o A web-based training program developed by a transdisciplinary team with expertise in 

infection prevention, medicine, nursing, and human factors engineering is available on the 
CDC website.270 

• PPE should be available in a variety of sizes and resistant to heat, sweat, and chemicals to 
minimize loss of dexterity.271 
o The use of cooling clothing with phase-changing material under PPE reduced heat-related 

discomfort symptoms (head, chest, back limbs) by 9-58% and reduced skin temperature 
(average of 0.65°C) when working in 26°C and 32°C environments.272 

• Redesigns in PPE (e.g., doffing tabs, rear zipper, high neck collar) can increase comfort and 
safety.271, 273-275 

• Use of full-body PPE in ETUs presents a number of issues, including heat exhaustion, 
reduced sensory perception, reduced dexterity, and increased fluid loss.276 

• There is no evidence of environmental contamination of nearby surfaces when bleach solution 
spray or wipes are used to disinfect PPE (gloves or hoods), based on testing with 
bacteriophage.277 
o Disinfection of PPE did not eliminate the surrogate virus, which supports recommendations 

for extremely careful, protocol-based doffing and single-use, disposable PPE. 
o Pulsed xenon UV disinfection may be useful for reducing contamination on PPE prior to 

doffing.246 
o Using a surrogate virus, >4.0 log reduction in viral titer was demonstrated on face shields 

and surgical gowns after a five-minute exposure at one-meter distance from the source. UV 
exposure to healthcare workers wearing the PPE during UV disinfection was determined to 
be below the recommended exposure limits.246 

What do we need to know? 
• How can PPE be improved to reduce occupational risks (e.g., heat stress, dexterity)? 
• Are there improved PPE designs to allow for easier removal without touching the outside of 

the PPE?  
• Can a standardized simulation system for training clinical workers in PPE usage for care of 

EVD patients be devised? 
Genomics 

How does the disease agent compare to previous strains? 
What do we know? 

• EBOV is one of four members of the genus Ebolavirus known to cause disease in humans.18 
o Others include Sudan, Bundibugyo, and Taï Forest viruses,18 which are typically less 

virulent and have generally been associated with smaller outbreaks.18 
o Two other ebolaviruses, RESTV and BOMV, are not known to cause disease in humans.18, 
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50 
• Since humans are dead-end hosts for EBOV, variants associated with outbreaks do not 

persist in nature after the outbreak ends, and do not “spill back” into the animal reservoir of the 
virus.18 
o Much like avian influenza, the virus must start “from scratch” in terms of human adaptation 

with each outbreak.278-279 
• Each outbreak has been associated with a new EBOV variant, though the characteristics of 

the virus such as virulence and efficacy of transmission are similar between outbreaks. 
o Viruses associated with the latest EBOV outbreaks are >95% identical to the virus 

responsible for the 1976 outbreak in Yambuku, DRC.280 
o Genomic differences between variants have an effect on phenotype, but is not typically 

large.281-282 283 
o A notable exception was the 2021 Guinea outbreak, which was associated with 

transmission from a persistently infected individual who was initially infected during the 
2013-2016 outbreak.120 

o Persistent infection and prolonged outbreaks may facilitate adaptive evolution of the virus 
in a manner that could enhance human-to-human transmission.284 

• EBOV evolves slowly in its reservoir, and during recent outbreaks, mutations associated with 
adaptation to humans appeared only after relatively long chains of successive human-to-
human transmission.278, 285 
o In the case of the 2013-2016 West African outbreak, mutations linked to enhanced 

replication in human cells appeared only after 3-4 months of continuous human-to-human 
transmission.278 

• EBOV adaptation to humans appears to involve changes in its spike glycoprotein and/or parts 
of its genomic replication proteins, though there is little evidence that the adaptations observed 
in recent outbreaks have led to dramatic increases in transmissibility or disease severity.278-279, 

281-282, 286 
o Mutations in GP (A82V in particular), the transcriptional activator VP30, and the 

polymerase L have been identified in human sequencing data from the West African 
epidemic.278-279, 285 

o Mutations were reconstituted using reverse genetics systems and found to enhance viral 
replication.286 

o Animal studies have failed to find evidence for enhanced disease severity, though studies 
have been either underpowered or performed in inappropriate model organisms.282 

o In vitro evolution studies have also identified VP30 and L polymerase, along with the viral 
nucleoprotein, as potential foci of human adapting mutations. However, no in vivo data are 
available.287 

• Sequencing and genetic studies have found that there are three distinct clades of EBOV within 
the species, though there is minimal-to-no direct evidence of practical differences between 
members of these groups.280 
o The variant responsible for the recent West African outbreaks is most closely related to 

viruses responsible for outbreaks in Central Africa in 2003-2004, 2007, and 2017.280 
o The variant responsible for 2018-2020 large outbreak in eastern DRC is more distantly 

related.280 
• The variant responsible for the 2021 West African outbreak appears to be the same virus that 

was responsible for the 2013-2016 outbreak and was likely maintained via persistent infection 
in a human host.288 
o Nearly identical to viruses circulating in the same area in 2015-2016, with slower than 

expected sequence evolution.288 
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• Sequences were not publicly available for the 2023 SUDV outbreak in Uganda as of May 
2023. 

What do we need to know? 
• How does the virus adapt to increased efficiency of transmission, and which parts of the 

genome are associated with this? 
• What mutations or types of mutations should prompt concern that a new variant may exhibit 

enhanced transmission? 
• What is the diversity of EBOV within its animal reservoir? 

Virus Importation 
What are the main routes of entry into the United States? 

What do we know? 
• Air travel is the primary concern for importation of EVD from abroad.289 
• It is notable that during the 2013-2016 West African Ebola epidemic, most EVD cases in 

Sierra Leone (the country with ~50% of all Ebola cases during this outbreak) were descended 
from an initial introduction of Ebola from Guinea in early 2014, with additional cases re-
introduced from Guinea in 2015. These cases almost certainly occurred from infected 
individuals crossing land borders, as has been noted for the 2018-2020 Ebola outbreak 
transmission from the DRC to neighboring African nations.290 

• International travel restrictions are necessary, but not sufficient to effectively prevent global 
spread of EVD. A more efficient control method is to attempt to prevent the spread of disease 
locally during an early phase of an epidemic.291-292 
o Air travelers from EVD-affected West African nations were permitted to enter at five 

designated U.S. airports and subjected to appropriate screening beginning in 
October 2014.293 

o The effectiveness of travel restrictions was estimated to have been greatest in African and 
Eastern Mediterranean countries and lowest in Europe.291  

o Regardless of restrictions, during the 2013-2016 outbreak, EVD spread to Italy, Mali, 
Nigeria, Senegal, Spain, the United Kingdom and the United States from the three affected 
West African nations (Guinea, Liberia, Sierra Leone).291 

o Instituting secondary backup evaluation safeguards (temperature checks, symptom 
questionnaires, etc.) for travel screening may help strengthen travel restrictions, as can 
improvements in molecular screening and diagnostic testing.294-295 

• The most effective air passenger screening (such as temperature checks) occurs when 
applied at the embarkation airport where infected air travelers are most likely to depart. One 
modeling study indicated that 2.8 Ebola-infected air travelers per month departed the countries 
of Guinea, Liberia, and Sierra Leone during the epidemic.296 
o Modeling, however, suggests that airport screening is unlikely to detect a substantial 

proportion of EVD cases, due in part to the long incubation time of the disease.297 
• Importation of medically evacuated patients does not pose a significant risk of transmission 

within the United States, but one incidental importation resulted in local transmission within a 
healthcare facility.298-299 
o Eleven people were treated for EVD in the United States during the 2013-2016 West 

African epidemic. No deliberately evacuated cases were associated with local 
transmission.298 

o A patient who traveled from Libera to the United States presented at a Dallas hospital, and 
in the course of his care, two nurses were infected.300 

o The public health response to a single incidental EVD case importation in the United States 
is extremely labor intensive for public health authorities. In 2014, a nurse who contracted 
EVD while caring for an EVD patient in Texas traveled from Dallas to Cleveland for four 
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days via commercial airlines. During this travel, the nurse came in contact with 
164 individuals, with various lengths and types of direct contact exposure. As a result, all 
164 contacts required active follow-up and 20 had direct active monitoring with movement 
restrictions during a 21-day incubation period.299 

o Successful cross-border viral surveillance was implemented to prevent imported EVD 
cases in Uganda in 2019. Three EVD cases crossing into Uganda from the DRC were 
detected at the time of first contact with a healthcare facility and a fourth case was detected 
at point of entry by temperature screening.301-302 

What do we need to know? 
• How can response times be improved to implement protective measures more rapidly? 
• Can an effective screening methodology be developed for inbound international travelers? 
• How can monitoring be more sensitive, cost-effective, and efficient with personnel resources? 

Non-Pharmaceutical Interventions (NPI) 
What public health interventions are capable of limiting spread? 

What do we know? 
• Until recently, NPIs were the sole means of controlling EBOV outbreaks.17, 23 
• These NPIs include contact tracing, establishment of ETUs, changes in burial practices, and 

isolation of infected individuals, and were key to stopping the 2013-2016 West African EVD 
epidemic. 
o Activation of an ETU after importation of an EVD case in Nigeria was credited with rapidly 

reducing local transmission and avoiding a large EVD outbreak.303 
o Public health interventions aimed at improving the safety of burial practices and 

implementing infection control in hospitals played a role in limiting person-to-person spread 
during the 2013-2016 EVD epidemic in West Africa.204 

o Contact tracing and prompt isolation of infected individuals in hospitals or treatment centers 
was predicted to play a significant role in the reduction of EVD spread,304 and observational 
evidence suggests that effective isolation in a hospital was critical for reducing 
transmission.204 Thus, the supply of hospital beds was also an important factor in limiting 
EVD spread,305 with bed shortages linked to extended transmission chains.204 

o Contact tracing in the DRC in 2018-2020 successfully identified the majority of cases with 
>1 contact overall, but only identified 48% of cases with infected contacts, which may be 
insufficient for limiting transmission.306 

o Effective isolation, quarantine, contact tracing, and ring vaccination may have contributed 
to a reduction in the number of people at risk of contracting EVD during the 2018-2020 
DRC epidemic.307 

o Modeling suggests that earlier interventions would have substantially reduced EVD cases 
during prior EVD outbreaks308 and epidemics.309 

o A modeling study found that reducing the time between death and safe burial and 
increasing the effectiveness of case isolation were the most important NPIs in terms of 
reducing EVD transmission, though importance varied by country.310 

o An early warning, alert, and response system implemented in the DRC in 2018 showed 
high sensitivity (85%) and specificity (91%) when detecting possible EVD cases, with 
response teams investigating >180,000 alerts in less than two hours.311 

• Community support and buy-in/cooperation is critical for enhancing efficacy of NPIs.31 
o During the 2013-2016 EVD epidemic in West Africa, NPIs that were instituted without the 

support of local communities experienced resistance,312 potentially prolonging local 
outbreaks.313 

o Community engagement, training, and behavior changes implemented prior to top-down 
interventions have been credited with limiting local disease spread.314 
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o Retrospective assessment of public health strategies (e.g., hygiene programs) suggest that 
consistency in messaging, additional research on means of effective ways to change 
behavior, and additional training may increase efficacy.315  

o Modeling suggests that increased communication of EVD risk, which may reduce individual 
infection likelihood, can delay outbreaks and reduce their size.316 While education 
campaigns in Uganda improved the ability of individuals to correctly identify EVD symptoms 
and reject misinformation, they were not associated with increases in prevention 
practices,317 potentially limiting their impact on spread. 

o Behavioral changes on their own may have contributed to reduced spatial spread of EBOV 
in the 2013-2016 epidemic in Guinea, prior to the arrival of international aid and ETUs.318 

What do we need to know? 
• Given the potential for long-term maintenance of infectious virus in human fluid, are there 

effective NPIs that can mitigate the risk of transmission recurrence after months or years? 
• How do regional conflicts affect the efficacy of NPIs? 

U.S. Health System Capacity 
What U.S. infrastructure exists to respond to an outbreak? 

What do we know? 
• Care of symptomatic EVD patients is staff- and resource-intensive.17, 319-320  
o Although specific treatments are available, they are adjuncts to supportive care, not 

replacements.17, 319 
o Ideal clinical outcomes require extremely low patient-to-nursing staff ratios.319-320 

• The United States has capacity to handle expected numbers of imported cases (generally no 
more than seven at any given time) if they are identified prior to significant transmission. 
o Researchers created a tool to estimate the number of beds required to treat potential U.S. 

EVD patients and found that fewer than seven beds would be needed at any point in time, 
which assumes limited importation and spread similar to what was observed in developed 
nations during the 2013-2016 epidemic.321 

• Within the United States, 10 specialized Regional Ebola and Other Special Pathogen 
Treatment Centers (RESPTCs) have been established, with one in each of the 10 HHS 
regions. There are three more in development as of July 2023.322-323 

• Early identification of EBOV clusters and rapid control via contact tracing can limit outbreak 
size.324 

• Patients with actively symptomatic disease require advanced treatment in an ICU setting, and 
ICU beds are an extremely limited resource.17, 319-320  
o Few U.S. ICUs are able to provide biocontainment appropriate for care of an EVD 

patient.40, 320, 325 
• Patients may require artificial respiration and/or renal dialysis treatment due to multiple organ 

dysfunction; availability of this equipment is typically limited.319-320, 325  
• Infection control measures required to prevent nosocomial transmission increase staff 

workload and are taxing.40, 319-320, 325 
o Staff burnout has been a serious challenge during the COVID-19 pandemic.326 

• Nosocomial transmission presents a significant risk to staff and non-EVD patients when large 
numbers of EVD patients are treated in the same facility.24-25, 29, 40, 43, 106, 319 
o A common occurrence in Africa prior to the development of specialized ETUs and 

protocols.31 
• In Africa, dedicated ETUs are used to treat large numbers of EVD patients outside of normal 

hospitals, though due to the lack of advanced equipment and trained staff, patient outcomes 
do not match those achieved in Western ICUs.319-320 
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o Case fatality rates for patients presenting for care in Western medical facilities are below 
10%,325 which assumes a high staff-to-patient ratio, and availability of complete ICU 
care.319, 325 

• The ability of U.S. healthcare facilities to adequately handle a large number of EVD patients is 
unknown, but prior experience with a single patient at a non-specialty facility suggests that 
most facilities are unprepared or underprepared.40, 300, 320, 325 
o Two Texas Health Presbyterian hospital staff were infected while providing care for a single 

imported case due to inadequate training in use of PPE and unavailability of adequate 
PPE.300 

• Management of clinical and diagnostic waste associated with the care of a patient infected 
with an ebolavirus is extremely complex and costly due to the high hazard associated with 
untreated waste. This waste generally requires incineration.38 

What do we need to know? 
• Are measures taken in U.S. hospitals following the 2014 EBOV outbreak in West Africa and 

subsequent importation of cases to the United States sufficient to increase resilience to 
imported EVD cases or large numbers of EVD cases from a local outbreak? 

• How many patients could be reasonably expected to require advanced care in the event of a 
U.S. EVD outbreak? 

• Do U.S. hospitals have sufficient ICU capacity to safely treat more than a small number of 
EVD patients? 

• How effective are hospital infection control measures in the United States, especially if an 
outbreak occurs that requires more isolation beds than are currently available? 
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Commonly Used Acronyms and Abbreviations 
Acronym/Term Definition Description 

BSL Biosafety Level 
Level of safety practices and engineering 
features used to contain pathogenic 
microorganisms in a laboratory setting 

CDC Centers for Disease Control and Prevention N/A 

DHS S&T U.S. Department of Homeland Security Science 
and Technology Directorate N/A 

DoD U.S. Department of Defense N/A 
DRC Democratic Republic of the Congo N/A 

EBOV Ebola Virus N/A 

ELISA Enzyme-Linked Immunosorbent Assay An assay used to detect the presence of 
antibodies to a specific protein 

EPA U.S. Environmental Protection Agency N/A 

ETU Ebola Treatment Unit Specialized medical facilities established 
to care for EVD patients during outbreak 

EVD Ebola Virus Disease N/A 
FDA U.S. Food and Drug Administration N/A 
HIV Human Immunodeficiency Virus N/A 

ICU Intensive Care Unit Medical facility capable of providing 
advanced care to critically ill patients 

ID50 Median Infectious Dose The dose required to infect 50% of the 
population 

Ig Immunoglobulin Antibodies (glycoprotein molecules 
produced by white blood cells) 

IN Intranasal 
Route of drug or test article 
administration in which a substance is 
introduced into the nostrils 

IP Intraperitoneal 

Route of drug or test article 
administration in which a substance is 
injected into the free space in the 
abdominal cavity 

J&J Janssen/Johnson & Johnson Pharmaceutical company 

LD50 Median Lethal Dose The dose required to cause a lethal 
effect in 50% of the population 

LOD Limit of Detection The smallest amount of a virus that can 
be detected by a given test 

MQL Master Question List N/A 

MVA Modified Vaccinia Virus Ankara A vaccina virus that cannot replicate in 
normal cells 

NGDS Next Generation Diagnostics System DoD diagnostic platform 
NHP Non-Human Primate N/A 

NIOSH National Institute for Occupational 
Safety and Health  N/A 

NPI Non-Pharmaceutical Intervention 
Infectious disease control measures 
reliant on items other than drugs and 
vaccines; includes PPE and quarantines 

PAPR Powered Air-Purifying Respirator 

A type of respirator that provides high-
efficiency particulate air filtered via a 
blower system instead of static filter 
cartridges as in a conventional respirator 
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Acronym/Term Definition Description 

PCR Polymerase Chain Reaction Test used to detect the presence of 
specific nucleic acid sequence 

PEP Post-Exposure Prophylaxis 

The use of drugs or vaccines after 
exposure to a pathogen, but prior to 
onset of symptoms to prevent or lessen 
severity of disease 

PFU Plaque Forming Unit 
A unit representing a single infectious 
viral particle derived from viral 
quantification via plaque assay 

PPE Personal Protective Equipment 
Equipment intended to protect 
individuals against hazardous 
environments 

PUI Patient Under Investigation 
An individual suspected of being infected 
with EBOV, but who has not yet had a 
positive laboratory diagnostic test 

PVP Povidone Iodine Disinfectant 

qRT-PCR Quantitative Real-Time Polymerase Chain 
Reaction 

Version of PCR that allows for 
quantification of RNA copy number 

ReEBOV RDT ReEBOV® Antigen Rapid Test A commercial test for EBOV 

RESPTC Regional Ebola and Other Special Pathogen 
Treatment Center 

US Department of Health and Human 
Services accredited healthcare facilities 
able to treat patients infected with exotic 
pathogens under biocontainment 
conditions 

RH Relative Humidity 

Water content of a body of air, as a 
percentage of the amount of water vapor 
that can be retained by the air at a 
specific temperature and pressure 
without condensation 

SEIR Susceptible-Exposed-Infectious-Removed 
model 

A type of epidemiological model used to 
generate outbreak forecasts 

TCID50 Median Tissue Culture Infectious Dose 

The dose necessary to infect 50% of 
tissue cells; used as a standard measure 
of infectivity (e.g., it required 103 TCID50 
to produce clinical signs in exposed 
chickens) 

UV Ultraviolet Light with wavelength in the 100-400 nm 
range 

VSV Vesicular Stomatitis Virus A virus commonly used as a vaccine 
platform 

WHO World Health Organization N/A 
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	o Pre-symptomatic individuals cannot transmit the virus.27
	o EBOV can be persistent in semen and be potentially transmitted sexually several months post-infection.28
	o There is evidence that suggests that the route of infection has significant effects on an individual’s ability to transmit the virus. NHPs infected via aerosol or mucosal routes transmitted the virus more efficiently via the mucosal route than intra...
	o Clusters of cases tend to form within family groups due to heavy reliance on family members for care.31
	o Traditional funeral rites in many EBOV-endemic regions of Africa involve significant contact with the cadaver, which poses an extremely high risk of transmission, as bodily fluids of cadavers are highly infectious.31
	o In industrialized countries, medical examiners and those performing autopsies are at risk.33-35
	o Healthcare workers are at particularly high risk, and represent a large percentage of cases in large outbreaks.29-30, 36
	o Reuse of needles has been a significant mechanism of hospital-acquired transmission.37
	o Waste from patient care contaminated with bodily fluids is treated as highly infectious until sterilized.38
	o Consensus from epidemiologic evidence is that ebolavirus aerosols do not contribute to normal transmission.18
	o Some animal studies have shown aerosol transmission to and between NHPs, though transmission may have been through fomite, large droplet, or cross-contamination instead of respiratory droplet transmission.32, 41-42
	o Aerosols generated by aerosol-generating medical procedures (intubation, patient ventilation, surgery, suctioning, surgical laser or power tools, and any methods inducing patient coughing or respiratory aerosolization) pose a transmission risk to th...
	o Droplets would need to contain contaminated bodily fluids to be infectious.32
	Host Range
	o Viral RNA has been detected in the fruit bat species Epomops franqueti, Myonycteris torquata, and Hypsignathus monstrosus.21
	o Anti-EBOV antibodies have been identified in at least nine47 species of fruit and insectivorous bats.18, 48
	o The geographic distribution of E. franqueti, M. torquata and H. monstrosus overlaps with nearly all of known EBOV spillover events and outbreak sites, further suggesting that these species could be part of the natural reservoir of EBOV.47
	o Anti-EBOV antibodies and viral RNA were reported in Miniopterus inflatus, an insectivorous bat in West Africa, but no further confirmation or data was provided.49
	o Bombali virus (BOMV), a new member of the genus Ebolavirus, was detected via sequencing in the insectivorous bat Mops condylurus, and anti-EBOV antibodies have been repeatedly isolated from this species.50 Initial studies in humanized mice using inf...
	o EBOV causes epizootics among great apes.22, 52-53
	o EBOV is readily transmitted between NHPs.18
	o Dogs were found to have been infected during the 2013-2016 outbreak via serosurveys, but did not appear to develop the disease.54
	o Pigs are susceptible and can transmit the virus to other pigs and to NHPs.55
	o Although frequently cited as a host species, only a single individual duiker has ever tested positive for EBOV, and then only by a single method (PCR).52
	o Porcupines have been suggested as potential intermediate hosts, though no infected porcupine has ever been identified.56-57
	o Bat-to-human transmission has been the definitive cause of multiple Marburg virus spillover events, a closely related virus to EBOV.18
	o Bat-to-human transmission has been strongly suspected in at least two EBOV outbreaks, including the 2013-2016 outbreak in West Africa.58-59
	o NHP-to-human transmission has been suspected in the initiation of several EBOV outbreaks.18
	o Deforestation is a particularly important factor.60
	o Some snake species are susceptible following a point mutation in the receptor NPC1.62
	o Boid snakes (boas, pythons, and anacondas) may be susceptible to infection without adaptation of either the host or virus.61
	o All rodents require adaptation of the virus in order to produce a lethal infection.63-65
	o Rodents are generally an inadequate model of EBOV disease presentation.13, 63-67
	o Ferrets and NHPs offer the best approximation of human disease.63-65
	o Rodent-adapted viruses feature mutations in VP24.69-70
	o Structural changes in VP24 appear to be responsible for lack of disease in humans infected with RESTV, another species in the genus Ebolavirus.68
	Incubation Period
	o Based on a literature survey, EBOV had an incubation period distribution of 5.3-12.7 days, SUDV had a distribution of 3.35-14 days, and Bundibugyo virus had a distribution of 6.3 days.72
	o Children appear to have shorter incubation periods, with an average of 6.9 days in children younger than one year old, and 9.8 days in children aged 10-15 years old.73 29
	o Cynomolgus macaques exposed to aerosolized EBOV developed a fever in ~3.9 days.87
	o Monkeys exposed via IP injection to EBOV developed symptoms after 3-4 days,88 which is an incubation period shorter than that of the Salisbury scientist who accidentally inoculated himself and had an incubation period of 6 days.89
	Clinical Presentation
	o This cluster of symptoms is typical of multiple hemorrhagic fever viruses.91
	o Patients lose large amounts of fluid due to vomiting and diarrhea, leading to hypovolemia and electrolyte imbalance.17, 93
	o Although rare, patients occasionally present with hiccups, jaundice, and photophobia.94-95
	o This difficulty commonly delays identification of ebolavirus outbreaks.23
	o Diagnosis requires laboratory testing.17
	o Unrecognized EVD may account for up to 8.7% of contacts, complicating contact tracing and suggesting the need for wider testing during outbreaks.96
	o This rash can be difficult to observe in patients with dark skin tones.91
	o Neurological manifestations may persist after infection is cleared, including memory loss, headache, cranial nerve issues, tremors, and seizures.98
	o Typical hemorrhagic signs include petechiae (distinct spots that appear on the skin) and ecchymoses (skin discoloration), oozing from injection sites, subconjunctival hemorrhage, and gingival bleeding.17, 91
	o Liver and kidney failure are common.93
	o Disseminated intravascular coagulation is a result of cytokine storm induced by infection of immune cells.93
	o EBOV RNA was detectable for 70 days in oral, nasal, ocular, urogenital, rectal, skin, and blood (pooled in the body cavity) swab samples and tissue biopsy specimens from the liver, spleen, lung, and muscle of the corpses of five cynomolgus macaques....
	o Breast milk and semen samples were found to be positive at days 15 and 40 after disease onset, respectively, when EBOV was already cleared from the blood.25
	o Modeling based on semen samples from 26 patients predicts (90% certainty) that 50-90% of men will clear EBOV RNA from seminal fluid at 115-294 days (respectively) post disease onset.103
	o Infectious EBOV was detected in a patient’s aqueous humor (ocular fluid) 63 days after recovery of the disease.102
	o EBOV RNA could be detected for up to 33 days in vaginal, rectal, and conjunctival swabs of one patient and up to 101 days in the seminal fluid of four patients, and infectious virus was detected 82 days after disease onset in the seminal fluid of on...
	o A Sierra Leone outbreak survivor had EBOV RNA recovered from vaginal fluid up to 36 days after symptom onset.105
	Persistent Infection
	o Multiple sexually transmitted cases of EVD occurred during the outbreak.103, 106-108
	o “Flare ups” of local transmission may occur near the end of epidemics due to sexual transmission from recovered patients.106-107
	o EBOV RNA was detected in a human immunodeficiency virus (HIV)-positive man’s semen over 18 months after recovery from the disease.113
	o EBOV RNA was found in the seminal fluid of an EVD survivor approximately 18 months after onset of disease, and was sexually transmitted between ~7-17 months after onset of symptoms.114-115
	o Longer persistence in semen appears to be associated with severe acute disease, as well as in older men (>35 years).28
	o While sexual transmission chains have been verified and linked to EBOV RNA, isolation of infectious EBOV from semen has only been reported from five EVD survivors. Infectious virus was isolated out to 70 days post-EVD onset.116
	o Defective EBOV genomes were found in the testes of EBOV-infected NHPs. Testes are one of the human organs thought to allow persistence of the virus.117
	o A primate cell line was persistently infected with EBOV due to defective interfering particles (virus-like particles that cannot replicate in the absence of a functional viral genome).118
	o Viable EBOV was recovered from the patients’ aqueous humor of the eye nine weeks after viremia was cleared. This was associated with uveitis (a serious eye inflammation) in the patient.102
	o Sequencing of virus from 12 patients found extremely low levels of sequence divergence from the virus associated with the prior outbreak.120
	o This finding makes spillover an unlikely initiating event for this outbreak.120
	o This finding suggests prolonged persistent infection occurs with low levels of viral replication.120
	Clinical Diagnosis
	o Viral Hemorrhagic Fever clinical diagnosis is considered for any patient presenting with severe acute febrile illness and evidence of vascular instability. Confirmed diagnosis requires both meeting case definition and positive laboratory tests.93
	o Multiplex PCR and oligonucleotide microarray technology have been developed that can detect and differentiate between EBOV and other hemorrhagic fever viruses.124
	o A systematic review of 14 studies conducted in Angola, Guinea, Liberia, and Sierra Leone from 2005-2015 indicated that q-PCR on admission was the most commonly used method for clinical diagnosis of EVD.125
	o A new immunoassay targeting secreted EBOV glycoprotein (Ebola sGP Detection Kit) provides rapid diagnosis of EVD, with a specificity of 100% and a sensitivity of 85.7%. This assay’s EBOV detection limit is ~10 times lower than the seven WHO-approved...
	o EBOV sGP has been detected as early as four days post-infection in NHP samples in an ELISA test.129
	o A new immunoassay using optical micro-ring resonators specifically targeting EBOV sGP in a sandwich ELISA rapidly detected EBOV infection with a limit of detection (LOD) of 1.00 ng/mL in 1% serum.130
	o Human anti-EBOV GP immunoglobulin G (IgG) ELISA developed by the Filovirus Animal Nonclinical Group is used in multiple laboratories.132-133
	o The ReEBOV® Antigen Rapid Test (ReEBOV RDT®) using polyclonal antibodies specific for EBOV VP40 antigen has been validated by the WHO and FDA.134
	o The EBOV D4 immunoassay uses M13 phage display to increase antibody sensitivity, and showed higher sensitivity than RT-PCR by detecting EBOV in IM-challenged NHPs (1000 PFU) one-day post-infection (LOD of 20 pg/mL) compared to RT-PCR and infection (...
	o Antigen detection sensitivity declines 1-2 weeks after the onset of symptoms, making late-stage serum diagnosis less reliable.135
	o An EBOV fluorescence reduction neutralization assay testing for neutralizing antibodies has been developed that requires a small sample volume with the potential of being automated.137
	Medical Treatment
	o Intensive supportive care was associated with improved survival and less time in ETUs in Sierra Leone during the 2013-2016 EBOV outbreak.140
	o A recently proposed remote controlled optimized pulse-pressure fluid resuscitation treatment may provide an innovative approach to providing supportive care for EVD patients in low resource settings.141
	o An EVD patient in the DRC treated with rVSV-ZEBOV recovered within 14 days. He relapsed six months later with acute EVD that led to transmission of 91 additional EVD cases.143
	o Rhesus monkeys vaccinated with rVSV-ZEBOV were challenged one day post-vaccination with a lethal dose of EBOV, immediately followed by treatment three days post-exposure with MIL77 (a 3-mAB cocktail), and did not become ill and all survived.142
	o Trials of REGN-EB3 show a 28-day mortality rate 17.8% lower than for the antibody cocktail ZMapp, which was used successfully in the 2013-2016 epidemic. A 15-day median time to the first negative EBOV RT-PCR test in REGN-EB3 was observed in recipien...
	o A recent study of PEP used REGN-EB3 and another antibody, Mab114, to treat 23 un-vaccinated patients who were in contact with EVD patients within one day. After 14 days post-contact, none of the patients developed EVD, and all produced negative PCR ...
	o Another recent clinical study supports the improved efficacy of Mab114 and REGN-EB3 over ZMapp and the antiviral drug remdesivir.95
	o BCX4430 (a broad spectrum antiviral nucleoside analogue)151 has also been used with inconclusive results.152
	o The antiviral Brincidofovir was used unsuccessfully to treat four EVD patients, who all died from EVD.153-154
	o The United States has provided this treatment to Uganda as part of its response to the SVD outbreak.158
	Vaccines
	o Merck’s rVSV-ZEBOV/Ervebo is a live attenuated vaccine given as a single dose and is approved for use in individuals 18 years of age and older.159 This vaccine is a vesicular stomatitis virus (VSV)-based vaccine expressing the glycoprotein of EBOV (...
	 Adverse events associated with Ervebo are extremely common, and include headache (37%), feverishness (34%), muscle pain (33%), fatigue (19%), joint pain (18%), nausea (8%), arthritis (5%), rash (4%) and abnormal sweating (3%).161-162
	 Serious side effects have also been noted, and recipients of the vaccine should be monitored for anaphylactic responses for 30 minutes after administration.163-164 A small study identified that most immunized individuals (rVSV-EBOV) reported at leas...
	 A booster dose of Ervebo may extend the duration of protection, and can be given six months or more after the initial dose.162-166
	 In November 2019, Merck’s vaccine gained conditional approval from the European Commission and was given to hundreds of thousands of people to control the 2019 outbreak in the DRC.160, 167 Following clinical trials to assess safety in 15,000 people,...
	 Analyzing Merck’s data from 90,000 vaccinated individuals, the efficacy is 97.5% at 10 days after vaccination.160, 168 The duration of protection, or level of protection for immunocompromised, pregnant, or elderly (over 65 years) patients, is unknow...
	 While Merck’s Ervebo vaccine is not licensed for use as a PEP, it has been used in ring vaccination campaigns in areas of active infection and has likely been administered to individuals with recent exposure to EBOV. The Phase III efficacy study tha...
	o J&J’s Ad26.ZEBOV/MVA-BN-Filo (Zabdeno/Mvabea) is given as two doses, eight weeks apart, and is approved for use in individuals that are one year and older.159 The regimen consists of two vaccines: an adenovirus-vectored vaccine encoding the glycopro...
	 J&J’s vaccine received European approval in July 2020,171 and prequalification by the WHO in 2021172, but is not currently FDA-approved.
	 When assessed at 21 days following the second dose, J&J’s vaccine induced an antibody response in 98% of recipients, which persists for at least two years. Participants who received an additional booster after two years showed a rapid and strong res...
	 An efficacy study, the first to include pregnant women, was planned in the DRC for November 2019 to February 2022 but was cut short in 2020 due to conditions not conducive to the trial (the outbreak was poorly controlled, and the COVID-19 pandemic b...
	o Two additional vaccines, Ad5-EBOV (lyophilized vaccine) and GamEvac-Combi vaccine have been developed and approved for use in China and Russia, respectively. However, these are not licensed for use in other countries. Roughly 10 additional vaccines ...
	o University of Oxford’s single-dose vaccine candidate ChAdOx1 biEBOV is currently in clinical trials to test for safety and immunogenicity against both Zaire and Sudan Ebola Virus species.177-178
	 Two studies conducted in 2018 followed participants for over 12 months to evaluate the safety and immunogenicity of three different vaccine regimens. One study included 1400 adults and the other 1401 children (1-17 years old). Vaccine regimens evalu...
	o During outbreaks, the single-dose Merck vaccine Ervebo was given preventatively to front-line healthcare workers, individuals exposed to a known case, and any secondary contacts.160, 181 Of the 5,837 individuals that immediately received the vaccine...
	o The slower-to-immunity, two-dose J&J vaccine has been used in a role complementary to the Merck vaccine, in which it was given to occupants of villages on the outskirts of ongoing infections,159 which targets at-risk populations, but not currently i...
	o Challenges in vaccine approval result from lack of controlled clinical trials and participants, such as the J&J trials, which ended prematurely when the outbreak was contained.173-174 There is also a lack of a commercial market for the end product, ...
	o Despite having a large population at risk, EVD remains a rare disease, but comes with a significant health and financial impact. The cost-benefit and population safety analysis need to be considered when developing vaccination strategies.185
	o Vaccine efficacy data may vary depending on region due to factors such as improper storage in areas with resources, general health and nutrition of the population in the region, prevalence of immunosuppressive conditions such as HIV, and the serolog...
	o Three vaccine candidates have reached human trials.190
	o The most advanced candidate is GlaxoSmithKline’s chimpanzee adenovirus (ChAd) vectored vaccine. The license for this vaccine was donated to the Sabin Vaccine Institute, which was contracted by the U.S. Biomedical Advanced Research and Development Au...
	o The other two candidates are another ChAd vaccine developed by the University of Oxford,177 and the Johnson and Johnson vaccine developed for EBOV, which may offer some protection against SUDV.190
	o Merck produced a batch of a VSV/SUDV-GP vaccine in 2015-2016 using the same technology as Ervebo. This vaccine has not been tested in humans. 100,000 doses exist in bulk form, and Merck intends to complete them and make them available to the WHO for...
	o Uganda’s Makerere University, with Uganda’s Ministry of Health and the WHO, began conducting a clinical trial in December 2022 called Solidarity Against Ebola that will evaluate three vaccine candidates against SUDV. The vaccines tested are: Sabin V...
	Forecasting
	o During the 2013-2016 EVD epidemic in West Africa, the U.S. was estimated to have a less than 25% chance of importing an EVD case near the peak of the epidemic, with predicted outbreak sizes resulting from a single imported case typically being fewer...
	o There are a number of different model types used to forecast EVD outbreaks and epidemics, including compartmental (e.g., Susceptible-Exposed-Infectious-Removed [SEIR]) models,194-195 agent-based models,196 phenomenological models,82 network models,1...
	o In the 2013-2016 EVD epidemic, assessing the potential final epidemic size in the early stages of the outbreak was difficult because the long-term effects of public health interventions and changes in human behavior were unknown.199
	o There was substantial variation in EBOV transmission among districts within affected countries during the 2013-2016 epidemic,199 limiting the utility of national-level forecasts, which generally predicted large final epidemic sizes.200 Indeed, early...
	o Agent-based models, where populations are represented at the individual level, were generally able to predict key features of the 2013-2016 EVD epidemic199 such as high spatial clustering (e.g., hospitals, households, and funerals)196 and the benefi...
	o As a result of these transmission patterns (e.g., hospitals, homes, and funerals), models estimated substantial clustering of EVD cases (e.g., non-random mixing through the population).202 This clustering can affect forecasting results, particularly...
	o Funerals were a large initial driver of the 2013-2016 EVD epidemic, though their importance decreased over time as a result of information dissemination and mitigation measures.203-204
	o The 2013-2016 EVD epidemic was characterized by high levels of infection in hospitals204 and among healthcare workers.203
	o Ring vaccination has been shown to be an effective way to mitigate EVD outbreaks.205
	o Vaccination of healthcare workers in high-risk areas may also be an effective strategy for mitigating outbreaks.206
	o Ensemble forecasts, where several individual forecasts are combined with a statistical model,207 often provide more accurate predictions than their constituent forecasts,208 even for ensembles of relatively simple phenomenological models.209
	o EVD forecasts may benefit from a multi-model approach, whereby different model types (e.g., logistic, Richards) are fit to different time periods to enhance forecast accuracy.210
	o Forecasts reliant on fitting deterministic models (e.g., exponential growth) to cumulative data are prone to overestimate confidence in key model parameters, resulting in inaccurate forecasts that underestimate uncertainty.211
	o Most EVD forecasts during the 2013-2016 epidemic relied on publicly available data published by the WHO or the countries affected by the epidemic, highlighting the need for fast, accurate, and open-access publication of data.212 The CDC Ebola modeli...
	o It may be possible, however, to use non-traditional datasets (like the email listserv ProMed mail and the outbreak visualization tool HealthMap) to forecast short-term Ebola incidence in real time.214
	o In the 2013-2016 EVD epidemic, forecasts that were made earlier and with longer time horizons had lower accuracy.212
	o Complex models with more parameter inputs were not necessarily more accurate than simpler forecasting models during the 2013-2016 EVD epidemic,208, 212 though additional model parameters are usually needed for finer-resolution forecasts.208
	o One limitation in forecasting the 2013-2016 EVD epidemic was the initial lack of information on contact networks, which showed a high degree of clustering and superspreading that was not visible in previous, smaller EVD outbreaks.203
	Environmental Stability
	o EBOV remains infectious in liquid blood in syringe needles up to 190 days.216
	o EBOV in blood also remains infectious on banknotes for up to six days.216
	 EBOV loses all infectivity in urine and semen at 37 C by 4-5 days and five days, respectively.215
	o EBOV remains viable in water for three (27 C) to six (21 C) days, depending on the temperature of the water.218
	o At an ETU in Sierra Leone, EBOV RNA was detected on material and surfaces that was in direct contact with patients (clothing, blankets, pit latrines). No RNA was detected on chlorine tap handles and ceiling fan blades. RNA was also found in bodily f...
	o A 4-log inactivation of EBOV on glass (22 C, 30-40% humidity, no light) required 5.9 days.221
	o EBOV persisted on surfaces for 1-3 days (27 C 80% relative humidity [RH]).220
	o There was no difference in the stabilities of aerosolized Mayinga 1976 EBOV and Makona 2014 EBOV over three hours at 22 C and 80% RH. Both viruses remained viable, and was comparable to the stability of EBOV dried on surfaces at 27 C.224
	Decontamination
	o There have been recent modifications to TCID50 assay methodologies to accommodate the ability to show eradication even in the presence of chemical cytotoxicity such as serial passaging.227
	o At least 0.5% sodium hypochlorite and a contact time of at least five minutes.219, 229-232
	o Contact time and concentration are key for effective disinfection. Even a high concentration (1%) of sodium hypochlorite did not decontaminate EBOV-contaminated surfaces within one minute of contact time.219
	o Effective against EBOV variants (Mayinga, Kikwit, Makona); however, differing disinfection characteristics are observed with lower (below 0.1% sodium hypochlorite) concentrations.230
	o 67-70% ethanol is effective at inactivating EBOV within 5-10 minutes.219, 230
	o Chloroxylenol (≥0.12%) is effective at inactivating EBOV within five minutes.227, 233
	o Commonly used military aircraft disinfectants showed varying effectiveness at EBOV inactivation on seat belts and aluminum surfaces.231
	o Povidone iodine (PVP-I) formulations (e.g., 7.5% PVP-I surgical scrub, 10% PVP-I solution, or 3.2% PVP-I and 78% alcohol solution) are >99.99% effective against EBOV at a 15-second exposure time.234
	o Quaternary ammonium compounds (QAC) MicroChem Plus (5%) and Forward (5%) reduced infectious EBOV by >99.99% at 15-30 seconds when mixed in liquids being tested. Efficacy of QACs was diminished if the diluted solution was stored for up to one week.235
	o Degree of soiling of material can reduce effectiveness of fumigation methods; prior physical cleaning is required.239
	o UV germicidal irradiation inactivates EBOV at an exposure level of >17 mJ/cm2.239 Areas with higher contamination (e.g., bathrooms, patient rooms) should be treated with higher exposures (>800 mJ/cm2).240
	o The process of decontamination requires nearly one week from the time the patient exits the room to when personnel can enter without PPE.240
	o Decontamination with vaporized hydrogen peroxide fumigation can be completed in three working days – approximately half the time of formaldehyde decontamination procedures.237
	o Field decontamination kits utilize chlorine dioxide and can sterilize ebolavirus-contaminated medical equipment at remote clinical sites over a 30-60-minute period.236
	o Surrogate studies suggest that chlorine dioxide gas may not be effective at inactivating EBOV present in body fluids.241
	o Geobacillus stearothermophilus dried onto metal disks and sealed inside Tyvek pouches237 were used to evaluate terminal sterility of patient care areas.
	o Bacterial spores often provide the standard test assay for sterility and/or decontamination of units, primarily because spores exhibit more resistance to chemical and physical decontamination methods than EBOV.236
	o Bacteriophage Phi 6 may be a conservative surrogate for EBOV,238, 242-243 but suitability may be dependent on temperature and media compositions.247
	o Modified vaccinia virus Ankara (MVA) was shown to be a suitable surrogate for EBOV in efficacy testing with PVP-I solutions.234
	o High amounts of viral RNA may remain on surfaces despite complete inactivation of infectious particles. Evaluation of effective decontamination should be determined or corroborated by quantifying infectious virus.230
	Personal Protective Equipment (PPE)
	o Variations in PPE should be avoided within a specific facility.
	o Single-use disposable impermeable gown or coverall, examination gloves with extended cuffs (two pair), boot covers that extend to at least mid-calf, and an apron that covers the torso to the level of mid-calf should be used over the gown or coverall...
	o Standardized attire should be worn under PPE (e.g., scrubs and dedicated washable footwear).
	o A trained individual should observe donning and doffing to confirm and document that each step has been completed correctly.
	o Designated areas separate from the patient care area should be dedicated to donning or doffing of PPE.
	o Use of a checklist and closed loop communication strategy can result in a more deliberate and mindful doffing process.253-254
	o It is crucial that facial and respiratory protection is removed last for safe doffing.255
	o Ambiguity is a common reason for guideline non-compliance.253, 260
	o Highest risks for contamination were related to hand hygiene (insufficient duration, failure to properly disinfect).261
	o Frequent sanitizing of gloves with an alcohol-based hand-sanitizer (or 0.5% chlorine) is recommended.258, 262-264
	o Reinforced training programs reduce risk.265-269
	o A web-based training program developed by a transdisciplinary team with expertise in infection prevention, medicine, nursing, and human factors engineering is available on the CDC website.270
	o Disinfection of PPE did not eliminate the surrogate virus, which supports recommendations for extremely careful, protocol-based doffing and single-use, disposable PPE.
	o Pulsed xenon UV disinfection may be useful for reducing contamination on PPE prior to doffing.246
	o Using a surrogate virus, >4.0 log reduction in viral titer was demonstrated on face shields and surgical gowns after a five-minute exposure at one-meter distance from the source. UV exposure to healthcare workers wearing the PPE during UV disinfecti...
	Genomics
	o Others include Sudan, Bundibugyo, and Taï Forest viruses,18 which are typically less virulent and have generally been associated with smaller outbreaks.18
	o Two other ebolaviruses, RESTV and BOMV, are not known to cause disease in humans.18, 50
	o Much like avian influenza, the virus must start “from scratch” in terms of human adaptation with each outbreak.278-279
	o Viruses associated with the latest EBOV outbreaks are >95% identical to the virus responsible for the 1976 outbreak in Yambuku, DRC.280
	o Genomic differences between variants have an effect on phenotype, but is not typically large.281-282 283
	o A notable exception was the 2021 Guinea outbreak, which was associated with transmission from a persistently infected individual who was initially infected during the 2013-2016 outbreak.120
	o Persistent infection and prolonged outbreaks may facilitate adaptive evolution of the virus in a manner that could enhance human-to-human transmission.284
	o In the case of the 2013-2016 West African outbreak, mutations linked to enhanced replication in human cells appeared only after 3-4 months of continuous human-to-human transmission.278
	o Mutations in GP (A82V in particular), the transcriptional activator VP30, and the polymerase L have been identified in human sequencing data from the West African epidemic.278-279, 285
	o Mutations were reconstituted using reverse genetics systems and found to enhance viral replication.286
	o Animal studies have failed to find evidence for enhanced disease severity, though studies have been either underpowered or performed in inappropriate model organisms.282
	o In vitro evolution studies have also identified VP30 and L polymerase, along with the viral nucleoprotein, as potential foci of human adapting mutations. However, no in vivo data are available.287
	o The variant responsible for the recent West African outbreaks is most closely related to viruses responsible for outbreaks in Central Africa in 2003-2004, 2007, and 2017.280
	o The variant responsible for 2018-2020 large outbreak in eastern DRC is more distantly related.280
	o Nearly identical to viruses circulating in the same area in 2015-2016, with slower than expected sequence evolution.288
	 Sequences were not publicly available for the 2023 SUDV outbreak in Uganda as of May 2023.
	Virus Importation
	o Air travelers from EVD-affected West African nations were permitted to enter at five designated U.S. airports and subjected to appropriate screening beginning in October 2014.293
	o The effectiveness of travel restrictions was estimated to have been greatest in African and Eastern Mediterranean countries and lowest in Europe.291
	o Regardless of restrictions, during the 2013-2016 outbreak, EVD spread to Italy, Mali, Nigeria, Senegal, Spain, the United Kingdom and the United States from the three affected West African nations (Guinea, Liberia, Sierra Leone).291
	o Instituting secondary backup evaluation safeguards (temperature checks, symptom questionnaires, etc.) for travel screening may help strengthen travel restrictions, as can improvements in molecular screening and diagnostic testing.294-295
	o Eleven people were treated for EVD in the United States during the 2013-2016 West African epidemic. No deliberately evacuated cases were associated with local transmission.298
	o A patient who traveled from Libera to the United States presented at a Dallas hospital, and in the course of his care, two nurses were infected.300
	o The public health response to a single incidental EVD case importation in the United States is extremely labor intensive for public health authorities. In 2014, a nurse who contracted EVD while caring for an EVD patient in Texas traveled from Dallas...
	o Successful cross-border viral surveillance was implemented to prevent imported EVD cases in Uganda in 2019. Three EVD cases crossing into Uganda from the DRC were detected at the time of first contact with a healthcare facility and a fourth case was...
	Non-Pharmaceutical Interventions (NPI)
	o Activation of an ETU after importation of an EVD case in Nigeria was credited with rapidly reducing local transmission and avoiding a large EVD outbreak.303
	o Public health interventions aimed at improving the safety of burial practices and implementing infection control in hospitals played a role in limiting person-to-person spread during the 2013-2016 EVD epidemic in West Africa.204
	o Contact tracing and prompt isolation of infected individuals in hospitals or treatment centers was predicted to play a significant role in the reduction of EVD spread,304 and observational evidence suggests that effective isolation in a hospital was...
	o Contact tracing in the DRC in 2018-2020 successfully identified the majority of cases with >1 contact overall, but only identified 48% of cases with infected contacts, which may be insufficient for limiting transmission.306
	o Effective isolation, quarantine, contact tracing, and ring vaccination may have contributed to a reduction in the number of people at risk of contracting EVD during the 2018-2020 DRC epidemic.307
	o Modeling suggests that earlier interventions would have substantially reduced EVD cases during prior EVD outbreaks308 and epidemics.309
	o A modeling study found that reducing the time between death and safe burial and increasing the effectiveness of case isolation were the most important NPIs in terms of reducing EVD transmission, though importance varied by country.310
	o An early warning, alert, and response system implemented in the DRC in 2018 showed high sensitivity (85%) and specificity (91%) when detecting possible EVD cases, with response teams investigating >180,000 alerts in less than two hours.311
	o During the 2013-2016 EVD epidemic in West Africa, NPIs that were instituted without the support of local communities experienced resistance,312 potentially prolonging local outbreaks.313
	o Community engagement, training, and behavior changes implemented prior to top-down interventions have been credited with limiting local disease spread.314
	o Retrospective assessment of public health strategies (e.g., hygiene programs) suggest that consistency in messaging, additional research on means of effective ways to change behavior, and additional training may increase efficacy.315
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