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Executive Summary 
This report is the first in a series of studies that examines the impacts and opportunities of emerging 
technologies on the missions of the U.S. Department of Homeland Security (DHS). The focus of this 
analysis is on the opportunities presented by foundation models (FMs)—the underlying basis for large 
language models (LLMs). FMs lie at the intersection of generative artificial intelligence (AI) and big data 
and characterize new approaches to how data can be utilized in many disparate use cases. LLMs have 
brought attention to how FMs play an important role in uses of data and AI with respect to language. 
Today, many of the use cases build on industry-created, language-based FMs. But the value extends more 
deeply to richer classes of data. Use cases in new domains—from building on genomic data sets, cyber-
related information, or volumetric scans of baggage, cargo, and vehicles—requires more effort in building 
and training the FM. Furthermore, many of the approaches (hardware and software) designed and 
optimized for the flourish in language responses in LLMs need to be understood in the new contexts. At 
the same time, simpler entry points that build on top of industry provided LLMs can provide more 
immediate practical experience and value.  

This report reflects discussions among DHS’s overarching science and technology mission leads, select 
DHS components, private sector representatives on the current state of the art of FMs, national 
laboratories and academia on the underlying capability of the current LLMs. More broadly, it addresses 
potentially transformational approaches to the use of AI in government. It builds on a workshop hosted by 
the DHS Science and Technology Directorate (S&T) and IBM Research on April 20, 2023, on FMs for 
DHS. This and subsequent reports are also intended to help inform the DHS AI Task Force announced by 
Secretary Mayorkas1 and the increasing importance of AI to DHS missions. The report introduces FM 
concepts in the context of DHS, reviews the technical underpinnings of FMs relevant for DHS 
consideration, offers observations to the successful operationalization of FMs, contemplates a host of 
homeland security mission use cases, and suggests opportunities in research and development needed to 
establish the FM ecosystem. 
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1  Introduction 
Considered the modern-day backbone of artificial intelligence (AI), a foundation model2 (FM) is a type of 
machine learning model that is trained on a broad set of general domain data for the purpose of using that 
model as an architecture on which to build multiple specialized AI applications. The versatility of FMs 
sets them apart from previous iterations of AI models, which have traditionally been customized for a 
specific task or application. As illustrated in Figure 1.1, by collapsing data and technology across use 
cases, FMs benefit from increases in the scale and scope of datasets to become more capable and from 
economies of scale in workflow to become more efficient.3   
 

  
Credit IBM. Reprinted with Permission 

Figure 1.1.  What are Foundation Models? 4 
 
Though large language models (LLMs) are currently the best-known examples of FMs, the concept is 
much broader and emerging applications of these models are being developed for vision and multi-modal 
AI. These emerging FM classes are trained on other types of data (e.g., imagery, video, protein structures, 
tabular data, audio, sensor readings, etc.) to accommodate new types of tasks and systems in the future. 
Table 1.1 provides examples of the kinds of tasks these different classes of FMs can support and the types 
of data on which the models in these FM classes are trained.  
  

 
2 See for example, R. Bommasani, et al, “On the Opportunities and Risks of Foundation Models,” Stanford University (2021) 
3 For example, imagine two independent AI-based tools, a speech-to-text application that converts speech to text and a text 

analytics application that performs summarization. Developers could daisy-chain the systems to provide a speech summarization 
capability. This would be like concatenating Task 1 and Task 2 under the conventional machine learning systems section from Figure 
1.1, and it would come with all the imperfections that accompany the unification of tasks that were not engineered from a common 
baseline. Alternatively, developers could adopt a foundations model approach, as in Figure 1.1, and use a common engineering 
baseline, which could support both tasks. 

4 DHS Science and Technology Directorate (S&T) AI workshop with IBM on Foundation Modeling. “What's Next—FMs DHS,” 
page 3, April 20, 2023. 

https://arxiv.org/abs/2108.07258
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Table 1.1.  Examples of Tasks and Data for Different Classes of FMs 

FM Class 
& Maturity Examples of Tasks Examples of Data Examples of Data at DHS 

 

L
L

M
 

• Sentiment analysis 
• Information extraction 
• Text summarization 
• Text classification 
• Translation 
• Question answering 
• Text generation 
• Short-form copy 
• Instruction following 
• Code generation 
• Table summarization 

• Scrape internet for text 
• Text data licensed from third-

party providers 
• Code repositories 
• Books, library holdings 
• Labeling data provided by 

humans (for reinforcement 
learning) 

• Reports of Investigations, Suspicious 
Activity Reports, 911 calls 

• Cybersecurity and Infrastructure Security 
Agency’s (CISA) 10 terabytes (TB) day of 
threat intelligence; applications and content; 
system, logs; system configuration and 
state, scripts, source code, binary files, IT 
tickets 

• Weather reports, social media, news reports 
• Genomic data  
• Encounters data, U.S. Customs and Border 

Protection (CBP) seized asset data, CBP Air 
and Marine Operations (AMO) Interdiction 
data, CBP drug seizure data, manifests  

• Millions of applications for persons seeking 
to visit or reside in the U.S. 

O
th

er
 M

od
e(b

) -i
nf

or
m

ed
 

L
L

M
 

• Image description 
• Image labeling, captioning 
• Text-based image generation, 

manipulation 
• Image retrieval 
• Visual question answering 
• Detection of hate speech 

(including images) 
• Text-based object detection 
• Automated video 

understanding(a) 

• Image/text pairs from internet 
• Protein structures 
• Tabular data 

 

• Forensic sketches 
• Scanning imagery 
• Video  

V
is

io
n 

• Image generation 
• Image classification 
• Object detection 
• Video action recognition 
• Semantic segmentation 
• Depth estimation 
• Upsampling/super-resolution 

• Images 
• Video 

• Homeland Security Investigations (HSI) 
videos, forensic sketches 

• Geospatial imagery 
• Transportation Security Administration 

(TSA) five million (M) images/day 
• CBP imagery: cars, trucks, buses, cargo 

containers 
• X-ray diffraction, streaming video, 

tomography 

M
ul

ti-
m

od
al

 • Potential for combinations 
across classes above as well 
as others… 
o Content Generation(a,c) 
o Multi-modal dialogue 
o Cross-modal retrieval 

Anything above plus: 
• Audio to include voice 
• Some sensor readings, such as: 

o Infrared radiation  
o Inertial measurement 

units  
o Depth estimation (3D) 
o Radar/lidar 
o Time-series 

• Haptic, olfactory, brain 
fMRI(a) 

Anything above plus: 
• Audio from captured phones 
• Voice recordings gathered only by CBP 

radio frequency (RF) sensors 
• Radar/Lidar AMO Center intelligence, 

surveillance and reconnaissance (ISR) 
• CBP ISR  

(a) Thes
  

e are all stretch goals and require significant further development of many technologies to achieve. 
(b) This other mode is usually vision-based. 
(c) Songs (LLMs and audio); Movies (LLMs, vision, and audio); Simulation Scenarios (LLMs, vision, audio, and computer code). 
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The following sections expand on Table 1.1 by reviewing these four popular classes of FMs in the private 
sector (e.g., LLMs, Other Mode-informed LLMs, Vision-based Models, and Multi-modal Models), 
discussing their levels of maturity and examples of applications in the private sector. These sections then 
build on these private sector examples to postulate how the class of FMs might be applied to DHS 
missions. 
 
1.1  Large Language Models as Foundation Models 
LLMs are the most mature class of FMs to date and have set the standards for distinguishing FMs from 
very large models that only support single tasks. Private sector developed LLM FMs and the tasks they 
support include well-known models like the Generalized Pre-trained Transformer (GPT) family from 
OpenAI, providing the horsepower behind popular applications like ChatGPT. GPT-4, the most recently 
released GPT, is a transformer-style model pre-trained to predict the next token in a document. Other 
private sector models include BigScience’s Bloom, the world’s largest open multilingual language model 
and similar in architecture to GPT-3. Bloom provides the backbone to applications like Bloomchat, which 
is capable of multiple tasks in the LLM space, as is ChatGPT. As shown in Table 1.1, LLM FMs, such as 
GPT and Bloom, can support a variety of downstream tasks. Because the private sector has demonstrated 
successful applications of the technology, it is trivially easy to imagine counterparts supporting DHS 
missions, such as: 

• The manually intensive and time-consuming tasks of processing millions of applications and 
petitions for persons seeking to visit or reside in the U.S., which includes dependencies on 
immigration attorneys or translators to assist non-English speaking applicants, were semi-
automated, freeing up valuable human resources to focus on more complex issues. 

• HSI agents could quickly access and make sense of more than tens of millions of reports 
through ad hoc, unstructured queries over a voice interface. 

• Promotion of cultural diversity and inclusion through preservation of indigenous languages 
by allowing for the creation of more accurate and comprehensive language resources, such 
as dictionaries, grammar, and language models. 

 

 

 

However, while feasible, there are important unknowns in this space for DHS yet to be investigated. 5  

One of the important considerations in forging a path forward in the development or adoption of FMs will 
be the business models behind the offerors of capabilities in this space. Options range from develop-your-
own FM from scratch, to adopt an open-source pre-trained FM, to adopt a privately developed, pre-
trained FM. For example, GPT-4’s OpenAI is proprietary, providing no mechanism for practitioners to 
obtain consistent information on features like model size, hardware, training compute, dataset 
construction, training methods, etc. Given its proprietary nature, even a highly motivated, well-resourced 
team would not be able to replicate its training process. FMs like Bloom are open models, both in terms 
of ownership and visibility. Given the open-source nature and the files available on GitHub, training 
Bloom is a repeatable process for any highly motivated well-resourced team. These factors, in addition to 
others, such as the decision to adopt private instances of LLM FMs provided through hyper-scaler 
services, have significant implications for risks of vendor lock-in, requirements for explainability, privacy 
and security considerations, or in transparency needed to determine a model’s fitness. 

 
5 Because the model development process is incremental and iterative in nature, as much “art as science,” and new to DHS, 

uncertainties for DHS include things like: “What is the required scope and scale of the model such that it will be ‘fit for purpose’?”, 
“How much and what kinds of data will be needed to support the model development and testing such that it is ‘fit for purpose’?”, 
“What is the trade space between computing infrastructure and time to achieve required scope and scale?”, How does one define and 
measure “fit for purpose” in the context of the homeland security use case?”, “Is it better to build the base FM or to adopt an FM and 
tailor it to DHS use cases?”, etc.  These issues are discussed more thoroughly in sections 4 and 5. 
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1.2  Other Mode-informed LLMs 
LLM FMs informed through other modes, usually imagery, are a popular class of FMs that combine 
LLMs with other models as a way of “grounding” (e.g., learning image features aligned with text) the 
LLMs to real-world concepts.6 As a class, these FMs are less mature than LLM FMs, but more 
mainstream than vision FMs or multi-modal FMs, particularly in the context of meeting multiple use 
cases. As shown in Table 1.1, these Other Mode-informed hybrids can support a variety of downstream 
tasks in the text domain as related to images, ranging from image description and labeling or the creation 
of images using prompts.7  
 
Popular examples of FMs in this class work within the realm of AI-driven image generation and 
manipulation. DALL-E, for example, a (quasi) multi-modal implementation of GPT-3 that swaps text for 
pixels, can generate images from textual descriptions. While DALL-E excels in generating realistic 
images from textual prompts, other generative image models transform visuals or enhance them by 
removing noise and restoring low-resolution or degraded images. The other mode-informed LLM does 
not always need to be image-based. For example, PaLM-E8 integrates the 540-billion (B) PaLM LLM and 
the 22B Vision Transformer (ViT), incorporating real-world raw streams of robot sensor data into 
language models and establishing a link between words and percepts for use in task learning applications. 
 
As enumerated in Table 1.1, Other Mode-informed hybrid FMs like these two examples can support a 
variety of downstream tasks. Because the technology has been successfully demonstrated in the private 
sector, it is trivially easy to imagine counterparts supporting DHS missions, such as: 

• An automated forensic sketching capability enabling witnesses to interact with a computer in 
developing sketches of persons of interest. 

• 
 
A hate speech detection capability based on image-text pairings scraped from the internet. 

1.3  Vision-based Foundation Models 
Vision-based FMs share all the advantages of LLM FMs but apply them to the creation or analysis of 
images and videos. As a class, vision-based FMs are much less mature than LLM FMs and in their 
infancy as a technology,9 though their pattern of growth is expected to follow that of LLM FMs. 
Currently, the state of practice in the private sector is an array of small models making use of different 
data to support different simple tasks (e.g., autonomous vehicle navigation). Cutting-edge vision FMs, 
designed to be used as the backbone for several vision-related tasks (as described in Table 1.1), tend to 
work both at the image level and at the pixel level. DINOv210 is one such example of an open-source FM 
in this class being developed by Meta AI Research Lab. Serving as a backbone for several vision-related 
tasks (e.g., instance retrieval, semantic segmentation, and depth estimation), DINOv2 is more aligned 
with the multi-task support traditionally understood to be a feature of FMs. As another example, Google 
Research is developing ViT-22B to support research in understanding the scaling of vision transformers 
as enablers in supporting computer vision research areas in feature extraction that can be used in image 
recognition, dense prediction (semantic segmentation, depth estimation), video action recognition, etc. To 
date, the training methods developed demonstrate the potential for achieving “LLM-like” scaling in vision 
models. In a public-private sector initiative, the National Aeronautics and Space Administration (NASA) 
and IBM are creating AI FMs to analyze petabytes of text and remote-sensing data to make it easier to 

 
6 These are classified differently by different researchers, some considering these models LLM-centric, others considering these 

early pre-cursors to more capable vision FMs, and yet other researchers classifying them as (quasi) multi-modal FMs. 
7 C. Wu, et al., “Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models,” (March 2023). Arguably, 

capabilities like these make use of LLM FMs and add imagery, but do not fully meet the requirements of being an “image-based FM.”  
8 D. Driess, et al, “PaLM-E: An Embodied Multimodal Language Model,” (March 2023). 
9 Compared to language and image FMs, current video FMs have limited support for video and video-language tasks. An active 

research community is working on this topic. However, more work is needed before we can develop video understanding systems that 
are robust and reliable enough to be used in real-world applications. 

10 M. Oquab, “DINOv2: Learning Robust Visual Features without Supervision,” (April 2023). 

https://arxiv.org/abs/2303.04671
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2304.07193
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build AI applications tailored to specific questions and tasks (see Figure 1.2 focused on the remote-
sensing, data-focused model). One of the promising results from this effort is insight into the utility of 
transformer architectures, classically used in LLMs, to vision-based modeling. 

 

Credit IBM. Reprinted with Permission 

Figure 1.2.  Example of Vision-based Foundation Model11

With progress in the development of models with these types of capabilities and especially given the mass 
of image-based data available at DHS for non-intrusive inspection, we can imagine counterpart models 
like these someday supporting DHS missions with significant computer vision components, doing 
instance retrieval, dense prediction, etc. In fact, it might even be possible to imagine DHS as leading the 
way in this space for the entire nation, given the wealth of data available. And, based on NASA’s 
geospatial FM, to include some post-processing work, it is easy to imagine counterparts supporting DHS 
missions, such as: 

• People from underserved communities impacted by disasters seeking federal assistance could 
upload imagery to receive preliminary assessments of damage, guidance on relevant services, 
and have confidence that their case is being routed properly and that all seeking help are 
treated equitably and fairly. 

• A novel approach to transportation security based on access to a near limitless amount of 
stream-of-commerce data in all areas of transportation security, all of which can be virtually 
guaranteed to be contraband free, and that would understand both X-ray and computed 
tomography, or CT, images much the way ChatGPT understands languages.  

 
1.4  Multi-modal Foundation Models 
Multi-modality is one of the hottest trends in FMs. As indicated in Table 1.1, multi-modality 
encompasses all the tasks and data expressed thus far as well as other forms of data (e.g., audio, sensor 
readings, etc.), enabling models to create, reason about, and optimize content in new ways and to meet the 

 
11 DHS S&T AI workshop with IBM on Foundation Modeling, “Foundation models are…” page 18, April 20, 2023. 
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requirements of new tasks. Once more and larger multi-modal models come online, our world will look 
   fundamentally different.12

 
One such example in the class, ImageBind,13 being developed by Meta AI Research Labs, is an open-
source visual FM more closely aligned with the multi-task support traditionally understood to be a feature 
of FMs. ImageBind enables a rich set of compositional tasks across different modalities (i.e., audio, 
depth, images and video, text, inertial measurement units (IMU), thermal) and incorporates modalities 
such as audio into existing models, enabling cross-model retrieval and audio-to-image generation. 
Especially in domains rich with multi-modal data, such as emergency management or law enforcement, 
with datasets spanning text-based reports, imagery, videos, speech, digital transactions, etc., multi-modal 
FMs are a natural way of fusing all the relevant information and discovering strong associations within 
and across data types. 
 
1.5  DHS Opportunities 
Given that real-world use cases and applications of FMs in the private and open-source sectors are 
accelerating exponentially and DHS is still nascent in its adoption of even conventional machine learning 
systems, it makes sense to shift our focus to the development of FMs trained on the enormous quantities 
of data available to the Department. These FMs could be key in providing us with leap-ahead AI 
capabilities supporting critical mission priorities. In parallel, advances in foundation modeling technology 
will also likely result in higher-quality, machine-generated content that will be easier to create and 
personalize for misuse purposes.14 As such, it will be critically important for DHS to understand the 
evolution of the technology and its potential for harm. 
 
As the driving force of innovation for the Department, the DHS Science and Technology Directorate 
(S&T) is evaluating FMs for their potential applications in homeland security use cases and to better 
understand the threat they will pose when exploited by America’s adversaries. Building on initial 
technical discussions at a DHS S&T AI workshop with IBM Research on FMs,15 the remainder of this 
document: 

• Reviews the technical underpinnings of FMs,  
• Offers observations to the successful operationalization of FMs,  
• Contemplates a host of homeland security mission use cases, and  
• Suggests a roadmap for the research and development needed to establish the FM ecosystem. 

 
2 Technical Underpinnings of Foundation Models 
Driven by growing datasets, increases in model size, and advances in model architectures, FMs offer 
previously unseen abilities. The key enabler to making FMs work is scale: scale of data, scale of 
modeling, and scale of computing.16 
 

 
12 Constrained now by compute, imagine a future Pandora that generates songs tailor-made to your preferences. 
13 R. Girdhar, “ImageBind: One Embedding Space to Bind Them All,” (May 2023). 
14 The continued evolution and adoption of this technology in our daily lives must, therefore, also be understood as a serious 

threat, as it can be used for nefarious purposes. 
15 S&T and IBM Research held a joint workshop on April 20, 2023, to better understand the current and potential use cases for 

FMs based on S&T’s role as the science and technical advisor to DHS and IBM’s position as an industry leader in model architecture 
development. 

16 J. Kaplan, et al., “Scaling Laws for Neural Language Models,” (2020). Performance ∝ Data Size x Parameter Size x Compute 
Size. 

https://arxiv.org/abs/2305.05665
https://arxiv.org/abs/2001.08361
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2.1  Scale of Data 
Data is the lifeblood of FMs; the training data of these models largely determines what capabilities these 
models can acquire. While there is not yet a standard recommendation for how much data is necessary to 
train a model, there is a general belief that more data is better than less. The size of the dataset required to 
train a model depends on what tasks the model will perform. Additionally, the quality of the FM’s output 
is directly related to the quality of the data it is trained on. While current training data selection practices 
can sometimes lack clear principles, transparency, traceability, and operate with rampant ad hocism, 
many researchers are advocating for a more principled approach, adopting a data hub-like construct and 
purposefully managing the selection, curation, documentation, quality assessment, and legal regulations 
surrounding the training data.17   

Table 2.1 presents training data-related information on some of the FMs reviewed in sections 1.1 through 
1.4, as an example of scale of data FMs might train on. 

Table 2.1.  Extending Table 1.1 with Information on Scale of Data 

Class Name Data 

L
L

M
 GPT-3(a) 

GPT-4(a) 
GPT-3 was trained on data, ranging from 17 gigabytes (GB) to 570 GB of data.  
GPT-4 was trained on between 45 GB of training data to 1 petabyte of training data. 

Bloom 46 natural languages and 13 programming languages. 1.6 terabytes (TB) pre-
processed text was converted into 350B unique tokens as Bloom's training datasets. 

O
th

er
 M

od
e-

in
fo

rm
ed

 L
L

M
 

DALL-E(a) 
DALL-E, based on an implementation of GPT-3, was trained on a dataset of 12M 
text-image pairs from the internet (beyond training GPT-3 and with Contrastive 
Language-Image Pre-Training, or CLIP).  

PaLM-E PaLM-E18, integrates the 540B PaLM LLM and the 22B ViT, incorporating real-
world raw streams of robot sensor data into language models. 

V
is

io
n 

DINOv2 DINOv2 is pretrained on a curated data set of 142M images. 

ViT-22B Fine-tuned on ImageNet. 

NASA 
Geospatial 

Harmonized Land Sat and Sentinel-219 trained on five years of data from 
the Southeastern United States. 30m granularity. 1 TB total data volume. 

M
ul

ti-
m

od
al

 

ImageBind 

(a) Since closed model, it is impossible to know, and available estimates vary.

17 Such as FAIR (findable, accessible, interoperable and reusable) data principles to provide a vision for good data management. 
18 D. Driess, et al., “PaLM-E: An Embodied Multimodal Language Model,” (March 2023).  
19 M. Claverie, Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., & Justice, C., “The Harmonized 

Landsat and Sentinel-2 surface reflectance data set,” Remote Sensing of Environment, (2018): 219, 145-161. 

Image-paired – (image, X) where X is one of text, audio, depth, IMU or 
thermal data.

https://arxiv.org/abs/2303.03378
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2.2  Scale of Modeling 
The rise of FMs is attributable to the often-repeated mantra of “bigger is better” in machine learning. FMs 
and transformer architectures owe their origin to Google Brain and the University of Toronto.20,21 An 
early popular transformer model, which resulted from that paper, was Bidirectional Encoder 
Representations from Transformers (BERT)..22 Since the release of BERT, other popular models such as 
the GPT family (from OpenAI) and even larger models have since been released.23 Table 2.2 presents 
model scaling related information on some of the FMs reviewed in sections 1.1 through 1.4. 

 
Table 2.2.  Extending Table 1.1 with Information on Model Scale 

Class Name Model 

L
L

M
 GPT-3(a) 

GPT-4(a) 

GPT-3 was made up of 175 B parameters. 
GPT 4, the replacement for GPT-3, with up to 100 times more capability, also has at 
least 175B parameters. 

Bloom 176B parameters. 

O
th

er
 M

od
e-

in
fo

rm
ed

 
L

L
M

 

DALL-E(a) DALL-E, based on an implementation of GPT-3, used 12B parameters to "swaps 
text for pixels" that trained on text-image pairs from the internet.  

PaLM-E PaLM-E up to 562B parameters, integrates 540B PaLM LLM and the 22B ViT into a 
large vision-language model. 

V
is

io
n 

DINOv2 

• ViT-S (21M params): Patch size 14, embedding dimension 384, 6 heads, MLP FFN. 
• ViT-B (86M params): Patch size 14, embedding dimension 768, 12 heads, MLP FFN. 
• ViT-L (0.3B params): Patch size 14, embedding dimension 1024, 16 heads, MLP FFN. 
• ViT-g (1.1B params): Patch size 14, embedding dimension 1536, 24 heads, SwiGLU FFN. 
 

ViT-22B Modified transformer architecture with 22B parameters. 

NASA 
Geospatial ViT architecture. 

M
ul

ti-
m

od
al

 

ImageBind The architecture of ImageBind consists of three main components: a modality-specific 
encoder; cross-model attention module; a joint embedding space. 

     

(a) Since closed model, it is impossible to know, and available estimates vary. 

 
2.3  Scale of Computing 
Increases in capabilities and efficiencies from the development of FMs come with increases in other 
computing needs.24 Studies show, and Figure 2.1 corroborates, that the compute required for training the 

 
20 A. Vaswani, et al., “Attention is all you need,” (2017). 
21 There are numerous types of FMs beyond generative pre-trained transformers (GPTs), such as generative adversarial networks, 

variational auto-encoders, multi-modal models, among others. 
22 BERT was also a bidirectional model—understanding the context using the entire sequence before making predictions. 
23 Recently, startups such as Hugging Face have started releasing open-source models, which are further accelerating customer 

adoption. 
24 FMs need highly elastic compute, memory, storage networking for training, along with feasible energy requirements. 

https://research.google/pubs/pub46201/
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models has been increasing exponentially, that model performance scales with the amount of compute,25 
and organizations are limited by the performance of existing hardware solutions and training costs. 
Industry is rapidly stepping up to meet these requirements with special purpose chips, technology stacks, 
specialized domain models, and systems, both on-premises and cloud-based, optimized for the 
development and deployment of very large-scale FMs. Traditional hardware companies have continued to 
advance graphics processing unit (GPU) architectures.26 This type of hardware is built around a logic-
memory architecture where memory is located off-chip and high-bandwidth memory is used to shuttle the 
data between logic and memory, creating a significant bottleneck that slows down calculations (i.e., data 
latency). These architectures also have high power consumption and result in long training times that may 
take several weeks to converge. Moreover, training large models across many GPUs requires additional 
code and system configuration that is time-consuming to set up, and the cost and complexity is beyond 
the capacity of most enterprises. To close this gap, newer tech startups in this space are developing next 
generation novel hardware designs (e.g., SambaNova Reconfigurable Data Units (RDUs)27 and DataScale 
SN30, Cerebras CS-2 and Cerebras-G42 Condor Galaxy 1 (CG-1),28,29 etc.) with large amounts of 
distributed memory on-chip, providing significantly greater in memory processing,30 enabling faster 
model convergence and lower training times. Not unlike how GPUs proved to be superior to CPUs for 
graphics tasks, these novel AI Accelerator hardware designs are proving to be superior to GPUs for large-
scale machine learning.  
 

 
Credit IBM. Reprinted with Permission 

Figure 2.1.  Compute Required for Training FMs is Growing Exponentially31 
 

 
25 OpenAI, for example, has reported that the amount of compute used in training the largest AI doubles every 3.4 months, 

significantly outpacing Moore’s Law. 
26 GPUs were originally intended for graphics processing and not necessarily machine learning. 
27 The Reconfigurable Data Unit from SambaNova Systems is built with 1TB off chip, dynamic random-access memory, or 

DRAM, using double data rate (DDR) transmissions and 640 megabytes on chip static random-access memory, or SRAM. In contrast, 
NVIDIA H100 provides up to 80 GB high-bandwidth memory and Google’s Tensor Processing Units (TPUs) 32 GB. 

28 Condor Galaxy is a network of nine interconnected supercomputers, each comprised of a CG-1 that links 64 Cerebras CS-2 
systems together into a single, easy-to-use AI supercomputer, with an AI training capacity of 4 exaFLOPs and 54M AI-optimized 
cores. 

29 Cerebras Introduces Its 2-Exaflop AI Supercomputer  
30 On-chip memory near the compute, helps avoid the latency and overhead of large distributed systems like those using GPUs. 
31 DHS S&T AI workshop with IBM on Foundation Modeling, “What’s Next—FMs DHS” page 14, April 20, 2023. 

https://spectrum.ieee.org/ai-supercomputer-2662304872
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In the machine learning space, massive memory and on-chip memory solutions have a clear advantage 
over GPUs. Massive memory enables more parameters, higher resolutions, and larger embeddings, and 
on-chip memory near the compute helps to avoid latency and overhead associated with large distributed 
systems. For example, in the LLM space: 

• ChatGPT, built on top of GPT-4, has a maximum sequence length of 2,000 words and token 
limits of 4,096, constrained by the reliance on (40-80G) high-bandwidth memory used by GPUs 
in its NVIDIA-based training compute infrastructure.  

• Bloomchat, built on top of Bloom, has achieved a sequence length of 256K and a token count up 
to 2T, enabled by the RDUs used in the SambaNova DataScale SN30.   

• CG-1, optimized for LLM and generative AI, comes with standard support for up to 600B 
parameter models and extendable configurations that support up to 100 trillion parameter models 
and offers native support for training with long sequence lengths of 50,000 tokens straight out of 
the box.  

 
And, in the vision space: 

• High-resolution convolution models are readily enabled with SambaNova solution, and 
seamlessly enable large image processing (within the limits available DDR memory 640 GB) 
eliminating the need for tiling at lower resolution on GPUs to avoid out-of-memory errors. To 
date, they have run 100K x 100K 2D images and 1K x 1K x 1K 3D images, while implementing 
such a high-resolution model architecture would take months or even years on a GPU. 

• In contrast, consider running computer vision tasks on an NVIDIA A100 GPU, available with 
different amounts of video random access memory (VRAM), such as 40 GB and 80 GB. The 
maximum size of images that can be processed on that GPU is limited by the VRAM and 
extremely high-resolution images will exceed the VRAM capacity. As a result, tiling techniques 
are applied to divide the larger images into smaller tiles or patches that fit within the VRAM 
constraints. These tiling approaches, however, are notoriously lossy at the seams of the tile. 
Alternative approaches use down-sampling, but those approaches are also lossy with respect to 
fidelity. NVIDIA A100 GPU have introduced Tensor Cores, specialized hardware units designed 
to accelerate tensor operations commonly used in deep learning. Tensor Cores can improve 
performance in certain operations, but they also have specific memory requirements and data 
format constraints. 

• On an image classification task training ResNet with ImageNet, the Time-to-Train (in minutes) 
on: 
- Low Resource Bow IPU32 from Graphcore (Processor: AMD EPYC 7742 (2), Accelerator: 

Graphcore Bow IPU (16)) is 19.636. 
- A30 Tensor Core GPU (Processor: AMD EPYC 7742 (2), Accelerator: NVIDIA A30 (2)) 

from NVIDIA is 235.574. 
- Low Resource A100 Tensor Core GPU from NVIDIA (Processor: AMD EPYC 7742 (2), 

Accelerator: NVIDIA A100-SXM-80 GB (8)) is 28.685. 
 
Lastly, as an indicator of power consumption: 

• Cerebras has demonstrated one of its recent supercomputers, Andromeda, which puts 16 Wafer 
Scale Engine (WSE)-2 chips into one cluster with 13.5M AI-optimized cores, delivering up to 
one extra floating-point operations per second (FLOPS) of AI computing power, or at least one 
quintillion (1018) operations per second. The system uses 500 kilowatts (KW) of power.  

• A single CS-2 system, containing the WSE-2 chips, uses 23kW for about 63 PetaFLOPS (2.7 
TeraFLOPs/W), in contrast to a single TPU-4 processing unit from Google, which draws 192W 
while delivering 275 TeraFLOPS of performance (1.4 TeraFLOPs/W), or a single Ampere series 

 
32 Intelligence processing unit (IPU). 
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GPU from NVIDIA, which uses 300-400W delivering 624 TeraFLOPS of performance (1.8 
TeraFLOPs/W). 

• The Graphcore Bow IPU, AI processor to use Wafer-on-Wafer (WoW) 3D stacking technology, 
Bow Pod16 delivers over five times better performance than a comparable NVIDIA DGX A100 
system, and up to 16% increase in performance per watt. 
 

3 Observations in Operationalizing FMs 
While many organizations are eager to adopt FMs, there a several challenges that must be considered and 
planned for in pursuit of this technology to use it properly and safely in operational or production use 
cases. FMs are computationally complex and expensive to run, so picking the right use cases and tasks the 
FM will support is key. It is equally important to understand the business model options, as discussed in 
section 1.1. Picking the right one is largely dependent on the nature of the task and the level of control or 
degrees of freedom you want to have in the development and use of your FM. 
 
Other more technical challenges, and the foci of section 3, include improving our understanding of: 

• How, what, and when models from industry can be leveraged for DHS missions as well as 
developing our own capability to develop these models for modalities and data streams where no 
capability exists. (AI Advancements: Building the Foundation for Foundation Models). 

• How to test and evaluate, verify, and validate these models and developing DHS-specific 
benchmarks. (AI Assurance: Achieving, Ensuring, and Maintaining Model Fitness). 

• How we build an appropriate level of trust between the users/analysts and these models. (Mission 
Assurance: Human Insight and Oversight will be Key). 
 

3.1  AI Advancements: Building a Foundation for Foundation Models 
In tune with the analysis in section 2, scale is key to making FMs work. Effective data processing and 
infrastructure are essential to handle the large-scale data sets. Robust preprocessing techniques, data 
augmentation, and efficient data storage are all crucial in maximizing the quality and quantity of data 
used for training. Model scaling research ensures that the FM can be adapted to various task complexities. 
Scaling up the model with more parameters allows it to capture intricate patterns, while scaling it down 
enhances its efficiency for low-resource environments. The compute infrastructure supports model scaling 
through leveraging cutting-edge hardware and harnessing the full potential of advanced compute 
infrastructure enables faster model training, significantly reducing development time and resource 
consumption. Multi-modality research empowers the FM to process and understand information from 
various sources, including text, images, and audio. Integrating multiple modalities enables a deeper 
understanding of complex data, making the model more contextually aware and capable of handling 
multifaceted tasks. Portability research ensures that the FM can seamlessly run across different hardware 
platforms and environments. A portable model is highly versatile, allowing it to be deployed in diverse 
settings, from edge devices to cloud servers, making AI solutions more accessible and widely applicable. 
 
3.2  AI Assurance: Achieving, Ensuring, and Maintaining Model Fitness 
Ensuring a model’s performance, adaptability, and responsible use are key to knowing that the model is 
fit for purpose. This requires understanding how the model compares to existing state-of-the-art solutions 
as well as existing processes surrounding the use cases the FM is targeting, as well as developing the test 
infrastructure to assess. To maintain the model’s relevance and accuracy and ensure it remains fit for 
purpose over time, it will be necessary to understand its drift, pace required for updating it with new data, 
and approaches to fine-tuning the model with that data. Model prompting techniques can guide the 
model’s responses, making it more controllable and reliable, especially in critical applications. Finally, 
research in trustworthiness, to include mitigating biases, interpretability, and developing mechanisms for 
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adversarial attacks, is crucial to ensure the model's reliability and ethical use. A trustworthy FM will 
inspire confidence in its users and promote a responsible deployment. 
 
3.3  Mission Assurance: Human Insight and Oversight will be Key 
FMs are automation tools; they cannot completely replace human judgement and should not be thought of 
as having an opinion or personality. When utilized correctly, they can speed up or simplify complex 
analyses that free up human operators for other tasks. To strike that balance, users must have confidence 
in the model's performance, understand its behavior, and trust that it aligns with ethical principles. Thus, 
it will be important to find ways of making the model’s decision process transparent to the user, as well as 
require usability assessments to ensure the model is user-friendly and easy to interact with, even for non-
experts. Research in security and privacy will be needed to protect sensitive data and prevent 
unauthorized access. Moreover, it will be necessary to understand how to prevent, mitigate, respond, and 
recover to any number of adversarial attacks (see Figure 3.1) and unexpected variations in input data. 
Finally, to ensure effective integration and information exchange in a system-of-systems context, 
interoperability research will be required. This FM concept applies well to big decision spaces, so it will 
likely be better to have a common FM across multiple components than to have multiple competing FMs 
across multiple components. 
 

 
Credit IBM. Reprinted with Permission 

Figure 3.1. Selected Adversarial Threats to Machine Learning Aspects of Foundation Models.33 
 
4 Use Case Deliberations  
Throughout the workshop, participants identified potential opportunities to utilize FMs in support of DHS 
and component activities. This section offers a starting point for the Department to consider the 
application of FMs and to determine their potential impact on a variety of homeland security operations.  
 
4.1  Law Enforcement to Include Digital Forensics and 911 Services 
Digital forensic tools are incredibly useful when investigating a number of different types of cases (e.g., 
child exploitation, counter fentanyl, counterfeiting, etc.), and FMs could support efforts to solve these 

 
33 DHS S&T AI workshop with IBM on Foundation Modeling. “Adversarial AI” page 23.  April 20, 2023. 
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cases. HSI case agents rely on a variety of reports including Reports of Investigations and Suspicious 
Activity Reports. These reports, over 40 million, comprise unstructured text narratives that describe fine-
grained details about previous and ongoing investigations including the locations, dates, people, and 
artifacts related to those investigations. The task of retrieving and manually examining possibly several, 
complex reports, however, is tedious, time-consuming, and prone to error. This process could be 
significantly improved through use of state-of-the-art LLMs, such as GPT, fine-tuned on HSI-specific 
corpuses. FMs are also being used for violence detection,34 and they can be used effectively by homeland 
security and law enforcement agencies. Next Generation 911 capabilities will one day make it possible to 
send text or photos to 911 centers, not just calls. As these capabilities are introduced, FMs could be 
trained on the data to help 911 operators and first responders coordinate their response.  

4.2  Cybersecurity 
DHS S&T has already begun work on FMs for the cybersecurity domain. A task under DHS S&T’s 
Cyber Analytics and Platform Capabilities project called MIMISBRUNNR is creating an FM for binary 
analysis. MIMISBRUNNR creates an adaptable mathematical representation of binary semantics that 
aims to provide a more flexible and holistic description of a program, ultimately impacting the 
mathematical input to other machine learning tasks. To date, MIMISBRUNNR has created an initial 
research proof-of-concept FM for the field of binary analysis and showed initial tests on specific tasks 
(downstream benchmarks) within the binary analysis domain (e.g., compiler flag identification), and 
made sweeping architectural improvements in order to scale-up the size of the model, the type of data 
consumed, and the amount of data consumed, leading to drastic improvements in downstream 
performance.  

Long description of Figure 4.1 Overview of 
MISISBRUNNR Overview diagram showing left 
to right: a single dataset canister labeled "Raw 
(unannotated) Binary Dataset, Source Data 
Information • Approximately 1 million original 
binaries compiled from GitHub, • Plus~16 
generated transformations for each as we do 
contrastive training; • After filtering for length, 
errors, etc, approximately ~4-6 million inputs into 
actual trained model. An arrow point right labeled 
"Train”, a cluster of 9 dataset canisters. 
Model Information:
• Various versions, • Largest model to date is 
~1billion parameters Compute Infrastructure 
Information • For the 1B parameter model: • 
Training was on 8 V100 GPUs (one node in our 
cluster) • For about 3 weeks An arrow pointing 
right labeled "Tune”, three connected lines that 
lead separately to 1) top data set canister 
labeled “Dataset 1”, an arrow points to the right 
labeled “Apply”, Compiler Flag Identification, 2) 
middle dataset canister labeled “Dataset 2” an 
arrow points to the right labeled “Apply”, Packer 
Identification, 3) bottom dataset canister labeled 
“Dataset n” an arrow points to the right labeled 
“Apply”, Other Tasks. Fine-tuning Data 
Information • Size of the fine tuning datasets vary 
with generally order hundreds/thousands to test 
low-data finetuning • Various sources including 
rosetta code, code jams, malpedia, GitHub etc. Credit DHS S&T. 

Figure 4.1.  Overview of MIMISBRUNNR 

This work under DHS S&T is the first of its kind; no one has built a generalizable FM based on binaries. 
Beyond novelty, this work has the potential to be applied to any binary analysis challenge with a solution 
that uses an underlying statistical model, without any domain knowledge, (e.g., our model is trained with 
no direct concept of compiler flags, malware, benignware, etc. Yet, with a limited downstream dataset 
(order of hundreds to thousands of binaries for each downstream task), it can be adapted to learn across 
myriad of tasks in binary analysis. Our FM can be used as an initial baseline for another team to improve 

34 X. Shaftgupta, et al, “A Vision Transformer Model for Violence Detection from Real-Time Videos,” (December 2021). 

https://dl.acm.org/doi/fullHtml/10.1145/3508072.3512288
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upon for a specific downstream task, or as an improvement to an existing downstream task. Rather than 
starting from scratch with nothing for some very specific downstream tasks that require extreme domain 
knowledge, our FM can provide a baseline without any domain knowledge necessary. This has the 
potential to be extremely powerful across all tasks in binary analysis. 
 

 

 

 

Other potential FM use cases spawned by IBM cybersecurity use cases include:   
• Behavioral analytics: Categorize and structure user behavior patterns to identify abnormal activity 

across high volumes of data. 
• Threat monitoring: Identify sources of vulnerability and security breach exposure, augmenting 

threat hunting and threat prevention. 
• Automated incident response: Enable learning from each incident, providing feedback and 

remediation recommendations, including playbook automation. 
• Augmented robotic process automation: Automate high volume, basic, repetitive tasks, enabling 

skilled analysts to focus on higher value work. 

Because it is already in digital form and capable of being represented and integrated in purposeful ways, 
cybersecurity data (e.g., natural language and threat intelligence; applications and content; system, 
network and application logs; system configuration and state, scripts, source code, binary files, etc.) is a 
natural fit for FMs supporting a host of cybersecurity tasks. Given that CISA receives on the order of 
10TB data per day, essentially for threat hunting, this seems like an area worthy of further exploration.  

4.3  Emergency Management 
When disasters occur, the Federal Emergency Management Agency (FEMA) needs accurate, real-time 
information to support response and recovery efforts. Data taken from a variety of sources, including 
weather reports, geospatial images, social media, and news reports, could be used by an FM to help 
FEMA quickly coordinate their actions with state and local officials. Translation capabilities would also 
be beneficial to help those on the ground when translators are not available. As people impacted by a 
disaster seek federal assistance, an FM could be helpful in directing them through the application process 
and understand what steps to take next. Additionally, historic flood data and current geospatial data could 
be combined to support the National Flood Insurance Program.  

4.4  Genomics and Drug Discovery 
FMs have proven useful at generating new molecules, reducing the time involved with the discovery 
process. Genomic data from national laboratories like the National Biodefense Analysis and 
Countermeasures Center could be used to train genomic-based FMs in identifying new zoonotic diseases 
and creating treatments. Chemistry and materials science literature holds massive amounts of multi-modal 
knowledge (e.g., text, tables, and images about experimental property measurements, synthesis 
procedures and methods, organic reaction pathways, etc.). These data could form an FM used to 
make predictions to discover novel synthesis mechanisms, reveal previously unknown molecular 
functionalities, and design new molecular structures through computer modeling. 
 
4.5  Non-intrusive Inspection and Scanning 
The TSA generates over five million images a day through its screening efforts at airports across the 
nation. With over seven thousand miles of border to cover, CBP generate a host of imagery (e.g., cars, 
trucks, buses, cargo containers). Land ports facilitated over $779B in trade between U.S. and Mexico in 
2022, putting pressure on the number of inspections completed. Taken together, these sources represent a 
deep trove of data (e.g., X-ray diffraction, streaming video, tomography) that could be useful in training a 
visual FM to support the multitude of scanning use cases across components (e.g., instance retrieval, 
segmentation support, dense prediction, etc.). In fact, it might even be possible to imagine DHS as leading 
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the way in this space for the entire nation, given the wealth of data available. Beyond those common 
visual FM tasks, the model could be tailored to a multitude of specific tasks such as identifying suspicious 
items and flagging baggage for extra screening by TSA, gaining efficiencies over current processes. It is 
possible that FMs and generative AI could be used to consider potential threats “between bags” or “across 
bags,” broadening a traditional “within bag” concept of operations to assist in identifying coordinated 
threats. 

 
4.6  Smuggling, Trafficking, Exploitation, and Illegal Activities at the Border 
With over seven thousand miles of border to cover, CBP must ensure resources are deployed where they 
will have the most impact. Fusing a host of data sources (e.g., multispectral data at the Southern border, 
text reports, imagery [such as cars, trucks, buses, cargo containers], sensor data, down-range media to 
include social/news media etc.), FM forecasting could help CBP anticipate the timing and location of 
potential surges in illegal border crossings, and historical data could be used to inform staffing and 
resource allocation decisions. Add automatic identification system (AIS) data, shipping manifests, data 
from captured cell phones, or combine with data described in section 4.5 to start building a multi-modal 
FM able to address multiple tasks.  
 
4.7  Immigration Services 
United States Citizenship and Immigration Services processes millions of applications and petitions 
for persons seeking to visit or reside in the U.S. and from permanent residents seeking to become U.S. 
citizens. These applicants routinely need help navigating the language barrier and depend on 
immigration attorneys or translators to assist them, adding to the complexity of the services provided. 
Also, there are many different forms to be completed, and while some are facilitated through digitized 
formats, many of these forms must be completed manually. Largely administrative in nature, the 
services offered range from collecting data, inputting data, processing data, and distributing data. 
Given these major tasks and a number of complementary tasks (e.g., language assistance), it seems 
that an LLM FM could be most useful in providing semi-automated support to staff, enabling the staff 
to focus on the hardest problems in immigration cases. 
 
4.8  Biometrics   
Biometrics modeling at DHS is currently focused on the assessment of vendor supplied models, as the AI 
and machine learning capabilities and expertise within the academic and private sector exceeds current 
capabilities available within DHS. Yet, DHS has access to large datasets, which remain under-utilized in 
this important problem space. In some cases, this is because many DHS datasets are sensitive and cannot 
be shared with researchers and technologists outside the Department. Advanced techniques in foundation 
modeling, such as transfer learning and retraining, make it possible for DHS to leverage large commercial 
and academic developed AI and machine learning models and attempt to quickly adapt them for 
specialized DHS applications. These techniques offer the promise of leveraging pre-trained models 
developed by academic and industry experts as well as make it possible to optimize and fine tune 
performance on sensitive non-public DHS data, greatly reducing the time and cost of developing models 
and improving performance for specialized DHS operations and data. 
 
4.9  Business Applications   
Countless business processes at DHS could be facilitated through the use of FMs: 

• Software developers can use FMs to develop, debug and test software.35   
• IT analysts can use FMs to manage help desk operations and IT tickets.   

 
35 See OpenAI’s Codex, Amazon’s CodeWhisperer, and IBM’s CodeNet. 
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• Data scientists can use FMs to develop visualizations and code for analytics.36   
• Data engineers can use FMs to assist in the burdensome but important task of data wrangling.37   
• Lawyers can use FMs to assist in drafting legal opinions.38   
• Doctors can use FMs to assist in diagnoses.39   
• Communications specialists can use FMs to assist with drafts of press releases.40   

 
In all of these cases, and many others, enterprise data can be leveraged in a model that would be 
foundational to automating and modernizing these, and myriad other business processes at DHS. 

5 Recommendations and Conclusion 
While DHS is still nascent in its adoption of conventional machine learning systems (i.e., previous 
iterations of AI models), shifting our focus to the adoption of FMs, could be key in providing us with 
leap-ahead AI capabilities supporting critical mission priorities. As automation tools, FMs can benefit 
DHS by making previously time-intensive analyses more capable and efficient. DHS, through the AI Task 
Force, should embark on a research campaign plan to accelerate human-AI (FM) response to emerging 
and evolving threats.   
 
Table 5.1 summarizes DHS opportunities and falls into three concentrations: AI Advancements, AI 
Assurance, and Mission Assurance. Within each concentration, the table indicates considerations of 
research thrust—essentially the “spin” to be applied in expressing requirements and writing terms of 
reference. These recommended thrusts or considerations focus on a combination of consolidative 
activities, work on critical enablers, “sense-making” research, common-good systematic research, and 
fresh design work.  
 
In an era defined by the convergence of advanced technology and security imperatives, DHS stands at the 
crossroads of innovation and protection. FMs support new approaches to versatile AI frameworks from 
which DHS can equip itself to navigate the intricate labyrinth of data-driven threats and opportunities. 
These models offer the Department a force-multiplier effect, enhancing anomaly detection, risk 
assessment, and threat mitigation strategies. With each new piece of data, DHS will be paving the way for 
a safer and more resilient nation.  
  

 
36 See IBM’s CodeFlare tool and GitHub’s DS-1000.  
37 A. Narayan, et al., “Can Foundation Models Wrangle Your Data?” (2022). 
38 Borrowing from the Law to Filter Training Data for Foundation Models. 
39 M. Moore, et al., “Foundation Models for Generalist Medical Artificial Intelligence,” (2023).  
40 G. Bullard, “Smart Ways Journalists Can Exploit Artificial Intelligence,” (2023). 

https://arxiv.org/abs/2205.09911
https://hai.stanford.edu/news/borrowing-law-filter-training-data-foundation-models
https://www.nature.com/articles/s41586-023-05881-4
https://niemanreports.org/articles/artificial-intelligence-newsrooms/
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Table 5.1.  Summary Considerations41 
 

Concentrations Considerations 
A
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n 
M
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el
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Develop large-scale, 
multi-modal AI models 
for homeland security 
missions that leverage 
self-supervised learning 
on unlabeled data. 

Model Scaling.  Develop a capability to pre-train large-scale parameter 
models.  
Multi-modality.  Create novel neural architectures and pre-training 
objectives to operate with heterogenous data streams. 
Portability.  Explore model pruning and compression techniques to 
reduce model size, dimensionality and increase sustainability. 
Data and Compute.  Establish and maintain shared data and compute 
resources using the best practices for data processing. 

A
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 E
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at
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Demonstrate how FMs 
can be rapidly adapted to 
many tasks without 
being explicitly trained 
to do so; show how task 
performance can be 
improved via fine tuning, 
continuous learning, and 
prompting. 

Use Case Benchmarks.  Create benchmarks, test harness software, and 
metrics to perform reproducible evaluation and trade-off analysis across 
research and development models. 
Fine Tuning and Continual Learning.  Develop methods to detect when 
new knowledge is available and decide when and how to update or fine-
tune models to ensure model generalizability. 
Model Prompting.  Evaluate emerging behavior of multi-modal FMs 
using prompting techniques. 
Trustworthy and Responsible AI Ecosystem. Release unclassified 
models, FAIR and AI-ready data sets and benchmarks so they can be 
easily found, accessed, deployed, and reused. 

M
is

si
on

 A
ss

ur
an

ce
 

H
um

an
-A

I T
ea

m
in

g Develop theoretical 
foundations and practical 
methods to enhance the 
teamwork effectiveness 
and partnership between 
subject matter experts 
and AI. 

Transparency.  Build trust with subject matter experts through 
developing novel techniques to explain and interpret multi-modal FM 
behavior. Examine causal explanations, counterfactual explanations, 
and interpretability. 
Usability.  Enhance user interactions and develop metrics to effectively 
communicate model performance.   
Security and Privacy.  Develop methods to evaluate model resilience 
and susceptibility to adversarial AI. 
Robustness.  Ensure models are robust to distribution (domain, task) 
shifts in multi-modal setting.  
Interoperability.  Develop methods to understand impacts of 
foundational model enhancements on operations. 

 

 
41 Table 1.1 builds on discussions with the Department of Energy, National Nuclear Security Administration and is tailored to DHS 
mission use cases. 
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