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Executive Summary 
This report is part of a series of studies on “preparedness,”1 which explore the impacts ranging from 
emerging technologies to extreme weather and climate, as well as the opportunities that the Department of 
Homeland Security (DHS) Science and Technology Directorate (S&T) can pursue to support the missions 
of the Department. The focus of this analysis is on the risks presented by adversarial artificial intelligence 
(AAI)—a threat that can undermine the trust we place in information derived from digital content, yet a 
threat that can emerge in manners quite distinct from traditional cybersecurity threats and that likely 
requires unique skillsets to understand and address.  
 
This report reflects discussions between DHS’ overarching science and technology missions and select 
DHS components on the current state of risks due to AAI; national laboratories and academia on the 
underlying capabilities to mitigate these attacks; but more broadly serves as a reference in how one could 
develop strategies to deal with AAI threats, current and future. It builds on an S&T international 
workshop, “Risks and Mitigation Strategies for Adversarial AI Threats” held in June 2023.  
 
Collectively, the contributors to this study, consisting of national and international experts and 
policymakers, recognize that the promise and the benefits of artificial intelligence (AI) technologies to 
homeland security are difficult to overestimate. It has a clear potential to make our borders and ports of 
entry more secure, to minimize the cognitive load on the homeland security officers, and to help automate 
the processes that inherently enhance the security, productivity, and effectiveness of the homeland 
security services, operations, and personnel. Yet the transformative powers of AI come with new 
challenges and emerging risks, namely AAI or AAI attacks. Of the various forms of AAI attacks that are 
possible (described in Section 2), AAI experts considered evasion attacks and generative deceptive AI as 
the biggest threats in the near term to DHS missions. These AAI types are especially powerful in 
combination, using generative deceptive AI-created content to evade a model-based inferencing process. 
However, because AI technologies are still in their early stages of development at DHS, other AAI types 
and forms of attacks will become greater concerns, as those AI systems will also be vulnerable to various 
other forms of exploitation and misuse.  
 
Another concept widely supported by AAI experts was the need to incorporate the analysis and mitigation 
of AAI risks early in and throughout the system lifecycle, starting as far left as reasonable, to facilitate 
security by design.  This should include the incorporation of AI “-ilities” (e.g., responsible, ethical, etc.) 
in our requirements processes, AI security assessments and development of AI standards in our systems 
engineering processes, and the need to develop comprehensive testing and evaluation tools, methods, and 
procedures to understand AAI risks and mitigate subsequent threats at the system and mission levels. This 
requires advances in the art and science of measuring and assessing the magnitude of potential 
vulnerabilities, exploring ways to make AI more robust. Importantly, how we respond to the emerging 
impacts of AAI on the homeland will require a response ecosystem that does not yet exist. How we work 
to support federal, State, local, tribal, and territorial law enforcement and first responders for a growing 
set of diverse AAI possibilities will need new discussions with those communities to help develop 
priorities. The analogs of an incident response team construct could be of value, not unlike US-CERT2, 
but for an entirely different class of situations. Broad partnerships with our allies also will help enable 
progress to counter AAI not only from understanding the impacts, but in the development of standards or 
even test and evaluation. 
 

 
1 D. Kusnezov, “Preparedness in Times of Rapid Change,” DHS S&T Report (2023). 
2 “US-CERT: United States Computer Emergency Readiness Team”: 

https://www.cisa.gov/sites/default/files/publications/infosheet_US-CERT_v2.pdf. 

https://www.cisa.gov/sites/default/files/publications/infosheet_US-CERT_v2.pdf
https://www.cisa.gov/sites/default/files/publications/infosheet_US-CERT_v2.pdf


  

ii 
 

This report is intended to help inform the DHS AI Task Force announced by Secretary Mayorkas3 and the 
increasing importance of AI to DHS missions. The report introduces adversarial AI concepts; reviews the 
technical underpinnings of adversarial AI in the context of current DHS missions; reviews future AAI 
threats, risks, and mitigation strategies in the context of emerging technologies; emphasizes the need for 
the international community to coalesce; and, suggests opportunities in both the provinces of policy-
making and R&D to establish a solid footing for DHS in developing a methodical, risk-informed 
approach to mitigating these threats and related vulnerabilities. 
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1 Introduction 
As the artificial intelligence (AI) landscape evolves, the pursuit of smarter algorithms has given rise to an 
AI-based sub-discipline that blurs the lines between innovation and deception: adversarial AI (AAI), 
where AI systems not only make predictions and take actions but can also engage in a strategic dance of 
deception and counter-deception. This deception can target both humans as well as AI-based systems, 
thus breaking the reliability of the AI systems themselves and shaking the faith we have in the digital 
content we consume. Especially in an era where the digital landscape intertwines so seamlessly with our 
physical world, this threat poses grave danger to our societal norms and way of life. AAI presents new 
opportunities to our adversaries and others who would do us harm and must impel us to think twice about 
the digital content we consume. For example, consider a few well-known cases: 
 
A mother targeted in a kidnapping scam in which AI impersonated her 15-year-old daughter’s voice. 
A traffic jam in the heart of Berlin being reported by Google Maps that is actually nothing more than an 
artist walking around with 99 phones, tricking Google Maps into thinking there is a 99-car pile-up. 
An innocuous looking sticker placed on a stop sign that makes a self-driving car recognize the sign as a 
speed limit sign for 45 miles per hour, causing the car to speed through the intersection. 
A chatbot gone rogue because of inappropriate data inputted at the prompt that was, in turn, used to train 
future generations of that chatbot. 
 
Other potential examples that perhaps do not cause us pause now but possibly should:4 
A white Chinese high-altitude balloon, assumed by most as an unwelcomed but routine intelligence 
mission, that instead could be an evasion attack in an attempt by an adversary to trick AI-based 
workflows for satellite imagery into a “don’t look here” mode.5  
A mysterious computer glitch with the New York Stock Exchange (NYSE), assumed by most as an 
untimely nuisance, that instead could have been a malicious AI-based malware infecting the NYSE 
infrastructure in an attempt by an adversary to trigger a cascading behavior or flash crash. 
 
And, while concern for these known and notional instances is appropriate and justified, the broader 
concern and implicit danger of AAI is that it is automatable. Such automation can empower malicious 
actors to deploy AAI more easily and at a larger scale, enabling persistent and evolutionary attacks on 
non-secured systems. This scale leads to a scenario where the only effective countermeasure must be of 
similar scale. In short, the automation underlying AAI necessitates a counterbalancing emphasis on 
equally sophisticated defensive measures to safeguard the systems and processes on which we depend. 
 
Individual and collective risks such as these, compel the Department of Homeland Security (DHS) 
Science and Technology Directorate (S&T), as the driving force for innovation in the Department, to 
evaluate AAI for its potential applications in homeland security use cases and to better understand the 
threat they will pose when exploited by America’s adversaries. This report unearths the implications, 
challenges, and necessary safeguards that arise from AAI technologies to ensure the safety, resilience, and 
security of the homeland.  
 
 
 
 

 
4   Until we become savvier in navigating this new threat space and as we assign intent to circumstances that can be more easily 

explained otherwise, it will be important to question everything. 
5  Given that workflows for satellite imagery can use AI in imagery preprocessing tasks (e.g., prioritizing cloud-free images for 

analysis), the white balloon, a proxy for a cloud, could be viewed as a trojan or a trigger for an incorrect inference. 
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1.1 Scope of Adversarial AI 
 
Because the AAI and Counter AI (CAI), aka AI Security, are relatively immature sub-disciplines, there is 
some range of interpretation in exactly what space the term covers.6 For purposes of this study, AAI is 
defined as the spaces represented in the right hand quadrants (upper and lower), as shown in Figure 1.1. 
Although CAI, represented across the top two quadrants, is equally interesting and important, only the 
AI-based attacks on AI-based systems quadrant (the top right quadrant) is addressed in this study.7 The 
top left quadrant, "NON AI-based Attacks of an AI-based System", as indicated in the horizontal axis in 
Figure 1.1, could be addressed through more traditional security approaches, such as cybersecurity and 
physical security. Taken together, the top right quadrant (AI-based attack on an AI-based system) and the 
bottom right quadrant (AI-based attack on a non-AI-based system) are the focus of this study.8 
 

 
 

Figure 1.1. Adversarial Artificial Intelligence:  What it is and What it isn’t. 
 

1.2 Framework for How DHS Missions Use Technologies 
Figure 1.2 provides a conceptual framework to describe how DHS missions use AI-based technologies, 
which in the spirit of dual-purpose, also describes how DHS missions may be attacked (i.e., digitally 
deceived) through AI-based technologies. Digital technologies such as computer vision (CV), audio 
recognition (AR), and natural language processing (NLP) form the floor of the organizing framework. 
 

• CV is a field that focuses on enabling computers to interpret and understand visual information 
from the world. Key components include image and video processing, object detection and 
tracking, image classification, scene understanding, semantic segmentation, 3D vision. It is 
critical in applications like autonomous vehicles, biometric recognition (e.g., face, iris, 
fingerprint, gait, etc), medical imaging, augmented reality, and surveillance, and is especially 

 
6 “Adversarial AI” can also be referred to as Adversarial AI Attacks, AI-Based Attacks, AI Adversarial Attacks, Adversarial 

Attacks in Age of AI, Adversarial Attacks on Machine Learning, Adversarial Attacks on Neural Networks, Adversarial Attacks, etc.  
7 The upper-right quadrant, an “AI-based Attack on an AI-based System”, is the intersection of AAI and CAI, so at least part of CAI 

was incorporated in the workshop’s content. 
8  Henninger, A. (DHS S&T). “DHS S&T AAI Lexicon and Use Case Considerations: Present and Future.” page 3. Presented at 

the DHS S&T Risks and Mitigation Strategies for Adversarial AI Threats. June 15, 2023. 
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important to DHS as many homeland security use cases require the ability to detect persons, 
objects, and events of interest.  

• AR is a field that focuses on the automatic identification and categorization of audio signals or 
sounds, enabling computers to interpret and understand audio data from the world, much like 
human auditory perception. Key components include classification, keyword identification, 
speaker recognition, and noise detection and reduction. It is critical in applications like speech 
recognition, automatic transcription, voice-controlled systems, and acoustic event detection, and 
is especially important to DHS as many homeland security use cases require the ability to 
automatically recognize speech or non-speech patterns. 

• NLP is a field that focuses on the interaction between computers and human languages, enabling 
computers to understand, interpret and generate human language. Key components include text 
and language understanding, converting speech to text, language translation, information 
extraction, and text classification, and is especially important to DHS as many homeland security 
use cases require the ability to glean information from text or voice data. 

 
Many of the AAI examples offered throughout this report are based on these foundational technologies or 
the functions they support. 
 

 
 
Figure 1.2. Conceptual Framework of Relationships Between Technologies and Functions that 
Support DHS Missions.9 Theoretically, there might be direct connections between technologies and 
mission too, or connections traversing through other functions that have yet to be identified. For 
example, one could connect CV transportation security directly, to represent passenger and baggage 
scanning, or could interpret that task as being a part of a command and control (C2) intelligence 
surveillance and reconnaissance (C2ISR) mission (as the figure is currently configured), or could 
imagine a new function, “Cargo Scanning.” 
 

Signal processing technologies (e.g., CV, AR, etc.) and the ability to process enormous corpuses of text 
(e.g., NLP) can either support DHS missions directly or underlie higher order functions (e.g., biometrics, 
C2ISR) that, in turn, support DHS missions. For example, in biometrics, AR ensures the legitimacy of 
voice-based authentication, NLP harnesses linguistic patterns or even text-based patterns for user 
authentication, and CV plays a foundational role in facial recognition, iris and retina scanning, and gait 
recognition, to name a few. C2ISR functions benefit from AR in the detection and analysis of critical 
auditory cues (e.g., adversary communications, equipment sounds, etc.) providing valuable intelligence 
for situational awareness. NLP aids C2ISR by processing and extracting actionable insights from vast 
amounts of textual data, and CV facilitates target tracking and the analysis of imagery and video in 
support of reconnaissance efforts. 

 
9 This is not a complete taxonomy or functional decomposition as one might find in the Department of Defense Joint Capability 

Areas.  



 

8 
 

 
The advantage of this decomposition is that it facilitates an efficient high-level assessment of AAI threats 
and risks. That is, where appropriate, threats and risks identified at the technology level or functional 
level can be generalized across missions.  
 

1.3 Assessment of Risks and Mitigation Strategies for AAI Threats 
The cross product of scope discussed in section 1.1 and framework discussed in section 1.2 is essentially 
the roadmap for this study and the remainder of this document. The next section, section 2, introduces 
AAI concepts and attacks in the context of Figure 1.1. Section 3 considers these AAI attacks notionally in 
the context of DHS missions, supporting functions, and their underlying technologies in Figure 1.2. 
Section 4 peers into the future and offers observations on emerging technologies and how they might be 
affected by AAI. Section 5 discusses the importance of international partnerships, and lastly section 6 
reviews opportunities key to establishing an effective AAI/CAI ecosystem. 
 
Appendix A, referenced throughout subsequent sections of this document, presents a synthesis of the 
range of AAI mitigation strategies being explored to address the risks identified in sections 2 and 3. It is 
important to recognize that while complete elimination of some vulnerability is theoretically ideal, it is 
practically impossible without impacting the performance of the system. For this reason, emphasis must 
be placed on managing risk with risk-based methods vice eliminating risk altogether.  
 

2 Adversarial AI Types 
In this section, we describe a range of different AAI attacks. Section 2.1 describes the AI-based attacks 
against AI-based systems (upper right quadrant in Figure 1.1), with focus on machine learning (ML) 
systems. Section 2.2 describes generative deceptive AI attacks against non-AI-based systems, usually 
humans (lower right quadrant in Figure 1.1). Finally, Section 2.3 coins the term “Inverting AI objectives” 
to describe a dual-use AI risk and the attacks possible as a result.  
 

2.1 Adversarial Machine Learning Attacks on AI-based Systems 
A myriad number of Adversarial Machine Learning (AML) attacks can potentially compromise DHS 
ML-based systems. These attacks can be performed either during training—while the model is still being 
trained and prior to its release, or during inference—after the model is released and used as part of the 
system. These attacks can be used to achieve different adverse effects depending on the goal of the 
adversary. For example, an attacker may try to evade being detected by attempting to extract information 
from or causing false alarms in ML systems.10 These attacks can usually be divided into four (4) main 
categories as shown in Fig. 2.1. In the following sections we provide a general overview of each of these 
attack categories. 
 

 
10 It is important to note that usually an ML algorithm is just a subset of a larger system, and that attacking it may not be sufficient 

to truly achieve the desired outcome. 
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Adversarial Machine Learning – Panel 1

• Poisoning – modify
training data to add
backdoor

• Inference - learn
information on private data

• Extraction - steal a
proprietary model

• Evasion - modifying input
to influence model

https://github.com/Trusted-AI/adversarial-robustness-toolbox

Figure 2.1. Framework for Select Adversarial Machine Learning Attacks 11 

As implied in Figure 1.1 and applied to Figure 2.1, there are a number of characteristics related to attacks 
on AI-based systems (or more generally, model-based inferencing processes), that dictate the complexity 
of the attack. These attack characteristics can fall into several different categories depending on the type 
of access an adversary has to the system as well as in what domain (digital or physical) the attack is 
conducted. 

Type of access: 
1. In a white-box attack scenario, the adversary has access to the entire system including model

architecture, parameter values, preprocessing methods, and others. Although this scenario is less
likely due to the need of such access, it should not be dismissed due to its power to generate
strong attacks.12

2. In a black-box attack scenario, the adversary has access only to the input and/or the output of the
model. Depending on the type of attack, this might require querying the model multiple times to
generate a perturbation. These attacks are more realistic but tend to be somewhat less effective
than white-box attacks.

3. A gray-box attack scenario is a general name for cases in which an adversary does not have
access to the full system but might be able to observe certain properties of the model. This can
include knowing the output of certain layers in a deep learning system or knowing only the
architecture of a deep learning model but not the weight values.13

Attack domains include: 
1. Digital attacks occur completely in the digital domain. That is the perturbation is applied by

directly changing the value of the data stored in the digital format. This allows for more precise
perturbations but requires access to the digital data.

11 Henninger, A. (DHS S&T). “DHS S&T AAI Lexicon and Use Case Considerations: Present and Future.” page 6. Presented at 
the DHS S&T Risks and Mitigation Strategies for Adversarial AI Threats. June 15, 2023. 

12 Examples where this access may be available are through third-party model developers. 
13 Because many models are pretrained on open datasets, there may be embedded biases or errors that can be exploited without 

full knowledge of the fine-tuned model.  
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2. Physical attacks are ones in which the perturbation is applied in the physical world before the 
data is captured and digitized. These attacks tend to be easier to apply since there is no need for 
digital access but tend to be harder to generate. 

 
Lastly, specificity of the attacker’s goal14 is another important characteristic shared amongst the attack 
types, and loosely coupled to the type of access discussed earlier. Attack specificity characteristics are 
described in more detail (under the heading “Adversary’s goals”) in subsequent sections on different 
types of AML attacks. 
 

2.1.1 Evasion Attacks 
An evasion attack occurs during inference and is a deliberate and malicious manipulation of an AI-based 
system’s input data (i.e., inferencing data) to deceive or mislead the AI model such that it produces 
incorrect or unintended results. This is typically done by subtly modifying the input data in such a way 
that it is possible to fool the AI-based systems and subsequently evade detection.15 As such, this attack 
can be thought of as a form of camouflage (i.e., what kind of pattern can be added to the input data such 
that the AI-based system will not detect or identify it correctly). Although camouflaging is not a new idea, 
the nature of AI-based systems, and more specifically the deep learning methods they are based on, make 
evasion attacks more sophisticated than traditional camouflaging. Specifically, it has been shown that 
these inputs to AI-based systems can be “camouflaged” by very small perturbations that are imperceptible 
to the human eye. This makes the nature of evasion attacks unique and the mitigation strategies used to 
address it need to be novel as well. 
 
2.1.1.1 State of the Practice: Evasion Attacks 
Particularly in classification tasks, evasion attacks are usually concerned with how to calculate the 
“camouflage,” also called the adversarial perturbation, in such a way that will fool the ML model while 
remaining unnoticeable or at least unsuspicious to a human viewer. Examples of vision-based evasion 
attacks are provided in Figure 2.2. These evasion attacks can be used in many ways against different AI-
based systems. For example, using clothing with a certain perturbation, a person might be able to evade a 
system trying to recognize pedestrians. What makes these attacks difficult to detect is that usually these 
perturbations can be very small or appear to look like other natural objects/patterns, thus not raising an 
alarm when viewed by a human observer. 16 There are a variety of methods that can be used to generate 
evasion attacks. The two most often explored include: 

1. Gradient-based attacks17 (e.g., Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm 
(or L-BFGS), Fast Gradient Sign method (FGSM), Carlini & Wagner attack,18 etc.), which 
require access to the model’s gradients are powerful mathematically optimized attacks. These 
require white-box knowledge. 

 
14 Is the attack general in nature (e.g., degrade performance, erode user trust, etc.) or specific in nature (e.g., cause a specific false 

positive, access a particular data sample, etc.). 
15 I. Goodfellow, “Explaining and Harnessing Adversarial Examples,” (March 2015): https://doi.org/10.48550/arXiv.1412.6572. 
16 Evasion attacks are also relevant in other modalities such as audio recognition (AR) or natural language processing (NLP). That 

is, in NLP-based tasks (e.g., spam detection, sentiment analysis, etc.) or AR-based tasks (e.g., sound event detection, speech recognition, 
etc.) attackers can craft inputs (text or audio, respectively) that appear benign to humans but are designed to trigger false positives or 
negatives in the AI-based system’s classification output.  

17 K. Ren, et al, “Adversarial Attacks and Defenses in Deep Learning,” (March 2020):  
https://www.sciencedirect.com/science/article/pii/S209580991930503X#b0020. 

18 N. Carlini, et al, “Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods,” (November 2017) 
(https://arxiv.org/abs/1705.07263. 

https://arxiv.org/abs/1412.6572
https://doi.org/10.48550/arXiv.1412.6572
https://www.sciencedirect.com/science/article/pii/S209580991930503X#b0020
https://www.sciencedirect.com/science/article/pii/S209580991930503X#b0020
https://arxiv.org/abs/1705.07263
https://arxiv.org/abs/1705.07263
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2. Confidence score attacks (e.g., Zeroth-order optimization attack, or ZOO)19 Simultaneous 
Perturbation Stochastic Approximation, or SPSA,20 etc.) use the outputted classification 
confidence to estimate the gradients of the model, and then perform similar smart optimization to 
gradient-based attacks above. These are black-box attacks. 

 

 
 

Figure 2.2. Examples of Evasion Attacks.21 In Figure 2.2., the “stop sign” example demonstrates a 
physical attack (as discussed in section 2.1). That is, an attacker manipulates the physical attributes in 
the real work (e.g., attaches something like duct tape or a placard to a sign, etc.) and subsequently 
tricks the model into classifying the object incorrectly.22 The Reese Witherspoon example, where an 
image (i.e., digital input to the model) is perturbed with intent of causing the model to misclassify, is an 
instance of a digital attack (also discussed in section 2.1).  
 

Adversary goals: 
1. In an untargeted, general, or availability attack the goal of the adversary is to mislead the 

classifier to predict any incorrect outcome. 
2. In a targeted or integrity attack the goal of the adversary is to add noise to a benign example such 

that the classifier predicts a particular incorrect label for the example. 
 

2.1.1.2 Defenses Against Evasion Attacks 
The goal of the mitigation strategies for evasion attacks is to ensure that the perturbation needed to fool 
the model is so large that it is deemed impractical. Many defenses have been shown to be somewhat 
effective against these attacks, and more are being proposed as this is still an active research area.23 These 
defenses range from methods implemented during training to others used during inference time. Most of 
these methods do not mitigate the risk completely and often do not transfer well between different types 

 
19 P. Chen, et al, “ZOO: Zeroth Order Optimization-based Black-box Attacks to Deep Neural Networks Without Training 

Substitute Models,” (November 2019):  https://arxiv.org/abs/1708.03999 
20 J. Uesato, et al, “Adversarial Risk and the Dangers of Evaluating Against Weak Attacks,” (February 2018):   

http://proceedings.mlr.press/v80/uesato18a/uesato18a.pdf 
21  Farrell, T (Sandia National Labs). “Evasion Attacks” page 3. Presented at the DHS S&T Risks and Mitigation Strategies for 

Adversarial AI Threats. June 15, 2023. 
22 There the researchers attached duct-tape to the stop sign and caused it to convert a “stop sign” into a speed limit sign as judged 

by a neural network-based classifier. 
23 Yuan, et al., Adversarial Examples: Attacks and Defenses for Deep Learning – Secs. VI. 

https://arxiv.org/abs/1708.03999
https://arxiv.org/abs/1708.03999
https://arxiv.org/abs/1708.03999
http://proceedings.mlr.press/v80/uesato18a/uesato18a.pdf
https://proceedings.mlr.press/v80/uesato18a/uesato18a.pdf
https://proceedings.mlr.press/v80/uesato18a/uesato18a.pdf
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of models and use cases. Moreover, some are basic cybersecurity defenses. A short list would include 
application programming interface (API) request limits, network/defensive distillation, detection 
techniques, trusted capture, adversarial (re)training and feature squeezing,24, 25,26  all of which are 
discussed in Appendix A.  
 

2.1.2 Data Poisoning  
Whereas model evasion attacks achieve a misclassification goal by perturbing the input data over which 
the model performs inferencing tasks, data poisoning is an attack on training data where an adversary 
injects or modifies data to introduce bias or otherwise corrupt the data, with the intent of trying to 
manipulate the behavior of the underlying ML model (instantiated as an algorithm in a software system). 
While the result is still to evade detection, the method and time scale is different than an evasion attack.  
  
Data poisoning attacks can include decreasing the performance of the model in general27 or creating a 
backdoor attack where specific inputs yield wrong outputs.28  For example, an adversary might alter the 
data in such a way that the trained model behaves well under most conditions, but will make wrong 
decisions when the adversary wishes, thus enabling some input to evade detection. Although these types 
of attacks generally require direct access to the training data and are sometimes hard to execute, these 
attacks are most successful when the training data is nonstationary. That is, especially in AI-based 
systems that require periodic retraining and use samples from operational use in that retraining, the 
attacker has an opportunity to inject poisoned samples into the training set. Also, in some cases, much 
training data is provided through a range of sources (e.g., scraping the internet, etc.). These collection 
methods also provide opportunities to attackers to inject poisoned data.29 Lastly, for direct access to the 
training database, the attacker would use an insider threat, supply chain, or more traditional cyber-attacks. 
 
2.1.2.1 State of the Practice: Poisoning Attacks 
To generate a data poisoning attack the adversary must calculate the optimal way to change the data to 
achieve the desired goal.30 These attacks can generally be categorized by the different methods used to 
alter the training data. More specifically, we can divide the attacks into three main categories: 
 

1. In label flipping attacks, the adversary changes labels of the existing training data. In this 
scenario, the adversary needs direct access to the training data. This can be done randomly or 
more selectively to achieve the adversary’s goals with greater accuracy. 

2. In data perturbation attacks, the adversary perturbs the training data without altering the labels 
themselves. Although this also requires direct access to the training data, these attacks can be 
more subtle and less detectable since commonly these perturbations are very small and 
imperceptible. Thus, the training data itself may not seem to be poisoned. These attacks can be 
designed to achieve different goals.  

3. In data injection attacks the adversary adds new training data to the training set. This is especially 
effective for models that need to continuously learn and thus are constantly collecting data 
making it easy to use this type of attack without the need to resort to cyber-attacks. 

 
24 W. Xu, et al, “Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks,” (February 2018):    

https://dx.doi.org/10.14722/ndss.2018.23198 
25 N. Carlini, “Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods,” (November 2017): 

https://arxiv.org/abs/1705.07263. 
26 F. Tramer, “On Adaptive Attacks to Adversarial Example Defenses,” (October 2020): https://arxiv.org/pdf/2002.08347v2. 
27 Sometimes referred to as a general attack or an availability attack. 
28 Sometimes referred to as a targeted attack or an integrity attack. 
29 N. Carlini, et al, “Poisoning Web-Scale Training Data Sets is Practical,” (February 2023)      

https://arxiv.org/pdf/2302.10149.pdf. 
30 This is aided or impeded by the degree of insight (white box, grey box, black box) the attacker has in the model’s underlying 

phenomenology.  

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-4_Xu_paper.pdf
https://dx.doi.org/10.14722/ndss.2018.23198
https://arxiv.org/abs/1705.07263
https://arxiv.org/abs/1705.07263
https://arxiv.org/pdf/2002.08347v2.pdf
https://arxiv.org/pdf/2002.08347v2
https://arxiv.org/pdf/2302.10149.pdf
https://arxiv.org/pdf/2302.10149.pdf
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Adversary goals: 
1. In an untargeted, general, or availability attack, the goal of the adversary is to contaminate the 

training data used to build an ML model that will result in generally incorrect or biased 
predictions. This type of instability or poor performance, and commensurate loss of user trust, is 
viewed as a constraint on availability when the model is deployed in real-world applications. 

2. In a targeted or integrity attack, the goal of the adversary is to contaminate the training data used 
to build an ML model that will result in in specific incorrect or biased predictions on samples of 
the data yet perform well on all other data. This type of performance is viewed as a type of 
compromise that achieves very precise goals (e.g., classify malware as benign software). To 
achieve this, the attacker requires knowledge of the exact targeted testing samples at training 
time. 

 
One of the better-known data poisoning attacks, specifically data injection, corrupted Microsoft’s Tay,31 a 
chatbot used to engage with users in conversations and learn from their interactions. Tay quickly became 
known for its offensive and inappropriate responses, the result of data poisoning attacks through its 
organic use on Twitter. Tay, designed to learn from its conversations with users, had incorporated this 
inappropriate language into its responses. Another real-world example involves Google’s VirusTotal,32 a 
popular crowdsourced virus-sharing platform and scanning service, which many antivirus vendors use to 
augment their own data. While attackers have been known to use VirusTotal to test their malware before 
deploying it, to evade detection, there have been instances of it being used to engage in a more persistent 
poisoning campaign attempting to misclassify malware detection. 
 
Figure 2.3 provides an example of how these data poisoning attacks work on a classification algorithm. 
While this example focuses on injection attacks, the principles could apply to any three of the data 
poisoning attack types discussed in the preceding section. 
 

 
 

Simple Example Data Poisoning via Insertion

3

Source: Koh, P. W., Steinhardt, J., & Liang, P. (2022). Stronger data poisoning attacks break data
sanitization defenses. Machine Learning , 1-47.

Figure 2.3. Examples of how Data Poisoning Attacks through Injection work.33 In Figure 2.3., an 
attacker adds or changes even just a small fraction of new training points (Dp) to degrade the 
performance of the trained classifier on a test set. The figure on the left illustrates a model that might 

 
31 O. Schwartz, “In 2016, Microsoft’s Racist Chatbot Revealed the Dangers of Online Conversation,” (November 2019) 
32 A. Oprea, “Poisoning Attacks Against Machine Learning: Can Machine Learning Be Trustworthy?” (November 2022): 

https://www.computer.org/csdl/magazine/co/2022/11/09928202/1HJuFNlUxQQ. 
33  Price, C. (RAND). “Panel 1. Adversarial Machine Learning: Data Poisoning” page 6. Presented at the DHS S&T Risks and 

Mitigation Strategies for Adversarial AI Threats. June 15, 2023. 

https://www.computer.org/csdl/magazine/co/2022/11/09928202/1HJuFNlUxQQ
https://www.computer.org/csdl/magazine/co/2022/11/09928202/1HJuFNlUxQQ
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otherwise correctly classify most of the data but can be made to learn a significantly different decision 
boundary by an attacker who changes just a small amount of poisoned data (as in the middle figure). 
Right figure shows the impacts of data sanitization on the model’s output. 

 
2.1.2.2 Defenses against poisoning attacks 
These attacks can be extremely hard to detect because the models tend to require vast amounts of training 
data and it is unwieldy to inspect each individual sample. Additionally, many of the poisoning techniques 
can be subtle and therefore hard to detect. For example, especially in the case of continuous learning, it 
can be difficult to detect persistent threats who are able to adapt over time in stealthy ways. For reasons 
like these, preventing data poisoning attacks requires a multi-faceted approach that involves a 
combination of robust practices, advanced techniques, and ongoing vigilance. Some effective strategies to 
help mitigate the risk of data poisoning attacks include regular data sanitization and cleaning, data 
diversity, adversarial training, ensemble methods, feature engineering, monitoring and detection, user 
access controls, regular model retraining, robust algorithms, performance benchmarking, drift detection, 
and user education and awareness. These are elaborated in Appendix A. It is important to note that data 
poisoning prevention is an ongoing effort. As attack techniques evolve, defense strategies should evolve 
as well. Combining these strategies and staying informed about the latest developments in data poisoning 
attacks will help build more secure and resilient ML models. 
 

2.1.3 Model Extraction  
Model extraction is a type of attack in which an adversary tries to extract sensitive information or 
replicate the functionality of an ML model by using queries and responses from the model. This attack is 
particularly concerning when the ML model is a proprietary or valuable asset, such as a well-trained 
model for classification, regression, or other tasks. By extracting the ML artifacts, adversaries are 
essentially stealing intellectual property be it in the form of parameters, weights, data, or even in terms of 
services defined by Machine Learning as a Service, or MLaaS, providers. Although these attacks are not 
unique to AI, and the threat of reverse engineering algorithms has always been around, these attacks are 
particularly damaging to deep learning-based systems due to the amount of data and time required for 
training. 
 
2.1.3.1 State of the Practice: Model Extraction Attacks 
In a typical model extraction attack, the attacker submits a series of queries to the target ML model and 
then collects a significant number of responses from the model, gaining insights into how it behaves and 
makes predictions. These input/output pairings can be used to subsequently train a surrogate model that 
approximates the behavior of the target model, attempting to mimic the predictions of the original model. 
Although all extraction attacks are based on presenting input and using the output to train a surrogate 
model, they differ both in terms of the type of output they require and in terms of the adversary’s goals. 
Some extraction attacks require only the final output from the model (e.g., the label in a classification 
model). These are usually more realistic since these types of outputs are usually readily available. Other 
extraction attacks require more than just the final output to include output of other layers in a model (e.g., 
the logits or probabilities in a classification model) or even the gradients of the model. An example model 
extraction attack is provided in Figure 2.4., Example 1b (Use a self-detonating unmanned autonomous 
system (UAS) to take down an UAS).  
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Figure 2.4. Examples of model extraction attack. In contrast to Example 1a (a simple kinetic attack), 
the scenario assumes that the self-detonating UAS is extracting a model of the blue UAS’s behavior 
(time, space, position information) and projecting its behavior into the future to be able to crash into it. 
This ability to build a model based on the behavior of the AI-based system is one form of model 
extraction. 

There are a variety of methods that can be used to generate extraction attacks. Two classes that are often 
explored include: 

1. Data-manipulation-based (e.g., Jacobian-based augmentation (JBA) model attacks,34  Data-free
extraction attacks35, etc.). Work by analyzing the model’s sensitivity to strategically perturbed
inputs, allowing adversaries to understand model behaviors without relying on extensive
sampling.

2. Active learning (AL) extraction attacks.36 AL-based attacks usually do not generate data, rather,
they learn some sampling strategy to sample those informative data from their query sets and ask
victims to label these data to construct a fake dataset.

Adversary goals:37 
1. In accuracy extractions, the goal of the adversary is to train a model that performs at least as well

(or better) than the target model. This goal does not try to actually steal the target model itself, but
instead attempts to use its output to train a high-performance surrogate model.

2. In fidelity extractions, the adversary’s goal is to create a surrogate model that will be functionally
equivalent to the target model under a certain input distribution. In this case, since the goal is to
produce a “digital twin” of the model we expect the surrogate model to make the same errors as
the original model.

34 N. Papernot, “Practical Black-Box Attacks against Machine Learning,” (March 2017): 
https://www.computer.org/csdl/magazine/co/2022/11/09928202/1HJuFNlUxQQ. 

35 J. Truong, “Data-Free Model Extraction,” (March 2021): https://arxiv.org/abs/2011.14779. 
36 T. Orekondy , “Knockoff Nets: Stealing Functionality of Black-Box Models,” (December 2018): 

https://arxiv.org/abs/1812.02766. 
37 M. Jagielski , “High Accuracy and High Fidelity Extraction of Neural Networks,” (March 2020): [1909.01838] High Accuracy 

and High Fidelity Extraction of Neural Networks (arxiv.org). 

https://arxiv.org/abs/1602.02697
https://www.computer.org/csdl/magazine/co/2022/11/09928202/1HJuFNlUxQQ
https://arxiv.org/abs/2011.14779
https://arxiv.org/abs/2011.14779
https://arxiv.org/abs/1812.02766
https://arxiv.org/abs/1812.02766
https://arxiv.org/abs/1909.01838
https://arxiv.org/abs/1909.01838
https://arxiv.org/abs/1909.01838
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2.1.3.2 Defenses Against Model Extraction Attacks 
Organizations that rely on ML models for competitive advantage or security-sensitive applications need 
to be aware of the risks posed by model extraction attacks and take appropriate measures to mitigate 
them. This might involve a combination of strategies such as adding noise to model responses, limiting 
query access, using differential privacy, randomized responses, ensemble models, input transformation, 
obfuscation techniques, throttling and monitoring, watermark and ownership proof, legal protection, 
regular model updates, secure deployment environment, and red-teaming and testing. These are 
elaborated in Appendix A. It is important to note that no single approach is foolproof and there is a 
deliberate trade space to be considered in engineering a combination of these strategies to deter model 
extraction attacks. The choice of strategies will depend on the specific use case, the sensitivity of the 
model, and the potential impact of an attack on the organization. 

2.1.4 Inference Attacks 
Using the National Institute of Standards and Technology (NIST) AML Taxonomy,38 inference attacks 
refer to privacy attacks on a model that allow an adversary to gain information about data used in training. 
This can be done to steal private information about an individual or a company, either detecting their 
existence in a database or even recovering secure information. What makes this attack unique to AI, is 
that the data itself does not need to be accessed for this attack to be successful. Although the ML model 
does not explicitly store the data, since it uses the data during training, it implicitly contains information 
about it. Inference attacks are methods to extract information about training data from the model itself. 

2.1.4.1 State of the Practice: Inference Attacks 
To gain information about the data, the adversary needs to query the model with different inputs. 
Depending on the exact goal of the adversary, there are several categories of inference attacks: 

1. In a data reconstruction attack, a bad actor can recover an individual’s data from released
aggregate statistical information. This is a black-box attack (no need to know the model’s
parameters, only input-output) in which the adversary attempts to reconstruct the dataset. This
can be done through querying the dataset thousands of times to increase accuracy, thereby
reconstructing the training data.

2. Memorization attacks are when an adversary can extract training data from the model. This can
happen with AI designed to recognize text inputs where an adversary can input a partial input of a
piece of data and the AI fills out the remainder of the data that it has memorized from its dataset.

3. Membership inference attacks are where an adversary can determine whether there is a particular
record or data sample in the training dataset used for the statistical or ML algorithm. This can be
either a white-box or a black-box attack and can be used against trained ML models to search for
a specific incident or record within the dataset.

4. Property inference attacks attempt to learn general features or attributes of the training data to
group different elements of a population to determine sensitive information.

Examples of these inference attack types are provided in Figure 2.5. The adversary goals, in this class of 
attacks, is highly coupled to the attack method. 

38 A. Oprea, “NIST AI 100-2e2023 ipd, Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and 
Mitigations,” (March 2023): https://doi.org/10.6028/NIST.AI.100-2e2023.ipd. 

https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-2e2023.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-2e2023.ipd.pdf
https://doi.org/10.6028/NIST.AI.100-2e2023.ipd
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Figure 2.5. Examples of inference attack types. 39 In Figure 2.5., the left top shows an attacker can 
recover an individual’s image by inferring information from the target model's training data based on 
the model's prediction values. In the top right, the attacker can recover individual training examples 
through querying a language model. The bottom left shows that an attacker can determine whether a 
sample existed in the model’s training data set given a data sample and black-box access to a model’s 
API. The bottom right shows that an attack can access sensitive information by determining whether a 
particular record or data sample was part of the training dataset for the published model. 

2.1.4.2 Defenses Against Inference Attacks 
Preventing inference attacks is crucial to safeguarding sensitive information and maintaining the integrity 
of the models, as the attacks exploit subtle patterns in model outputs to extract valuable data about the 
training data itself. A variety of relevant mitigation strategies exist including use of differential privacy, 
federated learning, adversarial training, model distillation, input perturbation, restricted access to models, 
secure multi-party computation, monitoring model behavior, etc. These techniques are described in 
Appendix A. Implementing the right effective defense strategies like these is vital to managing these 
risks, and these should be combined and tailored depending on the specific context, threat landscape, and 
performance requirements. 40 

2.2 Generative Deceptive AI 
As opposed to attacking an AI-based system, AI can also be used to generate data that can deceive other 
systems or even humans themselves. Using AI-based methods, adversaries can generate realistic data that 
cannot be discerned as fake and sometimes require a significant amount of data to test on. However, since 
data is usually easily available, this is not typically an obstacle for an adversary, and it is shockingly easy 
to produce a model accurate enough to fool the public eye.41  The technology is advancing rapidly, and 
the once high cost of producing quality fake content is decreasing, paving the way to easier and more 

39 Liaghati, C. (MITRE). “Panel 1. Adversarial Machine Learning: Inference Attacks” pages 3-6. Presented at the DHS S&T Risks 
and Mitigation Strategies for Adversarial AI Threats. June 15, 2023. 

40 It is worthy to acknowledge that many of these strategies come with performance trades. 
41 N. Kobis, “Fooled twice: People cannot detect deepfakes but think they can,” (November 2021): 

https://www.sciencedirect.com/science/article/pii/S2589004221013353.  

https://www.sciencedirect.com/science/article/pii/S2589004221013353
https://www.sciencedirect.com/science/article/pii/S2589004221013353
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successful attacks and a greater need for efforts to counter and mitigate these threats. The subsequent 
sections describe three types of attacks in the generative deceptive AI genre:  Deepfakes, morphing, and 
LLM misuse in sections 2.2.1, 2.2.2, and 2.2.3, respectively. 

2.2.1 Deepfake Attacks 
Deepfakes, a portmanteau of “deep learning” and “fake,” are sophisticated AI-augmented digital media 
(e.g., audio, video, or images) made to convincingly portray something else, often resulting in startingly 
realistic yet entirely fabricated content. They are oftentimes used to impersonate a person. They are 
usually meant to be consumed by humans (though they can also be consumed by other AI-based or non-
AI-based software systems) and might require different degrees of accuracy to be effective, depending on 
the sophistication of the target. Although the generation of fake images and videos predates the current 
wave of AI (e.g., photo retouching, special effects in movies, etc.), AI has made this process so much 
simpler and cheaper that it presents a unique threat, which necessitates unique countermeasures. While 
deepfakes have found application in entertainment and digital art, their potential for deception and 
misinformation has raised profound ethical, legal, and societal questions, challenging our understanding 
of truth and authenticity in the digital age. 

2.2.1.1 State of the Practice: Deepfake Attacks 
The field of deepfake technology is rapidly evolving. Deepfakes are becoming easier to create through 
broad access to open-source tools and novel methods that require less training data.42  In parallel, the 
content is more believable and hence, the task of differentiating legitimate and generated images and 
videos is becoming more difficult. This combination leads to more successful attacks in greater quantities. 
Deepfake attacks are unique to ML since other traditional methods are not able to produce high-quality 
content as compared to the novel deep learning methods. Although deepfakes can be used in many 
different modalities, here we focus on visual and audio data.43 Deepfake methods can be divided into 
different categories, both dependent on the method used to create them in addition to the goals the 
adversary is trying to achieve. The interested reader is referred to the “DHS S&T Digital Forgeries 
Report” for more information.44 

Deepfake methods: 
1. Generative adversarial networks (GANs) are composed of two competing neural networks. While

one network (the generator) is trying to generate realistic looking data, the other (i.e., the
discriminator) is trying to tell the difference between real and generated data. By training both of
these networks in parallel, GANs have been very successful in image generation.

2. Diffusion-based methods use a completely different approach when generating fake content. In
general, the diffusion model works by successively adding noise to real images, and the learning
is the reverse process of removing the noise using deep neural networks. Learning this noise
removal process makes it possible to start from an image of pure noise and recover a completely
novel image.

Deepfake goals:45 
1. Identity swap attacks are ones in which the adversary tries to replace an identity in a certain

image/video with a different person’s face, thus making it look as if this new person is
performing the same actions as the former.

42 Y. Mirsky, “The Creation and Detection of Deepfakes: A Survey,” (December 2020): 
https://dl.acm.org/doi/10.1145/3425780. 

43 Because of recent advancements in LLMs, we leave the discussion of language to Sec. 2.2.3. 
44 “S&T Digital Forgeries Report: Technology Landscape Threat Assessment,” (January 2023): https://www.dhs.gov/science-

and-technology/publication/st-digital-forgeries-report-technology-landscape-threat-assessment. 
45 Z. Akhtar, “Deepfakes Generation and Detection: A Short Survey,” (January 2023): https://doi.org/10.3390/jimaging9010018. 

https://dl.acm.org/doi/10.1145/3425780
https://dl.acm.org/doi/10.1145/3425780
https://www.dhs.gov/science-and-technology/publication/st-digital-forgeries-report-technology-landscape-threat-assessment
https://www.dhs.gov/science-and-technology/publication/st-digital-forgeries-report-technology-landscape-threat-assessment
https://www.dhs.gov/science-and-technology/publication/st-digital-forgeries-report-technology-landscape-threat-assessment
https://www.mdpi.com/2313-433X/9/1/18
https://doi.org/10.3390/jimaging9010018
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2. Face reenactment attacks are ones in which the adversary tries to change the facial expression of
a person in another image/video. These can be used to embarrass or project certain intents or
emotions on a specific individual.

3. Attribute manipulation attacks allow an adversary to change some of a person’s characteristics in
a certain image/video. This can include things like changing skin tone, age, or gender.

4. Novel synthesis attacks are ones in which a completely novel piece of data is created. This can
include for example the inclusion of an entire novel person instead of an already existing one.

2.2.1.2 Defenses Against Deepfake Attacks 
Defending against deepfake attacks involves a multifaceted approach aimed at being able to deter, detect, 
and disrupt. Detection algorithms employ ML techniques to scrutinize digital content for inconsistencies 
and signs of manipulation, providing an initial line of defense. Watermarking techniques can embed 
digital markers within legitimate media, making it possible to trace the source and verify authenticity. 
Source attribution, being able to trace back to the origin of a particular deepfake product and address the 
issue at the source, plays a pivotal role in holding malicious actors accountable, discouraging the creation 
and dissemination of harmful deepfakes. This points to other factors (e.g., educational, legal, 
psychological) beyond technical mitigations that may be important factors in a whole-of-government 
mitigation strategy. Defenses for deepfakes, be they media-based, image-based, or audio-based is an 
active research area.  

2.2.2 Morphing Attacks 
Morphing is an image manipulation technique that takes multiple facial images and blends them together 
to form an image possessing features of both faces—composite features from original images. The 
problem is that when used against facial recognition algorithms, the algorithm tends to match the morph 
to both people, leading to a false positive. These morphs can also be very difficult to detect, as officers 
have a short time frame to decide on the authenticity of the identification. Morphing is a current threat; 
across the European Union; over 1,000 morphed documents have been found in circulation.46   Morphing 
also poses a large problem with passports as many countries rely on mail-in passport applications. In 
these instances, an adversary can send in a morph of the applicant’s face that will pass the facial 
recognition software and then be sent back as a legitimate passport. This passport can then be used in 
many different places in the airport such as automated border control gates, self-service (CAT-2)47 kiosks, 
and Customs and Border Protection (CBP) simplified arrival systems.  

2.2.2.1 State of the Practice: Morphing Attacks 
The main challenge in creating face morphs is to generate face images in which the features of both 
identities are retained while ensuring that the image still appears to look like a real face and does not 
retain any artifacts that make it look doctored. An example of a morphing attack is provided in Figure 2.6. 
Importantly, a morphing attack, or any generative deceptive AI attack, can be prosecuted on an AI-based 
system, in which case it becomes the content used in an adversarial ML attack, or it can be prosecuted on 
a non-AI-based system, which could include human operators or non-AI-based software. 

46 C. Busch, “Morphing Attacks on Face Recognition Systems,” (October 2020): https://christoph-busch.de/files/Bonn-MAD-
201030.pdf. 

47 Next generation “Credential Authentication Technology” machines for automated identify verification being leveraged by the 
Transportation Security Agency. 

https://christoph-busch.de/files/Bonn-MAD-201030.pdf
https://christoph-busch.de/files/Bonn-MAD-201030.pdf
https://christoph-busch.de/files/Bonn-MAD-201030.pdf
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Figure 2.6. Example of face morphing.48 In Figure 2.6, the figures representing Subject A and Subject 
B are combined through any one of many techniques (e.g., interpolation, mesh deformation, etc.) to create 
a deepfake capable of using one picture as a means of identifying two people. This can be used to deceive 
human operators or automated facial recognition software. 

There are two main methods for the creation of such morphs: 49 
1. In landmark-based face morphs landmark points on the face are detected using either computer

vision (CV) techniques or applying manual marking. The landmarks are used to define geometric
transforms and alignment between two faces, allowing face pixels to be parametrically blended
from a donor face image into a target face image. These techniques work best when images have
similar lighting and subjects have similar skin tone.

2. Deep-learning based morphs use the power of generative AI such as GAN to generate more
realistic looking faces. For example, two natural face images are reverse projected in the GAN's
latent vector space, then the latent vectors are averaged and projected back to generate a face
image that is a combination of the two original faces. The advantage of these methods is the use
and the training of a discriminator, which tries to distinguish between real faces and fake ones.
With this built in analysis, these face morphs can achieve higher realism and not exhibit the
ghosting effects present in other methods.

Morphing goals:50 
1. Matching a database. An adversary submits a carefully doctored image during a visa or passport

application. That image can pass a 1: N search51 against a large target database by showing up
deep in the search result list (thus not identified as a target) or it can still pass a human visual
inspection.

48 Ngan, M. (NIST). “Panel 2. Generative Deceptive AI: Morphing Attacks” page 3. Presented at the DHS S&T Risks and 
Mitigation Strategies for Adversarial AI Threats. June 15, 2023. 

49 S. Venkatesh, “Face Morphing Attack Generation and Detection: A Comprehensive Survey,” (September 2021): Face 
Morphing Attack Generation and Detection: A Comprehensive Survey | IEEE Journals & Magazine | IEEE Xplore. 

50 F. Peng, “Face morphing attack detection and attacker identification based on a watchlist,” (June 2022): 
https://www.sciencedirect.com/science/article/pii/S0923596522000741. 
51 "Utility of 1:N Face Recognition Algorithms for Morph Detection," https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8430.pdf 
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https://ieeexplore.ieee.org/document/9380153
https://ieeexplore.ieee.org/document/9380153
https://ieeexplore.ieee.org/document/9380153
https://www.sciencedirect.com/science/article/pii/S0923596522000741
https://www.sciencedirect.com/science/article/pii/S0923596522000741
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8430.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8430.pdf
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2. Sharing identity credentials. An adversary enlists an accomplice to help him generate an ID that
they would not otherwise be able to gain. The adversary obtains an ID using the morph of their
face and that of the accomplice such that face recognition will match both people. This creates a
situation where both the adversary and their accomplish can share a single credential.

2.2.2.2 Defenses Against Morphing Attacks 
Previously, many of the studies on morph detection have been academic; however, there are now systems 
able to detect morphs. It is well understood that this is an arms race, as our mitigation systems improve, 
morphs will also improve. There are some solutions such as having an individual check IDs to be able to 
determine their validity; however, there are problems with this as previously mentioned. Using a trusted 
external capture service instead of allowing individuals to submit their own photo can reduce the 
likelihood of introducing morphed documents. Eliminating the ability to upload printed and scanned 
photos and requiring these photos to be in high resolution where possible can reduce this as it would 
require a live picture to be taken. Lastly, having a strong verification process such as verifying with an 
additional data source or using another biometric modality could prove to be valuable.  

2.2.3 Large Language Model (LLM) Misuse 
LLMs are models that have be designed to process natural language text and that have been trained on 
extremely large data sets (e.g., a significant portion of all the text that is available on the internet). These 
models have proven to be effective at a number of different text processing tasks (e.g., information 
extraction, content generation, etc.). While LLMs have been around for only a few years, they are 
considered a class of NLP, which has a long history in ML. These older models tended to follow a 
paradigm where the developers would collect annotated data that was very task-specific (e.g., recognizing 
certain topics in the text, sentiment analysis, translation between languages, etc.) used to train the model 
in a supervised way. Recently, there has been a directed focus on model improvements in the NLP 
paradigm that have led to new innovations, as exemplified by the transformer architecture, eventually 
leading to the introduction of LLMs circa 2018. 

There are three key aspects of LLMs that differentiate them from older NLP processing paradigms. First, 
these models are trained to achieve general-purpose understanding of NLP as opposed to being task 
focused, so these base models, also known as foundation models, can then be adapted to a number of 
specific tasks. Second, they are trained in a new way. Typically, LLMs make use of self-supervised 
training (in contrast to just supervised training) meaning they do not require human annotated data. 
Instead, they pull large amounts of internet data for training purposes and typically the developers will 
train them on the structure of a sentence, so they are able to predict, for example, what comes after 
truncated text or the masked words in a text from the context. However, asking the model to do that 
requires that the model learns a lot about the dynamics of natural language. A third differentiating aspect 
of LLMs has to do with the scale of the models themselves. At this point, it is typical to see LLMs on the 
order of hundreds of billions of parameters and moving towards trillions of parameters, which gives them 
tremendous representation power. Training an LLM can require exaflops of computation, despite 
potentially being trained on massively distributed compute clusters. It does require a high level of 
resources to train these kinds of models, but once trained they have been shown to perform extremely 
well on a wide variety of tasks. 

2.2.3.1 State of the Practice for LLM Misuse Attacks 
The generative ability for these models to create very realistic human-like text, opens the door for 
malicious actors to be able to engineer open-source information campaigns at scale. These models tend to 
do a good job at generating large quantities of realistic data and in some cases can maintain reasonably 
realistic interactions around this data. However, besides the threat posed by such misinformation 



22 

campaigns, there are other ways these models can be misused that are even more specific to the homeland 
security enterprise: 

1. Bias and lack of diversity in the training data create LLMs, which produces incorrect outputs.
Adversaries can train models on data that is biased in a specific manner, a form of data poisoning,
to achieve a goal of producing misinformation.

2. Prompt injection techniques can be used to cause the model to cause the model to follow
instructions not intended by the developer, potentially creating misinformation, even on well-
behaved and well-trained LLMs. For example, using specific prompts, it is possible to get the
model to generate false or harmful information (e.g., biased, violent, hateful, or otherwise
harmful text; reveal private information; and execute instructions on plugins) even when it was
specifically trained not to do so and despite guardrails. To successfully perform this attack, the
prompt needs to be carefully designed to exploit the model’s vulnerabilities.

3. Malware generation52 capabilities enable the creation of malicious code or deceptive scripts.
These models, when employed with malicious intent, can produce obfuscated code designed to
evade detection, posing a significant security risk.

The adversary goals, in this class of attacks, are highly coupled to the attack methods described in the 
preceding section.  

2.2.3.2 Defenses Against Large Language Model Misuse 
There are a variety of methodologies underlying different detection models for LLM misuse, but in 
general, LLMs and foundation models are a relatively new attack surface. There have not been large 
public disclosures of attacks on LLMs as the target of an evasion attack. Nevertheless, such attacks will 
become more prominent attack vectors as they get integrated into other systems and in various use cases 
across the government. OpenAI does maintain a set of usage-policies that indicate which attacks they 
might consider to be worthwhile (essentially ways around any security introduced by OpenAI to prevent 
these use-cases).53 AAI threats and defenses are discussed more extensively in Section 4.3. 

2.3 Inverting AI Objectives 
In recent years, we have seen the development of many different deep learning architectures that are able 
to produce state-of-the-art results on a variety of tasks from navigation to bioinformatics. As these models 
continue to push performance higher, it is important to consider what harm could result from altering or 
even inverting the objectives being optimized. That is, if a model can learn features important for a 
specific task, the same model can be used to achieve opposite goals by simply inverting the objective 
function. Although this risk has received less attention relative to the others described in this report, it is 
still a very real threat that should be addressed accordingly. 

Take for example a model used for drug discovery whose goal is to generate molecules with several 
optimized properties that can then lead to more effective medicine. 54 For this network to be successful in 
this task it needs to learn the important statistical features of molecules and how these features affect the 
different desired properties such as bioactivities towards multiple targets (how they behave), their drug 

52 M. Beckerich, “RatGPT: Turning online LLMs into Proxies for Malware Attacks,” (September 2023): 
https://arxiv.org/pdf/2308.09183.pdf 

53 “Open AI Usage Policies,” (March 2023): https://openai.com/policies/usage-policies 
54 Baldoni, J. et al. “Solving Hard Problems with AI: Dramatically Accelerating Drug Discovery Through a Unique Public-Private 

Partnership,” J. Comm. Biotech., vol. 25, 4, (2020). doi:10.5912/jcb954. 

https://arxiv.org/pdf/2308.09183.pdf
https://arxiv.org/pdf/2308.09183.pdf
https://openai.com/policies/usage-policies
https://openai.com/policies/usage-policies
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likeness (how they can be absorbed), and their synthetic accessibility (ease of synthesis).55 In an optimal 
setting, a pharmaceutical company might attempt to generate a molecule that has positive medicinal 
behavior while being druglike and easy to synthesize. However, this model can be easily trained to 
produce adversarial goals by simply changing the behavior to achieve negative results while keeping drug 
likeness and synthetic accessibility high, thus producing a dangerous and easy to synthesize drug. Notice 
that since much of the domain expertise is stored in the model architecture, this could be achieved by 
lesser experts as well, thus democratizing the process and making it much easier for adversaries to 
achieve such a goal.56 Other cases for such an attack can include defense scenarios in which an adversary 
changes the objective of an autonomous systems to attack its own side or code generation models trained 
with the objective of producing vulnerable code. An example of a workflow that could be inverted 
through an Inverting AI Objective attack is provided in Figure 2.5.57 

Figure 2.7. Example of an AI workflow that could be transformed through an Inverting AI 
Objective attack.58 

There are several ways an inverting AI objectives attack could be realized. One simple approach would be 
an inside threat in which a malicious person with access to the model and training procedure is able to 
alter the optimization function to achieve his or her goals. Another more sophisticated approach would 
require a cyber-attack to gain access to the objective function itself or to the entire workflow codebase 
and reestablishing it with the malicious objective function. Finally, given that many of these models are 
released publicly as open source for research purposes, an adversary might gain access to the models 
legally and simply retrain them with the new malicious objective function. 

As this type of attack has not been thoroughly studied, there are not currently any known mitigation 
strategies besides the more traditional cyber defenses to ensure that the objective function is not altered. 

55 X. Zeng, “Deep generative molecular design reshapes drug discovery,” (December 2022): ScienceDirect.com | Science, health 
and medical journals, full text articles and books. 

56 The model trained with the correct objective cannot be trivially inverted without retraining against the inverted loss — so non-
experts can only do this if they’re capable of editing the loss function and conducting a full training shot. 

57 Henninger, A. and Henz, B. (2023).  Homeland Security Site Update: From Science to Operations. HPC User Forum Fall 2023. 
September 6-7. Tuscon, AZ. 

58 Kusnezov, D. (2020). National Academies Workflow Discussion. Department of Energy. March 17, 2020. 

https://www.sciencedirect.com/science/article/pii/S2666379122003494/pdf?crasolve=1&r=810efbbe79009815&ts=1696438850324&rtype=https&vrr=UKN&redir=UKN&redir_fr=UKN&redir_arc=UKN&vhash=UKN&host=d3d3LnNjaWVuY2VkaXJlY3QuY29t&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&rh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&re=X2JsYW5rXw%3D%3D&ns_h=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ns_e=X2JsYW5rXw%3D%3D&rh_fd=rrr)n%5Ed%60i%5E%60_dm%60%5Eo)%5Ejh&tsoh_fd=rrr)n%5Ed%60i%5E%60_dm%60%5Eo)%5Ejh&iv=ec310d243c7318627d393935fa8708fe&token=30383265353036656234383136346137316666376634363761626436646665626232393839386163646430343630653830363438343632366335313538366562636531343a333938353565303130353334353932343666633039393164&text=&original=3f
https://www.sciencedirect.com/science/article/pii/S2666379122003494/pdf?crasolve=1&r=810efbbe79009815&ts=1696438850324&rtype=https&vrr=UKN&redir=UKN&redir_fr=UKN&redir_arc=UKN&vhash=UKN&host=d3d3LnNjaWVuY2VkaXJlY3QuY29t&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&rh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&re=X2JsYW5rXw%3D%3D&ns_h=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ns_e=X2JsYW5rXw%3D%3D&rh_fd=rrr)n%5Ed%60i%5E%60_dm%60%5Eo)%5Ejh&tsoh_fd=rrr)n%5Ed%60i%5E%60_dm%60%5Eo)%5Ejh&iv=ec310d243c7318627d393935fa8708fe&token=30383265353036656234383136346137316666376634363761626436646665626232393839386163646430343630653830363438343632366335313538366562636531343a333938353565303130353334353932343666633039393164&text=&original=3f
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Other theoretical mitigation strategies could include designing networks in such a way that when trying to 
achieve a negative objective they do not perform as well. Alternatively, and depending on the form of the 
attack, one might be able to gain some insights into inverting AI objectives given access to test, 
evaluation, verification and validation data and results, past and current. More research is required to 
determine the effectiveness of these types of strategies.  

3 Risks for Different DHS Domain Areas from Adversarial AI 
All forms of AAI (i.e., AML, generative deceptive AI, inverting AI objectives) are capable of impacting 
DHS missions and the underlying technologies supporting those missions. As described in Section 2, 
these AI-driven models are capable of generating images, code, and even audio and video that humans 
have difficulty differentiating from truth. This provides a potential to easily spread misinformation or to 
gain access or avoid detection. This section explores the technology such as AR, CV, and NLP and 
functions (e.g., biometrics and C2ISR) underlying DHS missions to identify the potential for how they 
could be exploited by AAI for nefarious purposes. The conceptual relationships between the underlying 
technologies, functions, and missions are expressed in Figure 3.1. 

3.1 Technologies 
Because CV, AR, and NLP technologies underlie higher order functions (e.g., biometrics, C2ISR) and 
missions important to homeland security, the vulnerabilities in these underlying technologies open higher 
order functions and missions to these same vulnerabilities and subsequent risks. For example,  

• CV vulnerabilities in baggage scanning applications in a transportation security use case are
generalizable to cargo scanning applications in a CBP smuggling use case.

• AR vulnerabilities in a communications scenario for the Coast Guard are generalizable to
communications scenarios for law enforcement.

• NLP vulnerabilities in immigration use cases could be generalizable to NLP vulnerabilities in
emergency management use cases.

Because of these kinds of relationships, reviewing potential vulnerabilities at a technology level provides 
a broad AAI foundation that is applicable to many DHS missions. The following subsections 3.1.1, 3.1.2, 
and 3.1.3 review CV, AR, and NLP technologies and their AI-related vulnerabilities, respectively. 

3.1.1 Computer Vision 
This section reviews threats, example attacks, and defenses related to AML and generative deceptive AI 
in the context of CV. 

3.1.1.1 Adversarial Machine Learning 
While all of the four types of threats from AML (Data Poisoning, Evasion Attacks, Model Extraction and 
Model Inference/Privacy) are relevant to DHS in the area of CV, experts deemed evasion attacks as the 
primary one of concern, since a lot of DHS interests are detection focused and depend on model-based 
inference (e.g. devices running facial recognition software, Transportation Security Administration [TSA] 
checkpoints with hardware and software for detection of prohibited objects, etc.), which make them 
vulnerable against such attacks, under certain conditions. 

Realistic Threats 
The threat of an evasion attack against a CV model is potentially exacerbated by the fact that in general, 
models used in government settings have a longer lifecycle, especially on “edge devices” where updates 
might require manual intervention and thus be more difficult to apply. Hence, it is possible that “legacy” 
models remain in the field for longer periods of time, and it takes longer to patch them against new 
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attacks. Additionally, the fact that a lot of CV models are built by leveraging open-source model weights 
and the proliferation of such publicly available foundation models extends the attack surface. On the other 
hand, if the actual model in use is developed sufficiently beyond the openly available base model, the 
nature of typical DHS use cases mean that attacks based on exploiting the knowledge of the model are 
likely to face a smaller attack surface, reducing the threats from attacks based on model inference and 
model extraction. 
 
Current and realistic threats to DHS missions are a result of longer-term legacy systems and the fact that 
many of the CV capabilities are based on open-source model weights as a “backbone.” The availability of 
information on these foundational models creates an attack surface. Even where DHS uses commercially 
available CV solutions, the limitations or weaknesses of these systems is not readily transparent, making 
it difficult to protect or mitigate attacks. Also, many problems arise in these models or across model 
architectures as a result of the training set. This leads to threats such as data poisoning and evasion 
attacks.  
 
Example Attacks 
Data poisoning takes patience where an adversary might generate poisoned images on the internet in the 
hopes that it will be captured in a future data set used for model training. Evasion attacks mainly depend 
on the training dataset as they are unable to properly detect certain threats if that scenario was not planned 
for or incorporated into the data set (e.g., 3D printing a shroud for a rifle, preventing it from looking like a 
rifle and not being picked up as a threat).  
 
Other major concerns in this area are posed by physical adversarial attacks that trigger false negatives. 
The “patch attack”59 consists of a pattern generated so that when printed and placed over an object or 
arranged in the environment, it results in an evasion attack. The “patches” are not necessarily flat: in some 
cases, the adversarial examples are 3D objects that create evasion attacks when viewed from certain 
angles or positions.60 A different, but equally important problem, is posed by adversarial attacks that 
trigger false positions, such as decoy attacks that intend to distract or redirect resources, especially in the 
presence of an automated response. An additional consequence of repeated exposure to attacks is the 
undermining of trust. For example, generating repeated false positives quickly leads human operators to 
ignore the system or turn it off. 
 
Observations on Defenses  
Complete elimination of adversarial threats to current AI models is difficult because the models are 
complex, not well understood and inherently stochastic, making it difficult to correctly identify the root of 
the problem. In general, increasing robustness tends to decrease accuracy and thus performance of the 
model. Unsupervised models and statistical analysis may provide one way towards defending against 
adversarial attacks, particularly against model evasion and data poisoning. Examples include out-of-
distribution detection, clustering and similarity checks against the training dataset and new images 
observed over time. However, there is reason to be skeptical of some of these proposed generic 
approaches, in light of results that detecting adversarial examples might be as difficult as correctly 
classifying them.61 After almost a decade of research and many thousands of papers published,62 there are 
no general defenses that can be relied on to work without qualification. Data augmentation and 
adversarial training remain the most effective approaches in general, although descriptions of these 

 
59 K. Eykholt, “Robust Physical-World Attacks on Deep Learning Visual Classification,” (April 2018): 

https://arxiv.org/abs/1707.08945. 
60 A. Athalye, “Synthesizing Robust Adversarial Examples,” (June 2018): https://arxiv.org/abs/1707.07397. 
61 F. Tramer, “Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them,” (June 2022): 

https://arxiv.org/abs/2107.11630. 
62 Carlini, A. Complete List of All (arXiv) Adversarial Example Papers, https://nicholascarlini.com/writing/2019/all-adversarial-

example-papers.html. 

https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/1707.08945
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https://arxiv.org/abs/1707.07397
https://arxiv.org/abs/2107.11630
https://arxiv.org/abs/2107.11630
https://www.nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
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https://nicholascarlini.com/writing/2019/all-adversarial-example-papers.html
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approaches’ effectiveness range from “so effective that it is the de facto standard for training adversarially 
robust neural networks”63 to “mitigate such attacks by not deploying ML solutions […] adversarial 
training should be added as a valid misuse case […]”.64 In the longer-term, it might be worth exploring 
the concept of “lifting” the data to a higher-dimensional space. For example, by training on multi-modal 
data or by adding explicitly defined features.65 Practical drawbacks of such proposals include the 
additional data requirements, both in volume, modality, and structure or labeling. Despite the number of 
papers published on the topic of adversarial examples in CV, some fundamental questions seem to remain 
wide open, including how to properly measure and assess the magnitude of potential vulnerabilities. 

3.1.1.2 Generative Deceptive AI 
In the CV area, all three attack types based on generative deceptive AI (face morphing, deepfake images 
and videos, and foundation models containing a CV component) are relevant to the DHS mission. As in 
the case of AML, some of the relevant scenarios directly attack technology-based solutions (evasion of 
detection and identification at border crossings or in drug trafficking scenarios, faked images or videos to 
divert resources or fraudulently present false claims in disaster or 911 reports), while others work 
indirectly, by targeting the accuracy of AI models’ outputs to reduce the operators’ confidence in the 
models, or by negatively influencing the perception of truthfulness of publicly available information to 
sow distrust.  

Realistic Threats 
In a sense, generative deceptive AI has only become a realistic threat because of the ever-broader 
availability of computational resources and generative AI tools, but since the tools have multiple use 
cases, only some of which produce deceptive and potentially dangerous results, it is difficult to formulate 
approaches that would prevent such attacks purely within the realm of technology. For example, attacks 
targeting the general public can be thought of as mal/dis/mis-information (M/D/M) campaigns, and any 
potential solutions must consider issues of trust and authenticity. It is difficult to draw a line between 
synthetically generated content considered “good” and that considered “bad,” so the intent needs to be 
considered as well. Focusing just on the authentication of content, the cryptographic techniques used to 
enable secure and safe communication on the internet, especially with sensitive content (such as banks, 
government, and medical institutions) can be used to provide tracking of provenance, certificates of 
authenticity, and digital signatures, but designing an infrastructure that navigates around both technology 
and politics remains a challenge. A centralized validation authority is politically difficult to implement. A 
related aspect is privacy: data provenance and cryptographic signature approaches may end up leaking a 
person’s identity, making such a system potentially dangerous to dissenters and whistleblowers. 

Example Attacks 
As discussed previously, direct attacks in this domain area consist of submitting fake (deceptive 
synthetic) media (images, video, or other modalities, if relevant) to an ML-based automated system, either 
to avoid detection or to create a situation in which DHS resources are fraudulently committed, either for 
some type of benefit or to create a diversion and allow some other action or event to take place or avoid 
detection. An indirect attack could also take the form of a disinformation campaign against (all or parts 
of) the general public. Current synthetic image and video generators can be convincing on their own, but 
their output can often still be detected by paying attention to features that are more difficult for the models 
to get right; that is, complex structures where correlations between parts are not limited to small areas or 
parameterized just right (yet). An example in the context of imagery is that of hands, which, with the 
number and plausible arrangement of fingers still tends to be difficult to generate correctly and 

63 S. Rebuffi, “Fixing Data Augmentation to Improve Adversarial Robustness,” (October 2021): 
https://arxiv.org/abs/2103.01946. 

64 Short et al. Defending Against Adversarial Examples, Sandia Report SAND2019-11748, 2019 
65 Ironically, this might be seen as a step back towards relying on methods of CV dominant before deep learning breakthroughs. 

https://arxiv.org/abs/2103.01946
https://arxiv.org/abs/2103.01946
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consistently. Similarly, in temporal media such as video, with complex and multi-level dependencies 
among the parts, it is difficult to keep the generated result coherent. However, in both of these examples, 
the generative models’ output can be much more difficult to distinguish from “real” media (that have not 
been tampered with) if instead of generating the whole output from scratch—from just a textual prompt—
we allow the model to take as an auxiliary input a “base” image or video that it is then prompted to 
modify. As an example, it is much easier for these models to learn how to modify the appearance of a face 
in the video and change the apparent words being said, if a “base” video of the person saying something 
else is available already. A deepfake face swap is an example of an attack that can already be dangerous 
with the current AI models’ capabilities. With foundation models and multi-modal implementations such 
as (Contrastive Language-Image Pre-Training) (CLIP),66 new risks might open-up (e.g., the joint text and 
image embeddings underpinning these models might be capable enough at some point that they can be 
leveraged to make novel inferences from a combination of visual and audio data that an adversary can 
exploit). To mention some very recent examples, there are now attacks on multimodal chat models that 
can use an adversarially generated image or sound in conjunction with text input to “jailbreak” an 
LLM67,68  (and indirectly inject instructions). 
 
Observations on Defenses  
Detectors of deepfakes and synthetic images exist and might be useful for detecting run-of-the-mill attacks 
using deceptive synthetic imagery but should by no means be relied on as a single point of failure. Given 
the previously cited result on the equivalence of detecting and classifying adversarial examples,69 we might 
work under the assumption that eventually deepfakes will become undetectable and instead try to focus on 
validation and data provenance instead. The designers of some of the publicly available models have 
attempted to embed watermarks within the images generated by their models, but the current methods do 
not appear to be very robust.70  In addition, public availability of generative models such as Stable 
Diffusion71 and the proliferation of specially tailored variants of the model makes a universally accepted 
watermark scheme unlikely. 
 
3.1.2 Audio Recognition  
This section reviews threats, example attacks, and defenses related to AML and generative deceptive AI in 
the context of AR. 
 
3.1.2.1 Adversarial Machine Learning 
Although all four types of threats from AML (data poisoning, evasion attacks, model extraction and model 
inference/privacy) are relevant to DHS in the area of AR, evasion attacks are considered the highest priority 
area of interest, since a lot of DHS missions could be jeopardized by targeted adversarial attacks, attacks 
which perturb audio inputs slightly through background noise unrecognizable to humans. These attacks not 
only cause algorithms to incorrectly classify the inputs but can also be used to control output. Such attacks 
can be slight perturbances in audio, embedding speech in non-speech (e.g., music), and forcing silence 
(having a model recognize audio as no output). In order of the priority of highest interest, model extraction, 
inference, and poisoning followed evasion. 

 
66 A. Radford, “Learning Transferable Visual Models from Natural Language Supervision,” (February 2021): 

https://arxiv.org/abs/2103.00020. 
67 X. Qi, “Visual Adversarial Examples Jailbreak Aligned Large Language Models,” (August 2023): 

https://arxiv.org/abs/2306.13213. 
68 E. Bagdasaryan, “Abusing Images and Sounds for Indirect Instruction Injection in Multi-Modal LLMs,” (October 2023): 

https://arxiv.org/abs/2307.10490. 
69 F. Tramer, “Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them,” (June 2022): 

https://arxiv.org/abs/2107.11630. 
70 Z. Jiang, “Evading Watermark based Detection of AI-Generated Content,” (August 2023): https://arxiv.org/abs/2305.03807. 
71 GitHub, “Stable Diffusion,” (November 2022): https://github.com/CompVis/stable-diffusion. 
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Realistic Threats 
Research has identified the ability to perform targeted adversarial attacks on deep neural networks 
performing tasks such as classification. More notably, these attacks can be done in both a white-box and a 
black-box setting, meaning that the attacker can perform these attacks with or without needing to know 
the victim’s automatic speech recognition model’s structure or parameters, although not protecting the 
model would be more damaging. At the same time, keeping the model secret is not enough. 72, 73 Various 
scenarios are at risk to include perturbation attacks both Over-the-Line and Over-the-Air. In an Over-the-
Line attack the attack audio is passed to the model directly, as an audio file, for example. Conversely, an 
Over-the-Air attack requires the adversary to play the attack audio via a speaker towards the target voice 
processing system. It is not necessarily the case that an attack audio that is successful Over-the-Line will 
also be successful Over-the-Air. It has been proven possible to perform these attacks over the air such as 
in a Zoom/Teams meeting, or over the phone.74  
  
Observations on Defenses  
Defenses against these attacks include simple anomaly detection methods such as comparing filtered and 
unfiltered waveforms to determine whether the input has been maliciously perturbed.75 In addition to 
developing methods to identify perturbations, DHS could consider adversarial training and data 
augmentation to present perturbations in training, ensemble methods, or whitelisting input values. These 
are detailed in Appendix A. 
 
3.1.2.2 Generative Deceptive AI 
Generative deceptive AR deals with the ability for AI to perform text-to-speech tasks or information to 
audio tasks. Currently, deepfakes are being used by adversaries as a way to bypass these security 
measures. Audio deepfakes can sound very similar to the person imitated, both in terms of voice and style 
of speech. These algorithms do not need very much training and can be acquired relatively easily. Of the 
generative deceptive AI methods considered, the most concerning included audio deepfakes, synthetic 
speech generation and use of generative AI for whole-of-nation level audio misinformation.  
 
Realistic Threats 
These audio deepfakes to the ability of AI to produce audio that sounds very similar in both voice and the 
style of a particular person, poses a major threat to national security. Currently, models exist that can 
mimic the voices of people based on only a few audio clips for training but despite being lightweight, 
they can be used to cover a wide range of attacks/issues, which involve communicating via voice. These 
include but are not limited to spreading misinformation through representing a public/political figure;76 
spam calls, phishing, identity fraud, social engineering (mimicking family member voices);77 deepfaking 
911 calls, public defamation of politicians and other famous figures, identity fraud, social engineering, 
and more. Automated outbound calling combined with LLMs, synthetic speech voice over internet 

 
72 M. Alzantot, “Did you hear that? Adversarial Examples Against Automatic Speech Recognition,” (January 2018): 

https://arxiv.org/pdf/1801.00554.pdf#:~:text=To%20create%20adversarial%20examples%20for%20speech%20recognition%20mo
dels,input%20and%20possibly%20produce%20a%20desired%20target%20label. 

73 N. Carlini, “Audio Adversarial Examples: Targeted Attacks on Speech-to-Text,” (March 2018): 
https://arxiv.org/pdf/1801.01944.pdf. 

74 H. Liu, “When Evil Calls: Targeted Adversarial Voice over IP Network,” (November 2022): 
https://dl.acm.org/doi/10.1145/3548606.3560671. 

J. Zhang, “Defending Adversarial Attacks on Cloud-aided Automatic Speech Recognition Systems,” (July 2019): 
https://deepai.org/publication/defending-adversarial-attacks-on-cloud-aided-automatic-speech-recognition-
systems#:~:text=In%20this%20work%2C%20we%20propose%20several%20proactive%20defense,proposed%20strategies%20throu
gh%20extensive%20evaluation%20on%20natural%20dataset.   

76 PBS News Hour, “AI-generated disinformation poses threat of misleading voters in 2024 election,” (May 2023): 
https://www.pbs.org/newshour/politics/ai-generated-disinformation-poses-threat-of-misleading-voters-in-2024-election. 

77 M. Siddiqi, “A Study on the Psychology of Social Engineering-Based Cyberattacks and Existing Countermeasures,” (June 2022): 
https://www.mdpi.com/2076-3417/12/12/6042. 

https://arxiv.org/pdf/1801.00554.pdf#:%7E:text=To%20create%20adversarial%20examples%20for%20speech%20recognition%20models,input%20and%20possibly%20produce%20a%20desired%20target%20label
https://arxiv.org/pdf/1801.00554.pdf#:%7E:text=To%20create%20adversarial%20examples%20for%20speech%20recognition%20models,input%20and%20possibly%20produce%20a%20desired%20target%20label
https://arxiv.org/pdf/1801.00554.pdf#:%7E:text=To%20create%20adversarial%20examples%20for%20speech%20recognition%20models,input%20and%20possibly%20produce%20a%20desired%20target%20label
https://arxiv.org/pdf/1801.01944.pdf
https://arxiv.org/pdf/1801.01944.pdf
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https://deepai.org/publication/defending-adversarial-attacks-on-cloud-aided-automatic-speech-recognition-systems#:%7E:text=In%20this%20work%2C%20we%20propose%20several%20proactive%20defense,proposed%20strategies%20through%20extensive%20evaluation%20on%20natural%20dataset
https://deepai.org/publication/defending-adversarial-attacks-on-cloud-aided-automatic-speech-recognition-systems#:%7E:text=In%20this%20work%2C%20we%20propose%20several%20proactive%20defense,proposed%20strategies%20through%20extensive%20evaluation%20on%20natural%20dataset
https://deepai.org/publication/defending-adversarial-attacks-on-cloud-aided-automatic-speech-recognition-systems#:%7E:text=In%20this%20work%2C%20we%20propose%20several%20proactive%20defense,proposed%20strategies%20through%20extensive%20evaluation%20on%20natural%20dataset
https://www.pbs.org/newshour/politics/ai-generated-disinformation-poses-threat-of-misleading-voters-in-2024-election
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protocol can help scale these attacks. One form of attack in this case regards giving information to the 
attacker to notify them that their content has been flagged, with this knowledge the attacker can do model 
extraction attacks to learn the constraints, alter the faked information, and bypass the security 
measures.78   Most of these attacks (including misinformation spreading) can be carried out by using 
public means (i.e., the tools are generally available to the public), mainly social media.  
 
Observations on Defenses  
Deep neural networks such as ResNet can provide a solution to this and properly detect the altered pieces 
of media. In addition, organizations should not publicize whether something has been marked as faked 
information, denying attackers information that could be used to improve their attacks. Strengthening 
authentication for security services and monitoring government communication channels are good 
preventative efforts to stop these attacks from being successful. Humans and machines both exhibit 
similar capabilities in properly detecting deep faked audio as well as the pitfalls in detecting it.79 
 

3.1.3 Natural Language Processing  
This section reviews threats, example attacks, and defenses related to AML and generative deceptive AI 
in the context of NLP. 
 
3.1.3.1 Adversarial Machine Learning 
While all of the four types of threats from AML (data poisoning, evasion attacks, model extraction and 
model inference/privacy) are relevant to DHS in the area of NLP, evasion attacks are considered the most 
important to understand in the near term. Many NLP systems are brittle to regional dialect, use of 
codewords, or homographic swapping, which an adversary could exploit to evade the system without 
directly targeting it.  
 
Realistic Threats 
The rich nature of natural language widens the waterfront of possible attacks, with malicious actors able 
to manipulate or deceive NLP-based systems. These threats encompass techniques like data poisoning to 
introduce bias or offensive content80 or can use model evasion to avoid detection that relies on NLP. For 
example, spam filters or content moderation algorithms can be tricked into allowing harmful content. AI-
based analysis can be used to extract sensitive information from text data, posing privacy threats when 
used maliciously. 
 
Observations on Defenses  
Safeguarding NLP applications at DHS necessitates robust defenses to counteract these adversarial 
strategies and to ensure the integrity of language-based security measures. Understanding the risks and 
benefits of using open tools and updating models is a good way to start improving security as well as 
responsible use and governance of LLM. Other defenses could include adversarial training, robust 
modeling architectures with built-in defenses (e.g., using attention mechanisms, ensembles, etc.), 
combining AI with human moderators, anomaly detection, to name a few. These are discussed more in 
Appendix A.  
 

 
78 Z. Khanjani, “Audio deepfakes: A survey,” (January 2023): 

https://www.frontiersin.org/articles/10.3389/fdata.2022.1001063/full.   
79 N. Muller, “Human Perception of Audio Deepfakes” (October 2022): https://arxiv.org/pdf/2107.09667.pdf. 
80 H. Jones, “If You’ve Trained One You’ve Trained Them All: Inter-Architecture Similarity Increases With Robustness,” (August 

2022): https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/in-2016-microsofts-racist-chatbot-revealed-the-
dangers-of-online-conversation. 

https://www.frontiersin.org/articles/10.3389/fdata.2022.1001063/full
https://www.frontiersin.org/articles/10.3389/fdata.2022.1001063/full
https://arxiv.org/pdf/2107.09667.pdf
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https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/in-2016-microsofts-racist-chatbot-revealed-the-dangers-of-online-conversation
https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/in-2016-microsofts-racist-chatbot-revealed-the-dangers-of-online-conversation
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3.1.3.2 Generative Deceptive AI 
In NLP, adversaries are leveraging generative deceptive AI in two ways: style morphing/transfer/faking 
authorship and misuse of LLMs.  
 
Realistic Threats 
Style morphing is where an AI program writes a document or piece of media in the same style as the 
faked author, and in so doing, spreads misinformation. This capability could be used in influence 
operations. Vulnerabilities inherent in LLMs could allow bad actors to access information from the ML 
training data (via model interrogation), giving them access to subject matter expert knowledge. Although 
possession of this information is not illegal, creating a higher barrier to gain this knowledge should be 
considered. Using LLMs to generate content at scale could also lead to a distributed denial-of-service 
(DDOS)-like attack on systems. There is the potential to contaminate training data with synthetic or 
poisoned data on a massive scale. AAI can use NLP to generate convincing phishing emails, messages, or 
scams by mimicking human communication patterns and crafting persuasive text. NLP-based systems can 
be exploited to automate the generation of spam content or manipulate online reviews, ratings, and 
comments. Also, NLP-powered chatbots or social media bots can be deployed for malicious purposes at 
scale. 
 
Observations on Defenses  
Many of the techniques used in defending NLP from AML can be applied to NLP vulnerabilities due to 
generative deceptive AI as well. Additional mitigations include content moderation to detect and filter out 
harmful or adversarial content in near real-time, behavior analysis that monitors user interactions, and 
behavior patterns to detect abnormal activities, and ethical guardrails to ensure that AI systems do not 
propagate harmful content. These are discussed more in Appendix A.  
 

3.2 Functions 
In the context of this report, a function represents an intermediary data processing requirement between 
technology (inputs to functions) and missions (supported by functions). While there are likely others, two 
of the functions considered the most commonly used and susceptible to AI vulnerabilities are biometrics 
and C2ISR.  And, like the technologies reviewed in section 3.1, the vulnerabilities in these functional 
support processes may impact multiple higher order mission objectives. For example, 

• Vulnerabilities in biometrics applications used in TSA use cases can generalize to a CBP use 
case.  

• Vulnerabilities in C2ISR applications used in law enforcement use cases can generalize to 
emergency management use cases. 

 
Similarly, and by extension, vulnerabilities in functional applications inherited from vulnerabilities in 
underlying technology can also generalize across missions. Thus, reviewing vulnerabilities at a functional 
level provides a broad AAI foundation that is applicable across many DHS missions. Subsections 3.2.1 
and 3.2.2 review biometrics and C2ISR functions, respectively. 
 

3.2.1 Biometrics  
Biometrics is a field of study that focuses on the measurement and analysis of unique physical and 
behavioral characteristics of individuals. Typically, these characteristics are used to aid security measures 
making it difficult for a bad actor to gain access to anything protected by these measures. Biometric traits 
(e.g., fingerprints, facial features, iris patterns, voice, and gait) have traditionally been difficult to 
impersonate. It is worth noting that biometrics seems to be the exemplar for where AML and generative 
deceptive AI intersect, as adversarial attempts to avoid detection by automated recognition software are 
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often aided by products developed through generative AI. Because many of the biometric traits are image-
based, biometrics is highly dependent on CV, as indicated in Figure 1.2. 
 
Although all of four types of threats from AML (data poisoning, evasion attacks, model extraction and 
model inference/privacy) are relevant to DHS in the area of biometrics, evasion attacks are of primary 
concern, since a lot of DHS interests are focused on threats against the ability to detect persons, and verify 
identity (e.g., cooperative identity verification at borders, approaches, airports; noncooperative identity 
verification using subpoenaed materials; and, non-existing persons being created from stolen 
information). Bad actors are now able to either bypass these security measures or completely avoid them 
all together using a variety of attacks.  
 
3.2.1.1 Realistic Threats 
This threat is already somewhat mature, and there are a multitude of existing methods for a bad actor to 
bypass biometric security measures such as: 

• Presentation attacks at the sensor (a fraudulent attempt to deceive a biometrics system by 
presenting it with fake or manipulated biometric sample with the goal of impersonating or falsely 
authenticating as another individual, thereby gaining unauthorized access to a system). 

• Injection / playback attacks (an attempt to inject synthetic imagery such as deepfakes into a data 
stream to impersonate an authorized user and gain unauthorized access to a system). 

• Enrollment attacks (a fraudulent attempt to compromise a biometric system during the phase in 
the process in which a legitimate user’s biometric data is initially recorded and stored in the 
system for future authentication or identification purposes). 

• Theft or modification of stored reference data (attack in which attacker gains unauthorized access 
to the biometric templates or reference data stored in a biometric system’s database). 

• Morphing attacks (attempt to manipulate or combine two or more biometric samples from 
different individuals to create a single morphed data set that can deceive a biometric recognition 
system). 

 
3.2.1.2 Observations on Defenses  
DHS missions depend on robust and reliable solutions for face and fingerprint recognition, and there is 
also interest and applications for iris, voice, and DNA. The expanded use of face recognition for remote 
identity verification has introduced new challenges where recognition and authentication processes now 
must also question the authenticity of the face images and associated evidentiary documents. Detection 
capabilities for presentation attacks, morphs, and deepfakes have improved but still operate with false 
alarm rate that make them impractical for large open set environments and uninterpretable for front line 
human inspection operations. Moreover, Related challenges exists for establishing the authenticity of 
identity documents and vital records from a myriad of domestic and international sources that DHS must 
verify or adjudicate. 
 
Defensive measures will require ongoing innovations in technology and processes. NIST's Face Analysis 
Technology Evaluation (FATE) provide detailed evaluations of presentation attack detection and morph 
detection to supplement the central Face Recognition Technology Evaluations. The National Science 
Foundation’s Center for Identification Research performs fundamental research in biometrics that includes 
liveness, and detection of morphs and deepfakes. In the U.S. Department of Defense, the Defense Advanced 
Research Projects Agency Semantic Forensics (SemaFor) program is pursuing detection, characterization, 
and attribution of generated and manipulated digital media. And the Intelligence Advanced Project Agency 
has supported research on presentation attack detection. These research efforts have motivated new 
commercial products and service that seek to make biometric-based identity verification functions stronger, 
more robust and reliable. In turn, sustained evaluation and integration efforts will strengthen DHS missions. 
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3.2.2 Command and Control and Intelligence Surveillance and Reconnaissance  
C2ISR originated as a term used to describe a comprehensive set of capabilities and function crucial for 
effectively executing military operations, but the concept applies equally well to many DHS operations 
engaged in decision making, planning, and coordination activities while attempting to manage assets and 
forces. The ISR portion is highly dependent on CV, AR and NLP; and the C2 portion is highly dependent 
on NLP and AR, and to a lesser extent CV. Like biometrics, it is also a strong candidate for combining 
AML and generative deceptive AI as a common strategy towards corrupting these systems involves 
synthetic data inputs where a bad actor will use artificially generated data and inject that into the systems 
ML training algorithm, either preventing detections or triggering false detections. This can be especially 
dangerous during a rapid response scenario as diverting resources even for only a couple of minutes could 
be the difference between a good and a bad outcome.  
 
3.2.2.1 Realistic Threats 
Beyond the threats organically inherited from use of any CV, AR, or NLP-supported technologies, there 
are potential vulnerabilities in the C2ISR sphere related to use of AI or AAI attacks. For example, 
missions leveraging public infrastructure in a disaster response scenario inherit opportunities for AAI 
through that infrastructure. Public unsecured sensor feeds, that are likely less secure than DHS-owned 
systems, could potentially leak private or sensitive information, giving AAI a strong advantage at the 
edge. And, importantly, certain AI-enabled C2 applications rely on simulations as a training environment, 
which allows bad actors to target specific simulations and modify the “rules of reality,” which results in 
reductions in AI performance.   
 
Generative deceptive AI-generated content can undermine situational awareness capabilities by providing 
false and/or anomalous signals or cause communication disruptions. Misinformation campaigns can also 
adversely affect C2 planning and response. Through the use of generative deceptive AI, surveillance and 
reconnaissance systems could be rendered ineffective or be used against their organization. Deceptive AI-
generated content can undermine situational awareness capabilities by providing false and/or anomalous 
signals. Deceptive AI-generated content can cause communication disruptions through false signals that 
overwhelm networks or responders. Misinformation campaigns can adversely affect C2 planning and 
response (e.g., misallocation of resources in a rapid response scenario where there might not be sufficient 
time to determine the veracity of inputs). Some of that misinformation might be associated with 
environmental variables that factor into mission planning.  
 
3.2.2.2 Observations on Defenses  
Most of the current research in this domain focuses on the corruption of intelligence inputs. DHS might 
consider developing a general trust model on any digital input/source, which would help address 
deceptive AI-generated content. DHS could also focus on determining the current vulnerabilities of 
existing DHS C2 systems against AI-generated content and determine the best course of action to 
counteract them. In addition, DHS should only use data sources and environments from trusted sources; 
using open-source information makes it easier for an attacker to view and look for vulnerabilities.  
 
Other DHS activities in this area should focus on establishing red/blue teaming approaches for AI-enabled 
systems to view existing vulnerabilities, develop ways of maintaining and governing AI applications post 
deployment, create an inventory of assets and analyze them to determine which ones will become AI-
enabled in the future, define accountabilities and protections for AI application owners, build in 
mitigations to limit the harm that AAI can cause, and develop a measure of consequentiality of systems 
for various missions and use that to determine what level of assurance is required for AI applications.  
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3.3 Missions 
This section reviews DHS’s major missions, considers how they depend on technologies and functions 
(described in Sections 3.1 and 3.2, respectively), and extends the vulnerabilities in those sections to 
postulate notional adverse mission risks. 
 

3.3.1 Preventing Terrorism 
Given that AI could be used to support this mission from a micro (individual) to a macro (societal) level, 
the impacts of AAI could be just as broad. AAI could enable terrorist organizations to:  
 

• Develop (or commandeer) swarms or drones capable of carrying out attacks,  
• Design AI-based malware to execute more sophisticated cyber-attacks,  
• Generate more convincing deepfake videos and audios facilitating the spread of M/D/M-

information or recruit sympathizers, and 
• Learn how to build bioweapons from LLMs. 

 
Importantly, AI can enable any of these nefarious uses at scale. Both biometrics and C2ISR are critically 
important to counterterrorism efforts. AI can enhance surveillance and reconnaissance by acquiring and 
analyzing vast amounts of data to detect suspicious activities, identify potential threats, and predict 
terrorist activities. Biometrics can also be used to support facial recognition applications and behavioral 
analysis. Thus, any AAI activities targeted on these two functions as they support counterterrorism (e.g., 
generating fake data to evade detection by automated information surveillance and reconnaissance (ISR) 
algorithms, using morphing GANs to develop dual-use passports, etc.) could impact the mission to 
prevent terrorism. 
 

3.3.2 Securing the Border 
AAI could have significant impacts on the CBP mission, advancing the ability of nefarious actors to: 

• Generate deepfake identities or morphed passports used to deceive officers or facial recognition 
systems allowing nefarious actors to cross the border undetected, 

• Develop deceptive imagery or newsfeeds to confuse U.S. authorities and cause them to sub-
optimally direct resources, 

• Smuggle contraband through the use of drones that can evade traditional detection methods, 
• Use AML methods associated with NLP to create security breaches such as a license plate reader 

that is not able to accurately detect plates or systems that improperly misses the identification of 
a person of interest,81 and    

• Given ISR systems using foundation models for image recognition of border security events, an 
adversary might be able to use inference attacks (e.g., data reconstruction or model inversion) to 
ascertain what objects the model is looking for and which ones could later be used for evasion of 
such systems.  

 
Importantly, AI can enable any of these nefarious uses at scale. Both biometrics and C2ISR are critically 
important to border security missions, as described in the preceding first, second and fifth bullets.  
 
3.3.3 Enforcing Immigration Laws 
AAI could have significant impacts on the enforcement of immigration laws advancing the ability of 
nefarious actors to: 

 
81 T. Brewster, “This AI Watches Millions Of Cars Daily And Tells Cops If You’re Driving Like A Criminal,” (July 2023): 

https://www.forbes.com/sites/thomasbrewster/2023/07/17/license-plate-reader-ai-criminal/. 

https://www.forbes.com/sites/thomasbrewster/2023/07/17/license-plate-reader-ai-criminal/?sh=5f0c450d3ccc
https://www.forbes.com/sites/thomasbrewster/2023/07/17/license-plate-reader-ai-criminal/
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• Generate deepfake identities or morphed passports used to deceive officers and make it difficult 
to authenticate immigration documents and personal information, 

• Coordinate and facilitate human trafficking operations, potentially allowing criminals to avoid 
detection, 

• Use AI-based malware to gain unauthorized access, manipulate records or compromise sensitive 
information in immigration databases, and 

• Use AI-driven chatbots or deepfake videos to deceive immigration officers during interviews or 
interactions, hindering their ability to detect inconsistencies in statements. 

 
Importantly, AI can enable any of these nefarious uses at scale. Biometrics is critically important to 
immigration missions, as described in the preceding first bullet. In this mission, generative deceptive AI, 
including deepfakes and misuse of LLMs is probably of the greatest concern. In the future and given the 
potential for the adoption of foundation models in this use case, AI-based attacks related to foundation 
models could also be a concern. For example, the use of a public facing LLM could be susceptible to 
inference attacks or data poisoning. 
 

3.3.4 Securing Cyberspace 
The relationship between AAI and cybersecurity is multifaceted:  AAI can be used to attack traditional 
cybersecurity defenses and traditional cybersecurity attacks can be made on AI-powered systems. This 
section focuses on the former, reviewing both how AML and generative deceptive AI may impact 
cybersecurity defenses. Importantly, the current ineffective state of cyber defenses reduces an adversary’s 
motivation to invest in AAI to guide cyber-attacks. However, improvements in cyber defenses, 
particularly at machine speed, make the sort of large training data set needed to train an AAI easier to 
build and curate.  
 
Although the four attack pathways for AML discussed previously (data poisoning, evasion attacks, model 
extraction and model inference/privacy) are relevant to DHS’s cybersecurity domain, evasion and data 
poisoning are considered the more concerning threats of the four.82  Other realistic threat topics also 
included:  

• Poison training data that can result in poor performance of AI-enabled systems. The large amount 
of data used to train AI systems presents both AAI vulnerabilities and additional cyber 
vulnerabilities. The data poisoning attack against VirusTotal was an example of fake cyber threat 
intelligence being used against cyber defenses. Future attacks are likely to also target people 
involved with cyber defenses, particularly as humans are added to processes as a key defense 
against algorithmic cyber weapons.  

• Extract a trained model from an ML-enabled system, allowing an adversary to explore its 
weaknesses at leisure to find vulnerabilities to exploit.  

• Reverse engineer data used to train ML models,  
• Conduct side channel attacks on AI-based models, and  
• Use generative deceptive AI-assisted tools to quickly find ways to weaponize them in the virtual 

world. 
− Malware can be generated through LLM’s, making it significantly harder to keep up with. 

Solutions for malware are useful only for individual programs, so having adversaries capable 
of creating multiple programs quickly aided by AI could prove to be dangerous. 

 
82 MITRE’s ATLAS, which provides a detailed taxonomy for the adversarial threat landscape for artificial intelligence system, was 

identified as a good resource for navigating these threats to ML.  
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− Use face morphs or deepfakes to gain access to systems.83  
− Use deepfake technology to generate and disseminate, through spearfishing or other social 

engineering attacks, attacks designed to defeat the decisions made by the human defenders. 
 

Current research on defense against generative deceptive AI aims to develop and use an AI-enabled cyber 
defense system, however, this is still state-of-the-art research. Several avenues for mitigations against 
AML attacks to include red teaming, train AI models on adversarial examples, make AI models 
intrinsically more robust, use good cyber hygiene, watermark training data, move detection to behavior-
level (regarding VirusTotal, for example), use trusted data sources. These mitigations are detailed in 
Appendix A.  
 

3.3.5 Safeguarding Critical Infrastructure  
Importantly, creating adverse effects on critical infrastructure (CI) does not require causing full outages. 
Inefficiencies, misinformation, and sub-optimal decisions would effectively subvert efficiency and 
productivity over time. The distributed ownership and operations of CI requires trust in the accuracy and 
correctness of the remote sensors or Internet of Things (IoT) devices, all of which are attack surfaces. 
Additionally, over reliance on AI-enabled security systems could result in missed detections or false 
alarms, and these systems can easily be beaten through different means. In a test involving the U.S. 
military, for example, Marines could do cartwheels, wear animal skin print, and camouflage as trash cans 
to counter AI-based detection systems. 
 
AAI could have significant impacts on critical infrastructure, advancing the ability of nefarious actors to: 

• Disrupt, degrade, and/or deny activities related to IoT devices, as typical IoT devices do not 
contain security monitoring software and therefore provide persistent access to threat actors.  

• Target many different resources including administrative services, leading to suspended billing 
services and exposure of private information, and could reveal operation/maintenance procedures.  

• Leverage weaknesses in data collection approaches through known flaws in both the foundation 
models and the data used to train the AI.  

• Spread misinformation such as fake messages from a person’s supervisor, false insurance claims, 
inaccurate sensor data and inaccurate news articles.  

• Make people believe that the information is an authentic source when it has been spoofed.  
• Mimic many things and pieces of information and deep fakes allow for someone to look, sound, 

and talk like someone else, making any viewer or listener think that it is legitimately the person 
they are attempting to masquerade as.  

• Generate and pass poisoned data into a sensor, having that sensor believe that it is real data when 
in fact it was artificially manufactured.  
 

To prevent these attacks, certain measures must be taken, including monitoring for covert and overt 
command and control signaling to/from IoT devices, and utilizing blockchain and zero-knowledge proof 
technologies to cryptographically validate the integrity of distributed sensor data. Additionally, the use of 
homomorphic encryption will allow for computation on encrypted data, giving the user encrypted results, 
without the information ever being decrypted, increasing privacy. To preserve the safety of these pieces 
of critical infrastructure, a slow and deliberate adoption of AI-enabled technologies should be introduced 
in addition to a harm analysis for all AI-enabled system elements. Independent T&E and continuous 
monitoring of such systems are required to ensure that vulnerabilities do not arise and that systems remain 
up to date.  

 
83 As described earlier and reiterated here, the combination of AML and generative deceptive AI is particularly powerful. In this 

instance, leading to a scenario where an adversary can create malware and have an easy means of injecting it, without having to rely on 
a security failure or social engineering. 
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3.3.6 Emergency and Disaster Management 
AAI could have significant impacts on emergency and disaster management, advancing the ability of 
nefarious actors to: 

• Target and disrupt communications systems used by emergency responders, hindering their 
ability to coordinate and respond effectively during a crisis, 

• Use AI-generated deepfakes or misinformation to spread false alerts, causing panic and diverting 
resources, 

• Design and execute AI-generated malware to launch attacks on emergency services, and 
• Compromise or manipulate AI-powered autonomous systems (e.g., drones, robotic search and 

rescue, etc.), rendering them ineffective or potentially dangerous. 
• Create false photos of post-disaster property damage, making analysis more difficult. 

 
Importantly, AI can enable any of these nefarious uses at scale. C2ISR is critically important to 
emergency and disaster management mission, as described across the preceding bullets. 
 
3.3.7 Transportation Security 
AAI could have significant impacts on transportation security, putting critical transportation infrastructure 
and passenger safety at risk. Notional examples of what nefarious actors using AI could do include: 

• Design and execute malware with LLMs to launch sophisticated cyber-attacks on transportation 
systems potentially disrupting services or causing accidents, 

• Generate deepfakes or morphed passports to create counterfeit identification, making it harder 
for officers to detect individuals with malicious intent when trying to enter secure transportation 
areas, 

• Evade surveillance systems at transportation hubs, allowing nefarious individuals to bypass 
security checks or enter restricted areas undetected, 

• Corrupt traffic management analysis, reducing safety and efficiency on roads and at 
transportation hubs, and 

• Add a certain object to a suitcase with a prohibited item making the prohibited item undetectable 
to an AI-based X-ray system. 
 

Importantly, AI can enable any of these nefarious uses at scale. Biometrics is critically important to 
transportation security missions, as described in the preceding second bullet.  
 

3.3.8 Law Enforcement 
AAI could have significant impacts on law enforcement activities, advancing the ability of nefarious 
actors to: 

• Propagate deepfakes, spreading false information such as fake law enforcement statements or 
videos, leading to public confusion, mistrust, and potential unrest, 

• Evade surveillance systems, making it harder for law enforcement agencies to track and 
apprehend suspects, 

• Deceive victims in online fraud schemes or impersonate law enforcement personnel with AI-
powered chatbots, 

• Compromise sensitive data and disrupt operations through attacks targeting law enforcement 
databases or communications systems, 

• Generate and deliver high volumes of deepfake phone calls to 911 emergency services to 
essentially conduct a DDOS attack making 911 services unavailable, 
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• Use AI-driven tools, including voice synthesis and anonymization techniques, to make fraudulent
emergency calls or messages, often with the intent of causing fear, harm, or chaos. Known as
“AI-enabled swatting,” this is a dangerous and malicious practice that leverages AI and other
technologies to initiate false emergency responses, such as armed police SWAT, or special
weapons and tactics, teams, to unsuspecting victims’ homes, and

• Use LLMs to more easily access information from the training data, allowing criminals to access
subject matter expert knowledge. Specialized information can now be aggregated and explained
to the masses. Democratizing expertise, predicting what’s next. This is a capability of LLMs but
can be used for harmful purposes when the user has harmful goals.

As seen in other mission sets, AI can enable any of these nefarious means at scale. Biometrics and C2ISR 
are critically important to law enforcement missions, as described in the preceding first and fourth bullets, 
respectively.  

4 Implications of AAI on Emerging Technologies 
AAI technology has impacted a variety of adjacent technologies, existing and yet to be productized. For 
example, deep learning methods have proven to be effective for malware detection, yet because they are 
vulnerable to adversarial attacks, the malware detection models based on these deep learning methods 
also face the threat of adversarial attacks. In genomics, LLMs have been used to demonstrate direct 
inference of full atomic-level protein structure from primary sequence. Also, using a generative model, it 
was possible to obtain a universal representation of epidermal differentiation and use this to predict the 
effect of cell state perturbations on gene expression at high time-resolution. Yet, because these models are 
vulnerable to adversarial attacks, their applications to genomics share this vulnerability and are potentially 
impacted by AAI. In advanced manufacturing, materials scientists want to know all the different recipes 
they can use to produce a specific material. Exploring the fiber (set of recipes with the same result) 
containing all their options, they can choose the individual recipe that works best for a given 
manufacturing set-up, time, and resource constraints. This problem is particularly important in advanced 
manufacturing processes, including innovative solid phase processing techniques. Although there are 
good tools in ML for predicting output from input, methods for learning all the different inputs that can 
yield a specific output is possible using generative AI models, which are vulnerable to AAI.  

In a more futuristic scenario, we expect AAI to pose larger risks, as AI gets integrated into a variety of 
adjacent technologies. For example, whether it supports smart infrastructure or smart cities, in the future 
Internet of Intelligent Things (IoIT) everything is not only inter-connected but also intelligent. Like the 
current day, the “things” come from different manufacturers, with different designs, capabilities, and 
purposes. Unlike the current day, these “things” will have an insatiable appetite for data from other 
“things.” Moreover, software and AI algorithm updates across these “things” will happen asynchronously 
and at a speed of need, such that no individual thing is able to rely on preconceived assumptions about 
behaviors or performance of the other “things” it interacts with. Although these scenarios barely even 
exist, we know that they will be impacted by adversarial attacks and that these IoIT technologies must be 
designed to be robust against AAI. This section explores the future of these and other nascent AI-based 
technologies, the potentially inherent fragilities in these technologies that could be exploited by AAI for 
nefarious purposes, and how these exploits might impact homeland security missions of the near and 
distant future. 

4.1 Advanced Persistent Threat Detection, Malware Generation, and 
Insider Threats 

Adversaries who possess sophisticated levels of expertise and significant resources can create 
opportunities to achieve their objectives by using multiple attack vectors (e.g., cyber, physical, and 
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deception) in a long-term, persistent way. These advanced persistent threats (APTs)84 are cyber-attacks 
carried out by well-resourced and sophisticated adversaries who target organizations with the goal of 
gaining strategic advantage by exfiltrating data or by disrupting operations. 
 
There are multiple opportunities for APTs to use AI-based attacks to achieve their attack goals, which 
could be targets in the supply chain (e.g., development organization), where the desired asset is located 
(e.g., government agency), or a combination of threats to achieve the desired effect. APTs can be applied 
during:  

• Reconnaissance (e.g., scanning media for targets filtering by activity, scanning social media for 
interests/intents of targets (“pretexting”), and avoiding perimeter defenses to scan target systems 
for configurations, etc.), 

• Weaponization (e.g., intelligent fuzzing to discover zero-day, generative techniques to evolve 
existing vulnerabilities, etc.), 

• Delivery methods such as phishing (e.g., avoid detection and filtering by perimeter systems, 
successfully motivate poor behavior through crafted messages, etc.), 

• Exploitation and installation (e.g., ghosting presence on target through observation and mimicry, 
etc.),  

• Command and control (e.g., adjust to observed traffic patterns for communication, etc.), and,  
• Actions on objective (e.g., on-the-edge analysis of potential assets, etc.). 

 
Similarly, but in the generative deceptive AI realm, APTs can use AAI to do things like promulgating 
M/D/M information (e.g., scanning media for hot-button topics and crafting APT actor’s messages to 
align with those topics, etc.), generating false personas (e.g., simulacra at scale to align with community, 
images such as faces, surrounding artifacts—collect and duplicate paragons, etc.). They can apply these 
technologies with focused political ends (e.g., altered / fabricated video, audio, images, etc.), subvert 
guard rails of LLM systems (get information that should be hidden), subverting output of LLM systems 
(cause answer drift to align with objectives).  
 
In the realm of malware generation and LLMs, DHS must be aware of threats stemming from the 
generation of new malware. For example, the generation of potential phishing emails to install malware 
(and to help establish pretexting for fishing emails); analyze of the family and style, and potentially, 
pedigree and genealogy of a piece of malware; determining or explaining the operation of the malware; 
examine “lint” or other trails suggesting the existence of malware in an operational or development 
environment, including open-source development; decompile binaries into source for analysis; perform 
program source code analysis to detect vulnerabilities, information leaks, weaknesses, or backdoors; 
obscuring or “de-obscuring” source code; query engineering used to disable guardrails limiting generation 
of malware; and query injection used to generate functional code that contains vulnerabilities or 
weaknesses (i.e., deliberately misleading training). 
 
Insider threats refer to security risks posed by individuals who have authorized access to an organization's 
systems, data, or facilities (e.g., employees, contractors, or other trusted parties). The relationship 
between insider threats and AAI lies in the potential for malicious actors, who have insider access or 
knowledge, to leverage adversarial techniques to exploit vulnerabilities within AI systems. Although 
historically low in number, these threats can have high impacts, including: 
 

 
84 The advanced persistent threat: (i) pursues its objectives repeatedly over an extended period of time; (ii) adapts to defenders' 

efforts to resist it; and (iii) is determined to maintain the level of interaction needed to execute its objectives. “NIST 800-39: Managing 
Information Security Risk,” (March 2011): https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf. 

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf
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• Insider knowledge:  Insiders with knowledge of an organization's AI systems may have insights 
into vulnerabilities that could be exploited using AAI techniques. They may understand the 
weaknesses of the AI models and the specific points of manipulation. 

• Data manipulation:  Insiders with access to training data for AI models could potentially 
manipulate or poison the data used to train the models, leading to biased or compromised 
outcomes. This could affect decision-making processes based on AI-generated insights. 

• Model tampering:  Insiders with access to AI model parameters or deployment processes might 
attempt to manipulate model behavior by introducing adversarial inputs. This could lead to 
incorrect predictions or decisions. 

• System exploitation:  Insiders could use AAI to exploit vulnerabilities in AI-powered security 
systems, bypassing authentication or intrusion detection mechanisms. 

• Intellectual property theft:  Insiders could use adversarial techniques to extract valuable 
information from AI models, such as proprietary algorithms or sensitive data, and exfiltrate it. 

 
Detecting insider threats using AI requires a significant amount of data—data that is not sufficiently 
available. To date, anomaly detection has not been successful in identifying and detecting insider threats. 
AI does, however, provide adversaries an attack vector to collect insights and information about humans 
(organization, visuals, voice recordings), which is critical to the social engineering required for successful 
attacks. AAI can be used to collect significant social information about individuals, their biometrics, 
behaviors, and affiliations. It can also be used in the context of malicious elicitation, such as being used to 
collect business information using social networks like LinkedIn. If an individual is approached for a job 
offer, they might provide insights that will make targeting and recruiting much easier. Publicly available 
information provides a rich set of data for adversaries to learn about people, their business roles, and 
relationships. Generative AI methods, when augmented by a deeper social and behavioral understanding 
of individuals and how they operate within their organizations, can provide the impetus for individuals to 
act in harmful ways, both knowingly and unknowingly (e.g., receive tasking in a voicemail they believe is 
from their supervisor).  
 
Insider threat detection programs currently focus on cyber indicators that differentiate malicious from 
non-malicious employee-generated computer activity. These data analytic tools (e.g., sentiment analysis 
in email, user activity monitoring) limit the focus to cyber indicators. AAI would rely on cybersecurity 
breaches to gain access to affect the organizational data or the performance of the tools themselves. 
Behavioral tools (e.g., employee reporting, analysis of financial strain, position risk analysis) also provide 
risk indicators and those who rely on external information sources (e.g., address, relationships, social 
networks) are susceptible to AAI manipulation.  
 
The relationship between insider threats and AAI highlights the need for comprehensive cybersecurity 
strategies that address both external and internal risks to AI systems and data. 
 

4.2 Satellite Imagery  
The adversarial relationship with respect to overhead observations is one that has a long history, predating 
the use of satellite imagery. The adversarial role is often a relationship of evasion and using means of 
either defeating the physical sensor or evading observation. At times, nature in the form of fog, rain, 
smoke, etc. can aid in evasion as well. As a result, multiple spectra are used in the visible and other 
domains and other sources of observation including radar, electronics emissions, etc. Multiple approaches 
are used to obfuscate or make indeterminate the current position of satellites and their current field of 
view and to limit knowledge of their fields of regard and their current level of inevitable degradation due 
to the hostile environment in which they operate. 
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Recent advances in commercial access to satellite imagery such as that offered by the Planet Labs’ 
constellation, give rise to emerging opportunities for adversaries. As the cost of launching small 
constellations to low earth orbit (LEO) continues to be reduced it is not unreasonable to expect that 
additional services, similar to those offered by Planet Labs, will emerge in the U.S. and other markets 
with the potential for use by an adversary. As the availability of real-time satellite imagery proliferates 
and the cost is continually reduced, it is a fair assumption that the number of adversaries using satellite 
imagery will grow.  

The impacts of AAI on the mission spaces using satellite and other overhead imagery could be wide 
ranging and varied. 

• A key mission space utilization of satellite imagery is target tracking and detection of anomalous
events, changes in patterns, etc. Although AI can help analyze imagery to track, detect, and
inform, the same approaches could be used by an adversary using commercial data sources.

• AAI could be used to devise patterns of movement that could defeat traditional mathematical
tracking approaches or make maintaining track custody across sensor gaps difficult or misleading.

• AAI could be used to develop measures to defeat these tipping and cueing85 mechanisms,
including altering background estimation functions or development of patterns of movement to
make cueing operations ineffective.

Defending against an AAI attack on satellite imagery could take on many forms depending on the nature 
of the attack. The nature of these defenses can also be informed by the long adversarial history of satellite 
imagery. As an example, if a sensor of one modality is defeated such as one operating in the visible 
spectrum, other sensors of differing modalities could be used (e.g., infrared, EM, or radar). Generation of 
fused tracking solutions using differing physical sensors could be used to defeat attacks focused on a 
single physical sensor. This same approach could also be used when generative AI scenes are being 
received from a source. 

Also of concern are the multiple of points of attack along the pathway from the sensing of a physical 
phenomenon to the display of targets of interest to mission personnel. The aforementioned processes of 
tracking, tipping, cueing, scheduling, etc. are not singular processes but are each complex system-of-
systems. Opportunities for AI (and similarly AAI) of tracking systems could lie not only in the physical 
sensor, but also in the geolocation, track propagation, target identification, target detection, background 
estimation, and many other subsystems. 

4.3 Foundation Models  
With the introduction of transformers in 2017,86 a new paradigm in AI was formed, foundation models. 
Foundation models are large-scale models that are trained in a self-supervised manner on broad sets of 
unlabeled data and are capable of being rapidly adapted to downstream tasks. These foundation models 
gained popularity with LLMs such as Bidirectional Encoder Representations from Transformers 
(BERT)87 and variants of GPT88. Shortly after, vision transformers (ViT)89 gained popularity quickly 

85 Tipping and cueing are the combined process of observing an area, detecting an item of interest, and cueing one or more 
additional sensors to observe the same phenomena or to observe the expected position of a tracked object. 

86 A. Vaswani, “Attention Is All You Need,” (August 2023): http://arxiv.org/abs/1706.03762. 
87 J. Devlin , “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” (May 2019): 

https://doi.org/10.48550/arXiv.1810.04805. 
88 T. Brown, “Language Models are Few-Shot Learners,” (July 2020): https://doi.org/10.48550/arXiv.2005.14165. 
89 A. Dosovitskiy, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale” (June 2021): 

https://doi.org/10.48550/arXiv.2010.11929.  

https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.2010.11929
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followed by text-image models such as CLIP90 and now these foundation models are being developed 
across many other domains and data modalities, e.g., weather and climate,91 and audio.92 These large-
scale pretrained models now serve as the backbone for many commercial AI applications such as 
ChatGPT93 and DALL-E94 and are also being heavily leveraged by academia and in U.S. government 
research and applications. For a more complete review on foundation models, see DHS S&T’s publication 
“Foundation Models at the Department of Homeland Security: Use Cases and Considerations.”95 
 
4.3.1 Impacts of AAI on Foundation Models 
Foundation models and AAI intersect in a couple of different ways: 
 

• Foundation Models are susceptible to AAI attacks, both in the form of AML and in the form of 
generative deceptive AI, and 

• Foundation Models provide the capability for an adversary to generate these threats.  
 
A common categorization of these AI-based threats uses the confidentiality or privacy, accessibility, and 
integrity triad.96 As foundation models are susceptible to many of the same attacks as other ML models, 
many of which have been covered in more detail in other sections of this report, the following sections 
focus on AAI threats that are most unique to foundation models using a different triad: scale, emergence, 
and homogenization.  
 
4.3.1.1 Scale 
Foundation models require extremely large and broad sets of data to be trained effectively. Current state-
of-the-art foundation models use anywhere from tens of gigabytes97 to hundreds of terabytes98 of data 
depending on the size of the model and specific modalities involved. With data sizes growing, the sheer 
size of the datasets precludes their comprehensive examination by humans. This presents opportunities for 
ingestion of sensitive data such as PII, proprietary, or classified information. Such large volumes of data 
might also be poorly characterized, leading to distributions of training data that are not well understood 
and that run the risk of imparting bias or other properties into the model that adversaries may be able to 
use to their advantage if discovered. Lastly, the sourcing and quality of these massive datasets is difficult 
to validate, creating opportunities for adversaries to inject their own poisoned data into the training set 
thus degrading model performance.  
 
There are many potential DHS mission use cases for foundation models, as well as the associated threats. 
As a result of the scale of data required to train foundation models, inference attacks are a large concern. 
Because foundation models employed for DHS missions might include sensitive information (e.g., law 
enforcement, asylum seekers, witnesses, travelers, or emergency service professionals, etc.) in their 
training data, given adequate access to the model an attacker, through inference attacks, might be able to 

 
90 Radford, Alec, et al. Learning Transferable Visual Models From Natural Language Supervision. arXiv, 26 Feb. 2021. arXiv.org, 

https://doi.org/10.48550/arXiv.2103.00020. 
91 T. Nguyen, “ClimaX: A foundation model for weather and climate,” (July 2023): https://doi.org/10.48550/arXiv.2301.10343. 
92 A. Radford, “Robust Speech Recognition via Large-Scale Weak Supervision,” (December 2022): 

https://cdn.openai.com/papers/whisper.pdf. 
93 OpenAI ChatGPT Web page (October 2023): https://chat.openai.com. 
94 Open AI DALL-E 2 Web page (October 2023): https://openai.com/dall-e-2. 
95 A. Henninger, D. Kusnezov, “Foundation Models at the Department of Homeland Security: Use Cases and Considerations”, 

DHS S&T Report (2023). 
96 Oprea A, Vassilev A, (2023) Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and Mitigations. 

(National Institute of Standards and Technology, Gaithersburg, MD) NIST Artificial Intelligence (AI) NIST AI 100-2e2023 ipd. 
97 T. Brown, “Language Models are Few-Shot Learners,” (July 2020): https://doi.org/10.48550/arXiv.2005.14165.  
98 C. Schuhmann , “LAION-5B: An open large-scale dataset for training next generation image-text models,” (October 2022): 

https://doi.org/10.48550/arXiv.2210.08402. 

https://arxiv.org/abs/2103.00020
https://doi.org/10.48550/arXiv.2103.00020
https://arxiv.org/abs/2301.10343
https://doi.org/10.48550/arXiv.2301.10343
https://cdn.openai.com/papers/whisper.pdf
https://cdn.openai.com/papers/whisper.pdf
https://chat.openai.com/auth/login
https://chat.openai.com/
https://openai.com/dall-e-2
https://openai.com/dall-e-2
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://arxiv.org/abs/2210.08402
https://doi.org/10.48550/arXiv.2210.08402
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expose vulnerabilities in the model and elicit sensitive this data (e.g., PII) or global properties of the 
model for easier circumvention (e.g. bias in speech patterns or facial recognition).   

Another AAI threat vector introduced by the need for data at scale is that of data poisoning.99 The scale of 
data and the self-supervised nature of training required to construct foundation models makes it extremely 
difficult to validate the training data. Worse yet, much of the content is publicly scraped from the open 
internet. This makes these models vulnerable to data poisoning attacks during training, which has the 
potential of compromising the integrity of the foundation model. Adversaries with long-time horizons can 
generate and distribute poisoned data on the internet in hopes that it will be scraped for future model 
creation. Furthermore, any downstream models that use the compromised foundation model as a 
backbone may also inherit the vulnerability, leading to mass failure (see Section 4.3.1.3, 
“Homogenization”). 

4.3.1.2 Emergence  
The emergent properties of foundation models have captured the attention of the world with recent 
releases of tools like ChatGPT and DALL-E. Despite the novel capabilities demonstrated by these models 
they are still poorly characterized and not well understood. Furthermore, the generative capabilities of 
these models and the democratization of AI is making it easier for bad actors to intentionally misuse these 
large-scale models. The AAI threats presented by the emergent capabilities of foundation models come 
largely from their tendency to hallucinate information that could evade, discredit, overwhelm, or 
otherwise subvert DHS systems, services, and personnel.  

Foundation models enable all the generative deceptive AI attacks presented in Section 2.2. As foundation 
models and deepfake technology continue to evolve, they will be able to easily generate influence 
campaigns and spread misinformation that could impact emergency services (e.g., false road closures 
during an evacuation or diversion of forces from the border). Deepfakes will potentially also lead to 
increased spam calls, phishing attempts, social engineering, or other means to commit identity fraud or 
steal sensitive information.  

LLMs have the same potential as deepfakes to produce influence campaigns and spread misinformation 
albeit through text rather than audio-visual media. One of the more concerning properties of LLMs is 
their ability to produce working, or close to working, code100 from just a short text description (e.g., 
generate a python function to add two numbers together). This capability is already finding its way into 
many commercial applications,101 but at the same time creates new opportunities for bad actors to more 
easily generate malicious code102 (i.e., malware) more easily. Code generation with LLMs will lower the 
barrier to entry for non-experts to rapidly generate malicious code, which could have negative 
consequences for the DHS Cybersecurity and Infrastructure Security Agency in keeping up with the 
proliferation of cyberattacks. 

Face-morphing is yet another attack that foundation models, specifically Stable Diffusion, have recently 
enabled. A face-morphing attack uses two or more identities (e.g., images of faces) to generate a new 
identity that captures the biometric qualities of the contributing identities. The result is a visually realistic, 
but fake, image of a face that is capable of fooling humans and modern automated face recognition 
systems alike, meaning that multiple people might be able to be authenticated using a single identity 

99 N. Carlini, “Poisoning and Backdooring Contrastive Learning,” (March 2022): https://doi.org/10.48550/arXiv.2106.09667. 
100 R. Li, “Starcoder: May the Source be With You!” (May 2023): https://doi.org/10.48550/arXiv.2305.06161. 
101 GitHub Copilot Web page (October 2023): https://github.com/features/copilot. 
102 E. Shimony, “Chatting Our Way Into Creating a Polymorphic Malware,” (January 2023): 

https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware. 

https://arxiv.org/abs/2106.09667
https://doi.org/10.48550/arXiv.2106.09667
https://arxiv.org/abs/2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://github.com/features/copilot
https://github.com/features/copilot
https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware
https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware
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represented by the fake image. This attack has already been demonstrated in the real world103 and has the 
potential to undermine border and transportation security. 

4.3.1.3 Homogenization 
Because of the expertise and scale of data and compute required to train a foundation model, only a few 
institutions are currently capable of doing so. Access to these large-scale pretrained models can greatly 
reduce the amount of data required to train downstream task-specific models with comparative 
performance and less compute. It has been demonstrated that a vulnerability introduced in the foundation 
model can be inherited by downstream models104 that use it, introducing yet another adversarial threat 
vector. As these foundation models become more widely used as backbones for downstream models a 
potential single point of failure emerges. If this single point of failure is compromised, it has the potential 
to simultaneously discredit large numbers of DHS systems or create distrust with DHS agents and 
operators.  

Data poisoning is one of the major concerns pertaining to homogenization and was discussed earlier. 
Here, we focus on evasion attacks. A wide variety of attacks can be used to perturb the input to a model 
and thus degrade overall model performance (e.g., get the model to miss or misclassify an object). These 
perturbations can come in the form of digital patches105 or other noise106 injected directly into an image or 
it can even be patches or other “confusers” placed in the real world (e.g., stickers on a stop sign). 107  
Much like the effect of data poisoning, if an effective evasion attack can be discovered for a particular 
foundation model there is a risk that the same vulnerabilities might be inherited by many other 
downstream models. As an example, if a baggage scanner foundation model were trained and different 
airports and/or scanners used this as a backbone to fine-tune to look for new objects or incorporate new 
scanners it may be possible for an adversary to identify a single evasion attack that fools all scanners. 
This example can be easily extended to other DHS use cases such as object detection for ISR border 
security applications, facial recognition, etc. 

4.3.2 Defenses for Foundation Models 
The recent report in the Preparedness Series on foundation models108 likened them to other digital assets 
that need to be protected at each stage of their development and operation to ensure they remain 
uncompromised. Because of their “foundational” nature, foundation models offer a high-leverage single 
point of failure and are a prime target for attack. The defense against AAI threats is an active and growing 
area of research and one of utmost importance, but a silver bullet to completely defend foundation models 
from AAI threats is unlikely. The following list offers some strategies to securing foundation models 
from adversarial attacks:  use trusted data sources, watermark training data, encrypt training data, train AI 
models using adversarial examples, make AI models intrinsically more robust, network/defensive 
distillation, analyze or modify inputs, ensemble methods, red teaming, educating end users, and good 
cyber hygiene and incident response. These are elaborated on in Appendix A. These mitigations are 
scoped toward the training and deployment of models and does not cover defenses against the generative 
deceptive AI threats arising from foundation models as those are covered in prior sections of this 
document.  

103 NIST IFPC 2022 Conference Presentations and Videos (November 2022): https://www.nist.gov/itl/iad/ifpc-2022-
conference-presentations-and-videos. 

104 K. Kurita, “Weight Poisoning Attacks on Pre-trained Models,” (April 2020): https://doi.org/10.48550/arXiv.2004.06660. 
105 T. Brown, “Adversarial Patch,” (May 2018): https://doi.org/10.48550/arXiv.1712.09665. 
106 I. Goodfellow, “Explaining and Harnessing Adversarial Examples,” (March 2015): https://doi.org/10.48550/arXiv.1412.6572. 
107 K. Eykholt, “Robust Physical-World Attacks on Deep Learning Visual Classification,” (April 2018): 

https://doi.org/10.48550/arXiv.1707.08945. 
108 D. Kusnezov, “Preparedness in Times of Rapid Change,” DHS S&T Report (2023). 
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4.4 Distributed Intelligence 
Decentralized intelligent systems are networks of nodes or agents in which, for reasons related to 
compute, storage, efficiency, bandwidth, resilience, and/or scalability, the data processing and decision-
making occur at each of the nodes in the network, rather than at a central node. Although this is often a 
more robust architecture lacking a single point of failure, it requires additional computational cost, 
overhead, and iterative algorithms, to achieve the same performance as centralized systems. Additionally, 
because individual nodes communicate directly with only a small percentage of the network, adversarially 
manipulated data can be more difficult to detect, and the effect from even a single compromised node can 
be dramatic if unmitigated. Designing robust decentralized algorithms for inference, training, and 
autonomous agent action is thus an active area of research to address increasingly complex threats. 
Subsections 4.4.1 and 4.4.2, “Inference/Training” and “Autonomy,” respectively, address the potential 
impacts of adversarial nodes on algorithms within such networks and provide a broad overview of 
research on AAI against distributed intelligence algorithms. The impact of adversarial attacks on 
decentralized training, inference, and autonomy algorithms can be substantial. In each case, these 
algorithms must exchange intermediate information, often gradients of a quantity of interest, and iterate 
until results converge at all nodes in the network. Gradients that are large or towards undesirable values of 
the parameters in question are the most common form of an adversarial attack, though the outcome might 
be different if the attack targets inference, training, or autonomy algorithms. 

4.4.1 Inference/Training 
Decentralized inference algorithms extract information from the data they sense at all nodes without 
aggregating that data in one location though iterative algorithms, which eventually achieve consensus 
amongst all nodes. It has been demonstrated that including incorrect values among the exchanged data 
can cause biases in the estimate regardless of the estimator, and that it is possible to add significant bias 
with a single adversarial node even in large networks.109,110 Since information inferred from raw sensor 
data over the network is the basis of all future decisions, inaccurate estimates of critical parameters can 
lead to poor performance on all subsequent tasks.  

Federated learning distributes training over multiple nodes, and is designed to avoid data aggregation, 
promote efficiency and resilience, and preserve data privacy. In general, each node trains on locally held 
data, and communicates only gradients of model weights. In methods analogous to those that disrupt 
decentralized inference, a small number of adversarial agents can substantially degrade the performance 
of the resulting model by sending “boosted” updates. This has been dubbed model poisoning, as it does 
not involve modifying the training data directly.111   

4.4.2 Autonomy 
Beyond decentralized exploitation of sensor data, intelligent sensor networks can react to information in 
the data they collect to improve performance toward their objectives. The actions of a small network can 
be fully coordinated using decentralized partially observable Markov decision processes (POMDPs)112 or 

109 Vempaty, Aditya, Bhavya Kailkhura, and Pramod K. Varshney. Secure networked inference with unreliable data sources. 
Singapore: Springer, 2018. 

110 Yang, Zhixiong, Arpita Gang, and Waheed U. Bajwa. "Adversary-resilient distributed and decentralized statistical inference and 
machine learning: An overview of recent advances under the byzantine threat model." IEEE Signal Processing Magazine 37.3 (2020): 
146-159.

111 Bhagoji, Arjun Nitin, et al. "Analyzing federated learning through an adversarial lens." International Conference on Machine
Learning. PMLR, 2019. 

112 Oliehoek, Frans A., and Christopher Amato. A concise introduction to decentralized POMDPs. Vol. 1. Cham, Switzerland: 
Springer International Publishing, 2016. 



45 

decentralized optimization techniques such as the alternating direction method of multipliers (ADMM)113 
if a cost function can adequately score all possible agent behaviors. Multi-agent reinforcement learning 
(MARL) is a recent approach in which a policy mapping state to action for one or more agents is learned 
through actions taken in thousands of training simulation runs. MARL is better suited in practice to more 
complex objectives, environments, and action spaces and often functions with a reward specified only for 
overall outcomes, however it lacks the optimality guarantees of other approaches and requires a 
computationally efficient, high-fidelity simulation capability. MARL training and ADMM are iterative 
and subject to the same adversarial manipulation of shared updates as described in prior sections.114 
Attacks to disrupt MARL policies when deployed can be categorized as action perturbations, observation 
perturbations, or communication perturbations and closely resemble more conventional AML and/or 
cyberattacks.115  

Due to the decentralized nature of the data processing and autonomy algorithms, small numbers of 
adversarial agents can have a disproportionate impact on outcomes. Data/updates that are very large or 
small relative to the mean introduce the most bias and were the early adversary strategies against 
decentralized algorithms. However, these are also easiest to identify, particularly with access to all data. 
However, mitigating this potential impact with no other knowledge of an attacker’s strategy often mean 
excluding several of the largest and smallest values received, forcing the network to throw away useful 
data and slowing the convergence of decentralized algorithms if no attackers are present. More damaging 
attacks become feasible as prior information is available on the objectives and algorithms of the network. 
Defenses improve concomitantly with knowledge of the attacker objectives and behaviors. For example, 
proposed defenses have included methods that evaluate the data history of individual nodes to be more 
effective in identifying sources of adversarial data, but in turn have motivated strategies in which nodes 
alternate between sending adversarial and true data to avoid detection. Current research is continually 
addressing increasingly complex adversary behavior, with a focus on designing robust systems that do not 
significantly sacrifice performance when no adversary is present.     

4.5 Internet of Intelligent Things (IoIT) 
IoIT refers to a network of interconnected devices, sensors, and objects that are equipped with intelligent 
capabilities to communicate, gather data, and make decisions. AAI, on the other hand, involves 
techniques where malicious actors manipulate AI models by introducing carefully crafted inputs to 
deceive or confuse them. The relationship between (IoIT) and AAI lies in the potential vulnerabilities that 
adversarial attacks can exploit within IoIT systems. By crafting adversarial inputs, attackers can 
manipulate the behavior of IoT devices or sensors, causing them to produce incorrect or unexpected 
outputs. This could lead to false data being collected, erroneous decisions being made, or even safety-
critical systems being compromised. There are multiple opportunities for these vulnerabilities to present 
themselves, including: 

• Sensor data manipulation:  Adversarial attacks could target the sensors in IoIT devices, causing
them to provide inaccurate or misleading data. This could affect various applications such as
environmental monitoring, health tracking, and industrial automation.

113 S. Boyd, “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers,” (January 
2011): Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers | Now Foundations and 
Trends books | IEEE Xplore. 

114 M. Figura, “Adversarial attacks in consensus-based multi-agent reinforcement learning,” (March 2021): [2103.06967] 
Adversarial attacks in consensus-based multi-agent reinforcement learning (arxiv.org). 

115 M. Standen, “SoK: Adversarial Machine Learning Attacks and Defences in Multi-Agent Reinforcement Learning,” (January 
2023): https://arxiv.org/abs/2301.04299. 

https://ieeexplore.ieee.org/document/8186925
https://ieeexplore.ieee.org/document/8186925
https://arxiv.org/abs/2103.06967
https://arxiv.org/abs/2103.06967
https://arxiv.org/abs/2301.04299
https://arxiv.org/abs/2301.04299
https://arxiv.org/abs/2301.04299
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• Communication disruption:  Adversarial attacks might target the communication channels
between IoIT devices, disrupting the exchange of information and potentially causing
communication breakdowns.

• Privacy and security concerns:  AAI could be used to compromise the privacy and security of
IoIT systems by extracting sensitive information from data streams or bypassing security
mechanisms.

• System integrity:  Adversarial attacks on IoIT could compromise the integrity of AI models
deployed in the system, leading to unintended behaviors or malfunctioning of connected devices.

To mitigate the risks associated with adversarial attacks in IoIT, robust security measures, anomaly 
detection techniques, and continuous monitoring are essential. These are reviewed in Appendix A. 
Additionally, R&D efforts are ongoing to create more resilient AI models and algorithms that are less 
susceptible to adversarial manipulation. As technology evolves, the relationship between IoIT and AAI 
will likely continue to evolve as well, requiring ongoing attention to ensure the security and reliability of 
interconnected intelligent systems. 

4.6 Advanced Manufacturing 
AI systems have an increasingly important role in advanced manufacturing. Although CV for automatic 
defect detection, both in situ and post process, remains a leading focus, AI techniques are also being 
investigated for preventative maintenance to predict tool wear and part failure. In additive and hybrid 
manufacturing, there is a push for “certify as you build” approaches where in situ sensors are used to 
predict the part quality, material properties, and defects so that further post process inspection is 
unnecessary. AI will be a key component in these models and as these models become more robust, they 
will be increasingly integrated into closed loop control systems that can adjust process settings in real 
time and rework layers/defects. Another area where AI models might grow more prominent in is 
scheduling and space allocation. With additive manufacturing allowing distributed manufacturing AI 
might take a larger role in ordering materials, scheduling time on machines, and moving supplies and 
parts between locations. 

With this growth of AI in advanced manufacturing systems comes an increased susceptibility to 
adversarial attacks including evasion, poisoning, and inversion attacks. With evasion attacks, a quality 
control system could be used to create false negatives (defective parts that are classified as good), either 
letting naturally occurring flaws past, or hiding intentional attacks to cause failures in the field. False 
positives (good parts classified as bad) could be used to waste time and money (throwing away good 
parts) and undermine trust in the monitoring system. 

Manufacturing typically requires physically fabricating parts to collect data. This means that it can be 
quite costly to collect enough data to train your own model. As a result, many manufacturers might rely 
on pretrained models/datasets, use transfer learning, or outsourcing the model/data collection to manage 
the costs of implementing these systems. This leads to concerns about potential data poisoning as the 
security of opensource or online datasets that might be incorporated into these models is unknown. Many 
original equipment manufacturers (OEMs) also collect data from their machines in the field that they can 
then feed back into their models to improve performance. In such a scenario, it is foreseeable that a bad 
actor with several machines could feed false data back into the system to poison the dataset in the hope 
that the OEM will incorporate this poisoned data into the next update/iteration of their model. 

Many ML models are trained on proprietary data. An attacker who inverted a model used in advanced 
manufacturing could potentially be able to extract information about confidential part geometries or hints 
as to the materials and process parameters that were used. This could be done by a competitor or other 
bad actor to gain an advantage or undermine manufacturers or their customers. Theft of AI models is also 
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a concern because of the inherent intellectual property and competitive advantage they might represent. 
Finally, as AI models become more integrated in advanced manufacturing, they risk being the target of 
DOS attacks. If a model is rendered inaccessible, unusable, or corrupted it could delay/stop a 
manufacturing facility until it was able to be restored or replaced. This is of particular concern when using 
a third-party service, as access to the model might be outside of the manufacturer’s control. 

4.7 Gene Editing 
Striking a balance between leveraging AI for advances in gene editing (see Figure 4.1) and safeguarding 
against AAI-driven misuse is crucial in harnessing the full potential of this transformative biotechnology. 
For example, the malicious use of AI could lead to the development of novel and harmful genetic 
modifications, raising ethical and safety concerns. Other adversarial attacks might exploit vulnerabilities 
in the gene editing processes, potentially leading to unintended genetic changes or biosecurity threats, 
enabling the creation of new substances generated by AI such as creating new/extending existing poison, 
evolving existing benign molecules/DNA strands into harmful substances, inactivating treatments, and 
inventing Trojan viruses. 

© 2023 Carnegie Mellon University 13[[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Adversarial AI for Gene Editing – Automatic Generation

Slide courtesy Rebecca Taylor <bex@andrew.cmu.edu>

Figure 4.1. AAI for Gene Editing – Automatic Generation in the Carnegie Mellon University 
Cloud Lab.116 

AI is increasingly used in conjunction with CRISPR (Clustered Regularly Interspaced Short Palindromic 
Repeats) technology to enhance the efficiency, precision, and effectiveness of gene editing experiments. 
Yet, gene editing using CRISPR is just one technique, there are many novel protein-design tools and 
approaches. LLMs are used to explore and develop therapeutic proteins for the next generation of 
medicine117 and generate protein sequences with a predictable function across large protein families.118,119  

116 Sherman, M. (CMU SEI). “Panel 3. Implications of AAI on Emerging Technology” page 13. Presented at the DHS S&T Risks 
and Mitigation Strategies for Adversarial AI Threats. June 16, 2023. 

117 NVIDIA Web page (October 2023): https://nvidianews.nvidia.com/news/nvidia-unveils-large-language-models-and-
generative-ai-services-to-advance-life-sciences-r-d. 

118 A. Madani, “Large language models generate functional protein sequences across diverse families,” (January 2023): 
https://doi.org/10.1038/s41587-022-01618-2. 

119 N. Ferruz, “ProtGPT2 is a deep unsupervised language model for protein design,” (July 2022): 
https://doi.org/10.1038/s41467-022-32007-7.  

https://nvidianews.nvidia.com/news/nvidia-unveils-large-language-models-and-generative-ai-services-to-advance-life-sciences-r-d
https://nvidianews.nvidia.com/news/nvidia-unveils-large-language-models-and-generative-ai-services-to-advance-life-sciences-r-d
https://nvidianews.nvidia.com/news/nvidia-unveils-large-language-models-and-generative-ai-services-to-advance-life-sciences-r-d
https://www.nature.com/articles/s41587-022-01618-2
https://doi.org/10.1038/s41587-022-01618-2
https://www.nature.com/articles/s41467-022-32007-7
https://doi.org/10.1038/s41467-022-32007-7
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Deep-learning classifiers are used in the generation of antimicrobials with desired attributes.120  Deep-
learning platforms automate high-throughput biological sequence functional analysis enabling researchers 
to answer many biological questions. 121 And, other ML applications that predict native protein structures 
from their sequences can be inverted to design new proteins122 or to regularly predict protein structures 
with atomic accuracy even in cases in which no similar structure is known. 123 

To mitigate the risks associated with adversarial attacks in gene editing, robust security measures 
including secure data storage, access control, biometric authentication methods, and anomaly detection 
techniques are essential. These are reviewed in Appendix A. 

4.8 The Metaverse 
The Metaverse is a concept often used to describe a virtual, collective, and interconnected digital universe 
that encompasses multiple virtual environments, augmented reality spaces, and digital experiences. With 
a few well-funded companies working to profit from the resources and future visitors, it is essentially the 
Wild West. While AI systems, and AAI systems, for use in the Metaverse require significant sums of 
money to develop and deploy, these large well capitalized companies have access to large amounts of 
capital.  

Artificial intelligence is a building block for the Metaverse, but it is also the key to making the Metaverse 
both immersive and inclusive. As such, AAI systems can be native parts of every user’s experience, 
indistinguishable from avatars of other humans. This an impact a substantial number of people, Gartner 
estimated “25% of people (Americans) will spend at least one hour per day in the Metaverse by 2026.”124 

More impactfully, AAI can interact in the Metaverse at scale, with potentially all users’ interactions with 
this sort of AI-bot during every visit to the Metaverse. On the less harmful side, Metaverse companies are 
likely to field AI-bots for advertising as a mechanism to recoup their investments. However, the AI-bot 
that befriends a user to convince them that a new virtual dance club is a great place to have fun 
experiences is precisely the same technology that could be used to convince them that a new extremist 
group is a great place to add meaning to their life. It might not even be a violation of the terms of service 
in the early stages of grooming. 

Significantly, the Metaverse companies are open to a kind of regulation. Alas, they seem to favor the 
liability for “unintended side effects sort of benefit” from the regulation over actual safety for users. 
Consider the current disclaimer from Google’s Bard AI “Bard may display inaccurate or offensive 
information that doesn’t represent Google’s views.” This seems designed more to protect Google from 
cancel culture than it does to practically warn users how wrong the results might be. Actual safety will 
require a larger element of government direction, perhaps akin to automotive safety regulation. 

The Metaverse is not a home to widespread AAI at this time, or widespread anything for that matter. 
However, the opportunity for adversary actors to operate freely in the Metaverse raises the potential for 
DHS interdiction in the Metaverse in the future. 

120 P. Das, “Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations,” (June 2021): 
https://doi.org/10.1038/s41551-021-00689-x. 

121 R. Wang, “DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence 
prediction, functional annotation and visualization analysis,” (February 2023): https://doi.org/10.1093/nar/gkad055. 

122 “De novo protein design by deep network hallucination,” (December 2021): https://doi.org/10.1038/s41586-021-04184-w. 
123 J. Jumper, “Highly accurate protein structure prediction with AlphaFold,” (July 2021): https://doi.org/10.1038/s41586-021-

03819-2. 
124 Gartner Press Release, “Gartner Predicts 25% of People Will Spend At Least One Hour Per Day in the Metaverse by 2026,” 

(February 2022): https://www.gartner.com/en/newsroom/press-releases/2022-02-07-gartner-predicts-25-percent-of-people-will-
spend-at-least-one-hour-per-day-in-the-metaverse-by-2026. 
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4.9 Quantum Computing 
Quantum computers exploit the phenomena of quantum mechanics to enhance a range of computational 
challenges. In the context of AI/ML: (1) Quantum computers can implement techniques that achieve 
better generalization with less training data,125 (2) Quantum neural networks have higher effective 
dimension than their conventional counterparts, (3) Quantum kernel methods can provide lower 
prediction error and speed up certain ML challenges. However, a quantum computer capable of providing 
these advantages is at least a decade away. A hybrid quantum-classical algorithm, the Quantum 
Approximate Optimization Algorithm (QAOA), has been used to solve optimization problems including 
graph coloring and MaxCut on today’s hardware. However, QAOA has not yet shown an advantage over 
classical algorithms. 

Quantum and conventional computers behave very differently. Current research indicates that adversarial 
attacks using a quantum computer can be successful on quantum computers. This is particularly true when 
the adversary has knowledge of the quantum computer (a white box attack). It could be decades before 
there are quantum computers capable of doing something useful, and AAI is unlikely to be successful 
unless developed on a quantum computer. 

Researchers have contrasted adversarial attacks on quantum and conventional neural networks (CNN) 
through simulations.126 As seen in Figure 4.2, they showed that a quantum variational classifier (QVC) is 
more robust to a conventional attack (e.g., projected gradient decent, fast gradient sign method) than a 
CNN when the attacker is not aware that the network is quantum.  

If the attacker is fully aware of the nature of the network, Figure 4.3, specially designed attacks on CNN 
or QVC will work. However, though an attack designed for a QVC performs admirably even against a 
CNN (g), a QVC is robust against an attack designed for a CNN (c).  

When trained against adversarial attacks, simulations suggest that a QVC does not improve against a 
CNN attack, and that the improvement of a QVC against a QVC attack is not as great as a CNN against 
CNN attacks.  

Open questions in Quantum AAI include the potency of a quantum adversary. Can a quantum adversary 
generate projected gradient descent (PGD), FGSM, and similar attacks more quickly than a conventional 
adversary or generate quantum data patterns that are impossible to train for on a conventional computer? 

125 E. Gil-Fuster, “Understanding quantum machine learning also requires rethinking generalization,” (June 2023): 
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjPnMiqjr-
BAxX7EFkFHTM5ByIQFnoECA0QAw&url=https%3A%2F%2Farxiv.org%2Fpdf%2F2306.13461%23%3A~%3Atext%3DQuantu
m%2520machine%2520learning%2520models%2520have%2Cbehavior%2520of%2520such%2520quantum%2520models.&usg=AO
vVaw3skIu-dMOhFGrYjiUsN-kG&opi=89978449. 

126 M. West, “Towards quantum enhanced adversarial robustness in machine learning,” (June 2023): 
https://arxiv.org/abs/2306.12688.  

https://arxiv.org/pdf/2306.13461.pdf#:%7E:text=Quantum%20machine%20learning%20models%20have,behavior%20of%20such%20quantum%20models.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjPnMiqjr-BAxX7EFkFHTM5ByIQFnoECA0QAw&url=https%3A%2F%2Farxiv.org%2Fpdf%2F2306.13461%23%3A%7E%3Atext%3DQuantum%2520machine%2520learning%2520models%2520have%2Cbehavior%2520of%2520such%2520quantum%2520models.&usg=AOvVaw3skIu-dMOhFGrYjiUsN-kG&opi=89978449
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Figure 4.2. Adversarial Quantum Machine Learning – Black Box Attack. (c)Typical CNN, (d) 
QVC network (vertical lines depict timeline of qubits). (e),(f) QVC and CNN network resistance 
against adversarial attack. At a critical attack strength, the CNN does not provide the correct label 
(“Shirts”). However, the QVC correctly identifies the image for much stronger attacks.127 

Figure 4.3. Adversarial Quantum Machine Learning – White Box Attack. Accuracy achieved by 
classical and quantum networks in the cases of white-box PGD attacks on CNN (c), and QVC (g) as a 
function of attack strength. In both cases the accuracy of the network under attack decreases sharply. 
However, when transferring the attack of one network to the other we see that that the attack designed 

127  Weinstein, Y. (MITRE). “Panel 3. Implications of AAI on Emerging Technology” page 5. Presented at the DHS S&T Risks 
and Mitigation Strategies for Adversarial AI Threats. June 16, 2023.   
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for the quantum network is successful against the CNN (g), but the quantum network is relatively 
robust against the attack designed for the CNN.128 

QVCs and CNNs having different strengths and weaknesses. Perhaps the use of both would achieve 
maximum accuracy and protection. However, note that the results discussed here are very early and that 
further study and analysis is needed. 

5 Roles of International Partnerships 
Experts129 agree that present AAI challenges that transcend borders and jurisdictions, much like 
cybersecurity challenges. AAI is a global concern, and an effective response requires international 
cooperation and partnerships.  

International partnerships are not only about pooling resources and knowledge but also about fostering a 
collective response to an evolving and pervasive challenge. Through partnerships with allied nations and 
international organizations, the U.S. can gain access to valuable threat intelligence, enabling for early 
detection and mitigation of AAI attacks. In the event there is a major incident, international cooperation 
enables a coordinated response. This was demonstrated, for example, during the WannaCry ransomware 
attack, where cooperation between the U.S. and our international partners helped track the attackers and 
mitigate the impact.  

In the cybersecurity space, the U.S. engages in joint cybersecurity exercise with allies to simulate 
cyberattacks and test response strategies. These exercises improve readiness and foster better 
collaboration among nations. Given the potential for generative AI and deepfakes to target political 
officials, potentially spawning a major international crisis, these kinds of readiness exercises in the AAI 
space might also be important. 

Together, nations can harness their diverse expertise, perspectives, and resources to establish shared 
norms, standards, intelligence, and best practices in addressing AAI. By working in tandem, we can 
fortify our defenses, enhance early warning systems, and develop effective countermeasures, ultimately 
ensuring a safer, more secure global landscape in the face of this transformative technology. 

6 Summary Considerations and Conclusions 
In the rapidly evolving landscape of technology and security, the emergence of AAI presents a formidable 
challenge to homeland security efforts. Through this report, we have delved into the multifaceted 
implications of AAI, exploring its potential impacts on critical domains such as cybersecurity, border 
security, law enforcement, emergency management, and others. As we conclude this initial examination, 
we offer our findings, next steps, and conclusions. 

6.1 Summary Considerations 
The defense against AAI threats is an active and growing area of research and one of utmost importance, 
but there will most likely never exist a silver bullet to completely defend from AAI threats. This section 
reviews the ideas that have surfaced in the discussions of AAI with a broad community and what 
opportunities could be considered to develop an initial foundation for DHS in the AAI space. As has been 
experienced in cybersecurity, sustained effort will be required at each level to keep up with the state-of-

128  Weinstein, Y. (MITRE). “Panel 3. Implications of AAI on Emerging Technology,” page 6. Presented at the DHS S&T Risks 
and Mitigation Strategies for Adversarial AI Threats. June 16, 2023. 

129 As described by experts on the “Panel on International Partnering,” presented at the DHS S&T Risks and Mitigation Strategies 
for Adversarial AI Threats. June 15, 2023. 
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the-art in understanding both attack and defense methodologies as well as implementing and maintaining 
data management, ML, software engineering, and cybersecurity best practices to effectively defend 
against AAI threats. Critically important, we must understand the lessons learned from standing up a 
cybersecurity ecosystem, leverage what makes sense from that ecosystem, integrate with that ecosystem, 
while ensuring that we do not simply extrapolate from cybersecurity and unwittingly pull in assumptions 
that might not be valid in the AAI space.  
 
Here we summarize opportunities. These considerations focus on a combination of consolidative 
activities, work on critical enablers, “sense-making” research, common-good systematic research, and 
fresh design work.  
 
1. Examine where acquisition oversight responsibilities and S&T’s oversight responsibilities, 

require new policies to support secure AI systems. For example, consider AI Red Teaming in 
T&E or AI security assessments in Systems Engineering.  
 

• The analysis and mitigation of AAI risks should be incorporated throughout the system 
lifecycle, starting as far left as possible. 

• Start the wheels in motion to formalize these processes within DHS’s institutional processes.  
• Consider the entire acquisition process, to include commercial-off-the-shelf procurements.  
• Establish requirements for contracting, to include contracting language that provides access 

to training data, measures of effectiveness/benchmarking data, regression testing 
requirements, scope of model, etc. 

• Work with the intelligence community to define what kinds of information requirements we 
will have in the AAI space such that they can focus their resources more productively. 

 
2. Join the cross-government industry threat intelligence and incident sharing initiative that is 

starting to take shape. Characterize DHS needs and influence its activities to gain a clearer 
understanding of the types of attacks that happen against real-world systems and use this to 
help inform DHS risk assessments and investments.  

 
3. Develop a data governance framework including an “AI supply chain” that will standardize 

methods for tracking and monitoring data and model provenance, in particular the relation 
between the model and publicly available models and other architectures, but also the training 
process and validation of the AI model as the embodiment of a solution to the specific DHS 
problem in question. 

 
4. Develop needed international partnerships and continue to fully integrate our international 

collaboration strategy within our R&D planning and execution processes. As we formulate 
projects and research efforts, part of that process should be determining whether a particular 
project is aligned to an area of mutual priority with our partners and think through what level 
of collaboration would be appropriate as part of the effort. 

 
5. Engage the R&D community and explore ways to make AI more robust, including against 

adversarial attacks, and focus on reducing design flaws instead of just relying on AI security to 
find them and patch them. Network robustness has been aided by tools like Chaos Monkey. 
Software robustness has been aided by tools such as fuzzing and intelligent fuzzing. Develop the 
equivalent robustness facilitating construct for AI.  
 

6. AAI, including deceptive generative AI, will create a class of content poised to confuse our 
signals (e.g., ISR, intelligence, cyber sensors, etc.). It is important to understand how we depend 
on different types of authentications (e.g., voice and text, image, digital signature, etc.) and what 
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kinds of conditions are required to successfully prosecute an AAI attack (e.g., access to model 
API, access to training data, stealthy, etc.). It will also be important to understand which 
conditions are associated with what kinds of DHS missions that use AI applications (e.g., 
baggage scanning, facial recognition technology, etc.). The review in this document provides a 
good start, but it is not sufficiently comprehensive. As such, we must characterize, more deeply, 
AAI threats and risks as they relate to homeland missions. 

• Assess, study, and catalog the current and future uses for AI-based technologies across 
services, domains, and components. 

• Assess and rank the AI threats and vulnerabilities by the most significant risk and impacts on 
the DHS operations. 

• Proactively and continuously track the emerging AI risks and vulnerabilities in a similar vein 
that cyber threats and vulnerabilities are tracked. 

• Work to develop comprehensive testing and evaluation policies and procedures that account 
for the assessed AAI risks. Build a cross-DHS AI red teaming capability that can help DHS 
understand risks and mitigate threats at the system of systems and mission level as threats 
emerge, especially considering the integration of multiple vendor capabilities.   

o Consider lessons learned from establishing, as well as the strengths and weaknesses 
of, Red Teams in Cybersecurity. 

o Start “shooting” AI-based malware at critical infrastructure (e.g., financial 
markets/stock market, electric grid, etc.) for stress testing. 
 

7. Generative AI companies have been working on watermarking approaches to mark their 
product as AI-generated. This must not be seen as a solution to the “deepfake” problem. 
Adversaries will not be constrained to using the watermarked versions of these tools. Relying on 
markings gives a false sense of security relative to adversary fakes and a universally accepted 
watermark scheme seems unlikely given the proliferation of publicly available tools. Regulating 
synthetic content creation is challenging to accomplish because such regulation would need to 
have international reach and digital borders do not exist. A more robust representation scheme 
is required for differentiating between identity grade photos (live captured, not morphed, under 
ideal lighting conditions) that will be used for identity checking versus all the other less 
consequential imagery (e.g., pictures on the internet). As such, we must conduct R&D needed to 
forensically identify fakes without relying on watermarks and to prepare for influence of 
deceptive generative AI on DHS missions.  

• Find ways to ensure authenticity at scale (e.g., rely on audio, video, text evidence in courts).  
o Prioritize the R&D of methods and approaches that can validate pieces of digital 

images and videos, being able to determine what is real and what has been spoofed. 
This could include using a cryptographic signing approach, validating the image or 
video so long as it has this signature attached to it.  

o Focus on combining of technical, process, and policy components in developing 
solutions that rely to the extent possible on proofs of provenance and authenticity of 
information. 
 Deepfake detectors should be invested into, as many adversaries will use the 

off-the-shelf product. Providing an ability to immediately create a form of 
security against these attacks could prove to be beneficial. 

 Ensemble or sensor fusion methods might be beneficial as a way of 
improving detection robustness. 

• Develop a more robust vocabulary for distinguishing across a spectrum of fake and good 
(i.e., not just binary, “real” or “not real”).  

• Develop response options (e.g., a playbook) for rapid response to mitigate and act against a 
generative AI-enabled misinformation campaign that could be intervening with a DHS 
operation.  
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8. Invest in the art and science of measuring and assessing the magnitude of potential 
vulnerabilities (develop measures of AAI consequentiality of systems for various missions to 
determine what level of assurance is required for different AI applications), mitigating, 
recovering, and assessing damage from potentially exploited vulnerabilities and designing 
nationwide, if not international, vulnerability management processes. Consider how to build in 
mitigations to limit the harm that AAI can cause.  
  

9. Further explore line of research in quantum computing and its impacts on adversarial attacks. 
Open questions in Quantum AAI include the potency of a quantum adversary. 

 
10. The potential for adversarial actors to operate freely in the Metaverse raises a host of safety 

concerns, including from AAI. Safety in the Metaverse will require a larger element of 
government attention. Start exploring concepts on how to protect the public from adversaries 
operating in the Metaverse. This could have consequences that include transnational repression 
or radicalization. 
 

6.2 Near-term Considerations 
In terms of concrete next steps following this study: 

• Conduct a series of narrowly focused sessions/workshops with the individual DHS 
components to understand their current and future use cases and adoption plans for AI-based 
technologies and document the outcomes.  

• Prioritize the biometrics and identity management, cyber defense, and automated security 
surveillance technical areas for assessments against the AAI risks and threats. 

• Collect and document the findings—to be used for the future mitigation and action plan.  
• Plan for a comprehensive testing, evaluation, and threat monitoring action with an aggressive 

development and implementation schedule.  
 

6.3 Conclusions  
In an era where technological innovation is rapidly reshaping the threat landscape, DHS stands at the 
forefront of safeguarding our nation. The imperative to prepare for these AAI methods has never been 
greater. These groundbreaking technologies possess the power to create deceptive content, manipulate 
information, and exploit vulnerabilities, posing significant threats to critical infrastructure, public safety, 
cybersecurity, and other parts of DHS’s core missions, necessitating a proactive and comprehensive 
response. By diligently equipping ourselves with the knowledge, tools, and strategies to understand, 
counter, and adapt to these emerging threats, DHS not only strengthens national security but also ensures 
that our homeland remains resilient against the unpredictable challenges of the digital age. In embracing 
this preparation, DHS exemplifies its commitment to protecting both the present and the future of the U.S. 
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Appendix A: Compiled List of Mitigation Strategies 
Discussed 

While there are certainly others, this appendix attempts to synthesize the range of AAI mitigation 
strategies identified and discussed by experts. Some are more process-focused, others more analytical-
focused, but all are important. Because it is impractical to implement all of these for every model, 
selecting the right combination of strategies for the particular vulnerability/risk a developer is trying to 
address is key to minimizing risk in an informed, efficient way. 

Data Preparation 
• Use trusted data sources/data provenance/sound data governance including an AI supply chain.

Publicly available training data can be attacked and poisoned. To mitigate data poisoning, “trusted”
data sources should be the first line of defense. It will be paramount to have a process to vet the data
sources being used (cyber posture, quality of data, provenance, etc.) and institute appropriate
guardrails when the training data cannot be vetted. There are a lot of publicly available and open-
sourced data out there. However, much of that can be attacked and poisoned, so it is vital that before
data is used it is properly vetted. Much of the discussion here centered on identifying “trusted”
sources and how everyone must work to protect their data. This leads to issues with sharing.

• Data scrutiny and cleaning. Thoroughly examine and preprocess your training data to identify and
remove anomalies, outliers, and potential poisoned samples. This can involve outlier detection
algorithms, data validation checks, and data augmentation techniques to ensure the quality and
authenticity of your dataset.

• Data diversity. Incorporate diverse and representative data into a training set to reduce the impact of
poisoned samples. A diverse dataset makes it harder for attackers to manipulate the learning process
by targeting specific data points.

• Watermark training data. To protect the integrity of training data R&D investments will be
required to investigate techniques like digital signatures and watermarking. These techniques should
be used whenever possible, but they are also complex because to protect against concept drift,
training data must be dynamic and continually refreshed. Training data is extremely valuable. It can
be difficult to collect and update, so it is important to protect the integrity of the training data.
Techniques such as digital signatures or watermarking were discussed. However, it is a complex
problem and things such as protecting against concept drift in training data must be dynamic, and
continually refreshed.

• Encrypt training data. Methods like homomorphic encryption allow computation on encrypted data
and provide encrypted results to the user. Training foundation models on encrypted data would help
mitigate inference and injection attacks targeted at retrieving sensitive information from the model.

• Input transformation or perturbation. Modify the input data before it reaches the model. This
could involve adding random transformations to the input features, which makes it more difficult for
attackers to reverse engineer the model's internal logic. Adding controlled noise to the input data to
disrupt the attacker's ability to make precise inferences.

• Data augmentation. A way of enhancing robustness and generalization of models that focuses on
diversifying the training data.

• “Lift” the data into a higher-dimensional space. Approaches include training on multi-modal data
or adding explicitly defined features.

Model Training 
• Train AI models on adversarial examples. Use the same technology that generates adversarial

examples to generate large volumes of training examples. During the training of a model these
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additional training examples can be used to make the model more robust. In biometrics, for example, 
this would mean creating a false match.  

• Make AI models intrinsically more robust. Continue investment in making models more
intrinsically robust, the idea being models will begin to converge in similarity as they become
comparably robust. This is an active area of research.130 There is a lot of research being done in this
topic area and should be leveraged. And, some algorithms are inherently more resistant to certain
kinds of attacks.

• Network/Defensive/Model Distillation.131 Creating a more secure, smaller model by training it using
the predictions of a larger, more accurate model, has demonstrated potential to make them less prone
to adversarial attacks, while having minimal impact on task performance. Distillation tries to prevent
a model from fitting too tightly to the data by using probabilities versus hard class labels. The idea is
to train your neural network as usual and then train a second model that is trained from the
probabilities of the first one.

• Feature Engineering. Create robust and relevant features that reduce the susceptibility to data
poisoning. Feature engineering can make the model less reliant on specific data points, making it
harder for attackers to manipulate.

• Feature Squeezing. Reduce the degrees of freedom to construct adversarial examples by squeezing
out unnecessary input features. If the distance is larger than a threshold, then the input sample is an
adversarial example.

• Federated Learning. Distribute the training process across multiple devices, thereby keeping the raw
data decentralized and reducing the risk of data exposure.

• Differential Privacy. Apply differential privacy techniques to add controlled noise to the training
data, model’s parameters, or model's responses. This makes it harder for attackers to accurately
reconstruct the model's behavior from the noisy output.

• Randomized Responses. Introduce randomness in the model's responses. This can involve
perturbing the outputs slightly or adding random noise to confuse attackers attempting to extract
information.

• Secure Multi-Party Computation. Use techniques that enable multi-partner collaboration.
Cryptographic techniques enable parties to collaborate on model training without sharing their
individual data. Fusing several finalized models provides an approach to merge models from different
parties after full training.132

Model Deployment 
• Analyze or modify inputs. Just like input validation in software engineering, similar practices should

be employed when passing input to AI models. To mitigate evasion attacks concepts like
randomization,133 denoising, and patch detection134 should be used.

• Ensemble methods. Build ensemble models that combine multiple ML algorithms to improve
accuracy and robustness. This will help alleviate the single point of failure attacks as multiple models
would have to be compromised to engineer a successful attack.

• Good cyber hygiene and incident response. Protect AI training data and models as "crown jewel"
assets. Improve cyber threat monitoring for systems housing AI models. Do not publicly release
models and limit access to the models so attackers cannot employ model stealing attacks or other

130 Jones, Haydn T., et al. "If you’ve trained one you’ve trained them all: inter-architecture similarity increases with 
robustness." Uncertainty in Artificial Intelligence. PMLR, 2022. 

131 N. Papernot, “Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks,” (March 2016): 
https://doi.org/10.48550/arXiv.1511.04508. 

132 ZipIt! Merging Models from Different Tasks without Training  
133 K. Ren, “Adversarial Attacks and Defenses in Deep Learning,” (January 2020): https://doi.org/10.1016/j.eng.2019.12.012. 
134 K. Xu, “PatchZero: Defending against Adversarial Patch Attacks by Detecting and Zeroing the Patch,” (September 2022): 

https://doi.org/10.48550/arXiv.2207.01795. 

https://arxiv.org/abs/1511.04508
https://doi.org/10.48550/arXiv.1511.04508
https://arxiv.org/pdf/2305.03053.pdf
https://www.sciencedirect.com/science/article/pii/S209580991930503X?via%3Dihub
https://doi.org/10.1016/j.eng.2019.12.012
https://arxiv.org/abs/2207.01795
https://doi.org/10.48550/arXiv.2207.01795
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inference attacks to learn system behavior or elicit sensitive information from the model. Good cyber 
hygiene can help mitigate most AAI threats.  

• Detection (of anomalies, synthetics, pattern-based). Incorporate a process of identifying and 
recognizing potential threats, attacks within a system, network, or process (in this case an application 
process such as execution of AI model). Employ anomaly detection techniques to identify sudden 
changes in model behavior that might indicate a data poisoning attack. Detect unusual query 
behaviors that might indicate an ongoing extraction attack and respond by throttling or blocking 
suspicious queries. 

• Move to behavior.  In the specific case of the VirusTotal compromise, consider moving higher up 
the "pyramid of pain" and using behavior (instead of file hashes) to detect malware. MITRE's 
"Malware Behavior Catalog" is a good source for such information. 

• Throttling and Monitoring. Implement continuous monitoring during both the training and 
deployment phases. Implement real-time monitoring of query patterns and model performance. 
Include monitoring of secure government communications channels. Continuous monitoring refers to 
both the system the deployed model is operating on (classic cyber security) but it could also include 
of the model itself in terms of compute processes.  

• Obfuscation Techniques. Apply model obfuscation methods to make it harder for attackers to 
understand the model's architecture and parameters. Techniques like model pruning, weight 
quantization, and feature hashing can contribute to model complexity.  

• Safeguards. Employ a protective measure or mechanism implemented within a software system to 
ensure security, reliability, and ethical use and prevent potential risks, vulnerabilities, and negative 
impacts that could arise from the deployment and operation of the technology. 

• Secure Deployment Environment. Protect the environment where the model is deployed to prevent 
attackers from gaining access to the model's internal parameters or behavior through system 
vulnerabilities. 

• Watermarking and ownership proof (e.g., crypto signing and authentication). Embed digital 
watermarks or ownership proofs in the model's responses. This makes it easier to identify instances 
where the model's behavior is being replicated without authorization. 

• User Access Controls. Implement strict access controls to limit who can modify or contribute to the 
training dataset. This prevents unauthorized or malicious actors from injecting poisoned data. Limit 
access to trained models or predictions to authorized users only, to prevent attackers from reverse-
engineering the model. 

• Effective incident response model. It will be impossible to defend against all AAI-based attacks so 
having a good incident response process will be crucial to ensure vulnerabilities can be addressed 
quickly. 

 
Model Test and Evaluation Verification and Validation (TEV&V) 
• AAI Red Teaming. Red teaming is an exercise where friendly teams are hired to attack 

organizational AI systems. The results and outcomes are subsequently used to improve defenses. This 
exercise must be repeated regularly because attacker methodologies evolve. Regularly conduct red 
team exercises and penetration testing to identify vulnerabilities and weaknesses in your model's 
deployment and defense mechanisms. 

 
Model Maintenance 
• Adversarial Retraining. Inject adversarial examples into the training process. This procedure in 

theory should allow the model to handle the perturbations on inputs but still classify correctly. 
• Regular Model Retraining/Updates. Periodically retrain your ML models using updated and 

cleansed datasets. This helps ensure that the models adapt to evolving data and reduces the impact of 
any potential poisoning attacks. Continuously update and retrain your models with new data and 
improved algorithms. This increases the effort required for attackers to keep up with changes and 
adapt their extraction techniques. 
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Human Systems Interaction 
• Education and training for end-users. The best defense against many AAI threats such as the

misuse of LLM or deepfakes is to develop strong education programs to train operators on how these
AI systems function, how to recognize bias, and how to use multiple sources to validate information.
Educate your team about the risks of data poisoning attacks and encourage a culture of cybersecurity
awareness. Regular training can help prevent inadvertent actions that may expose the system to
potential attacks.

• Education and training for employees, contractors, and other insiders who have access to the
model’s training data or parameters. This is to target prevention of attacks by insider threats.

• Limit Query Access. Restrict the number of queries on a model. Restrict the number and frequency
of queries that can be made to your model. Implement rate limiting and authentication mechanisms to
control who can access the model's predictions and reduce the amount of data available for extraction.

• Legal protections. Include legal safeguards such as user agreements or terms of service that
explicitly prohibit model extraction, replication, or unauthorized use.

• Use good cyber hygiene. Some of the issues that fall under adversarial ML can be minimized by
simply using good cyber hygiene. It is important that AI training data and models are protected, and
the system housing the AI models and use is monitored to ensure that at a minimum, only those who
have a need to know have access to them. Ensuring protection and restricting sharing are a good start.
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