From:
To:
Subject: [EXTERNAL] TON Article re: border wall
Date: Thursday, January 26, 2017 3:26:57 PM

FYSA

SELLS, Ariz. - President Donald Trump's executive action ordering the construction of a border wall may face challenges in Arizona if the Tohono O'odham Nation decides they don't want the wall.

The tribe comprises 2.7 million acres of southern Arizona, including 75 miles along the border. The tribe's land also extends into Mexico.

"These are Native lands and the president doesn't have the unilateral power to take those lands away," said Andrew Gordon, an attorney with the Coppersmith Brockelman law firm.

Gordon worked as counsel for the Department of Homeland Security under the Obama Administration and was focused on the southwest border. He explains the actual border belongs to the U.S government, but everything up to that point is sovereign tribal land.

"That dispute is either going to get resolved in the courts or in congress," Gordon said.

Back in November, Tohono O'odham Vice Chairman Verlon Jose told Phoenix radio station KJZZ that Trump's wall would be built "over my dead body."

This is an interesting congressional report on DHS’ authority for construction of Border Wall. It might be worth circulating it with others. I see (b) (6) has already received it.
Barriers Along the U.S. Borders: Key Authorities and Requirements

Michael John Garcia
Acting Section Research Manager

January 27, 2017
Summary

Federal law authorizes the Department of Homeland Security (DHS) to construct barriers along the U.S. borders to deter illegal crossings. DHS is also required to construct reinforced fencing along at least 700 miles of the land border with Mexico (a border that stretches 1,933 miles). Congress has not provided a deadline for DHS to meet this 700-mile requirement, and as of the date of this report, fencing would need to be deployed along nearly 50 additional miles to satisfy the 700-mile requirement. Nor has Congress provided guidelines regarding the specific characteristics of fencing or other physical barriers (e.g., their height or material composition) deployed along the border, beyond specifying that required fencing must be reinforced.

The primary statute authorizing the deployment of fencing and other barriers along the international borders is Section 102 of the Illegal Immigration Reform and Immigrant Responsibility Act of 1996 (IIRIRA; P.L. 104-208, div. C). Congress made significant amendments to IIRIRA Section 102 through three enactments—the REAL ID Act of 2005 (P.L. 109-13, div. B), the Secure Fence Act of 2006 (P.L. 109-367), and the Consolidated Appropriations Act, 2008 (P.L. 110-161, div. E). These amendments required DHS to construct hundreds of miles of new fencing along the U.S.-Mexico border, and they also gave the Secretary of DHS broad authority to waive “all legal requirements” that may impede construction of barriers and roads under IIRIRA Section 102. These statutory modifications, along with increased funding for border projects, resulted in the deployment of several hundred miles of new barriers along the southwest border between 2005 and 2011. But in the years following, DHS largely stopped deploying additional fencing, as the agency altered its enforcement strategy in a manner that places less priority upon barrier construction.

On January 25, 2017, President Donald J. Trump issued an executive order that, among other things, instructs the Secretary of Homeland Security to “take all appropriate steps to immediately plan, design, and construct a physical wall along the southern border ... to most effectively achieve complete operational control” of the U.S.-Mexico border. The order defines a “wall” to mean “a contiguous, physical wall or other similarly secure, contiguous, and impassable physical barrier.” The order does not identify the contemplated mileage of the wall to be constructed.

Until recently, interest in the framework governing the deployment of barriers along the international border typically focused on the stringency of the statutory mandate to deploy fencing along at least 700 miles of the U.S.-Mexico border. But attention has now shifted to those provisions of law that permit deployment of fencing or other physical barriers along additional mileage. IIRIRA Section 102 authorizes DHS to construct additional fencing or other barriers along the U.S. land borders beyond the 700 miles specified in statute. Indeed, nothing in current law would appear to bar DHS from installing hundreds of miles of additional physical barriers, at least so long as this action was determined appropriate to deter illegal crossings in areas of high illegal entry or was deemed warranted to achieve “operational control” of the southern border. DHS’s policy not to deploy a substantial amount of additional fencing, beyond what is expressly required by law, appeared primarily premised on policy considerations and funding constraints, rather than significant legal impediments.

This report discusses the statutory framework governing the deployment of fencing and other barriers along the U.S. international borders. For more extensive discussion of ongoing activities and operations along the border between ports of entry, see CRS Report R42138, Border Security: Immigration Enforcement Between Ports of Entry, by Carla N. Argueta.
Contents

Key Statutory Authorities and Requirements ... 3
 General Authority to Install Barriers and Roads to Deter Illegal Crossings 5
 Requirement for Installation of Fencing Along the Southwest Border 7
 Original Requirement to Augment the San Diego Border Fence 7
 Expansion of Fencing Requirements Under the Secure Fence Act of 2006 8
 Modification of Fencing Requirements Pursuant to the
 Consolidated Appropriations Act, 2008 ... 9
 Select Issues Concerning Current IIRIRA Section 102(b) 10
Authority to Waive Legal Requirements Impeding Construction of Roads and
 Barriers ... 21
 Original Waiver Authority ... 21
 Expansion of Waiver Authority Under the REAL ID Act 22
Conclusion .. 25

Appendixes

Appendix A. IIRIRA Section 102, as Amended (Text) .. 27
Appendix B. Legal Requirements Waived by DHS for the Construction of the San Diego
 Border Fence ... 29
Appendix C. Legal Requirements Waived by DHS for the Construction of Physical
 Barriers and Roads in the Vicinity of the Barry M. Goldwater Range in Southwest
 Arizona ... 31
Appendix D. Legal Requirements Waived by DHS for the Construction of Physical
 Barriers and Roads in the Vicinity of the San Pedro Riparian National Conservation
 Area in Southeast Arizona ... 33
Appendix E. Legal Requirements Waived by DHS for the Construction of Physical
 Barriers and Roads in Hidalgo County, Texas .. 36
Appendix F. Legal Requirements Waived by DHS for the Construction of Physical
 Barriers and Roads at Various Project Areas Located in California, Arizona, New
 Mexico, and Texas ... 39

Contacts

Author Contact Information .. 41
Securing the international borders of the United States has been an issue of perennial interest and importance to the federal government. Federal law authorizes the Department of Homeland Security (DHS) to construct barriers along the U.S. borders to deter illegal crossings. DHS is also required to construct reinforced fencing along at least 700 miles of the land border with Mexico, though fencing is not required to be deployed at any “particular location” along that border. Responsibility for carrying out these functions, and more generally securing the U.S. land borders between ports of entry, primarily falls to U.S. Border Patrol within DHS’s Customs and Border Protection (CBP).

Although congressional interest in the legal framework governing fence deployment has, in recent years, tended to focus on the stringency of the statutory mandate to deploy fencing along at least 700 miles of the southern border, attention has now shifted to those provisions in current law which allow, but do not require, the deployment of fencing and other barriers along additional portions of the U.S. land borders. Within days of taking office, President Donald J. Trump issued an executive order instructing the Secretary of Homeland Security, acting under existing legal authorities, to “take all appropriate steps to immediately plan, design, and construct a physical wall along the southern border ... to most effectively achieve complete operational control” of the U.S.-Mexico border. The order defines a “wall” to mean “a contiguous, physical wall or other similarly secure, contiguous, and impassable physical barrier.” The order does not identify the contemplated mileage of the wall to be constructed.

The primary statute authorizing DHS to deploy barriers along the international borders is Section 102 of the Illegal Immigration Reform and Immigrant Responsibility Act of 1996 (IIRIRA). Congress made significant amendments to IIRIRA Section 102 through three enactments—the REAL ID Act of 2005, the Secure Fence Act of 2006, and the Consolidated Appropriations Act, 2008. These amendments established a mandate upon DHS to construct hundreds of miles of new fencing along the U.S.-Mexico border, and also provided the Secretary of Homeland Security with broad authority to waive “all legal requirements” that may impede construction of barriers and roads under IIRIRA Section 102.

2 The U.S.-Mexico land border is approximately 1,933 miles. The U.S. border area includes California, Arizona, New Mexico, and Texas. For further information, see CRS Report RS21729, U.S. International Borders: Brief Facts, by Janice Cheryl Beaver.

3 IIRIRA §102(b).

4 U.S. Customs and Border Protection (CBP) within DHS is the primary agency responsible for border security activities at U.S. land borders and ports of entry. Within CBP, the U.S. Border Patrol serves the lead role in border enforcement matters between ports of entry.

6 Id. §3(e).

7 Illegal Immigration Reform and Immigrant Responsibility Act (IIRIRA), P.L. 104-208, div. C, §102(a)-(c). See also Border Fence Executive Order, supra note 5, §4(a) (citing to IIRIRA §102 as one of the primary legal authorities for the deployment of additional barriers along the border).

8 See supra note 1 (providing citations to provisions amending IIRIRA).
These statutory modifications, along with increased funding for border projects, resulted in the deployment of several hundred miles of fencing and other barriers along the southwest land border between 2005 and 2011.9 A portion of this infrastructure is fencing that is primarily intended to prevent illegal border crossings by foot (referred to by DHS as “pedestrian fencing”). Other types of barriers have been installed to impede vehicles from smuggling persons or contraband into the United States (referred to by DHS as “vehicle fencing”),10 but do not stop crossings by persons traveling on foot. In some instances, an additional layer of fencing (secondary fencing) may also be installed behind primary pedestrian fencing to further impede illegal crossings.

The efficacy of deploying additional fencing along the border has been the subject of debate among many policymakers, particularly regarding the cost, environmental impact, and effectiveness of border fencing in comparison to alternative means of deterring illegal crossings.11 Largely on account of changes in DHS’s border enforcement strategy and prioritization of resources during the Obama Administration,12 the construction of additional fencing along the land border with Mexico has largely halted. In October 2014, DHS indicated that it had constructed a total of 352.7 miles of pedestrian fence (in addition 36.3 miles of secondary fencing), and 299 miles of vehicle fencing along the southwest border.13 The total amount of pedestrian and vehicle fencing identified by DHS was slightly less than the 653 miles that U.S. Border Patrol had reportedly identified as appropriate for fencing and other barriers.14 However, it appears that further fencing would need to be deployed in order for DHS to satisfy the statutory requirement that the agency construct fencing “along not less than 700 miles of the southwest border.”15 Proposals were introduced or considered by Congress in recent years to modify

9 For a graphic illustration of these changes, see CRS Report R42138, Border Security: Immigration Enforcement Between Ports of Entry, by Carla N. Argueta, at “Figure 3. Tactical Infrastructure Appropriations and Miles of Border Fencing, FY1996-FY2016.”
10 DHS’s use of the term “vehicle fence” to describe permanent vehicle barriers installed along the border appears to be of relatively recent vintage. Compare HOUSE COMMITTEE ON APPROPRIATIONS, DEPARTMENT OF HOMELAND SECURITY APPROPRIATIONS FOR FY2007, Pt. IV, COMMITTEE PRINT, April 6, 2006 (statement by DHS Secretary Michael Chertoff describing DHS plans to construct “an additional 40 miles of pedestrian fence and 140 miles of vehicle barriers”) with DHS Secretary Jeh Johnson, “Border Security in the 21st Century,” Remarks as Delivered and Accompanying Slide Presentation, October 9, 2014, available at http://www.dhs.gov/news/2014/10/09/remarks-secretary-homeland-security-jeh-johnson-border-security-21st-century (discussing DHS’s construction of “vehicle fencing” from FY2000 through FY2014). DHS’s usage of the term “vehicle fencing” to describe types of permanent vehicle barriers installed along the border appears to go back at least since October 2007, when DHS announced plans to construct 300 miles of “vehicle fence” along the southwest border as part of the Vehicle Fence 300 (VF-300) initiative.
11 For discussion of policy considerations which may inform decisions as to whether to deploy additional fencing and other barriers along the border, see archived CRS Report RL33659, Border Security: Barriers Along the U.S. International Border, by former CRS policy analyst Marc R. Rosenblum and Michael John Garcia, at 26-34.
13 Compare Remarks of DHS Secretary Jeh Johnson, supra note 10. Maps that roughly indicate the stretches of the U.S.-Mexico border where fencing was deployed as of June 2011 can be viewed at http://nemo.cbp.gov/borderpatrol/2435_southwest.pdf (last accessed on November 16, 2016).
15 IIRIRA §102(b)(1)(A). In identifying its proximity to achieving this 700-mile mandate, DHS has typically counted only primary pedestrian and vehicle fencing, but not any secondary fencing that may have been constructed behind such fencing. See, e.g., DHS: THE PATH FORWARD, HEARING BEFORE THE HOUSE COMMITTEE ON HOMELAND SECURITY, SERIAL NO. 111-1, 111th Cong., 1st Sess. (2009), Written Responses by DHS Secretary Janet Napolitano to Questions (continued...)
statutory authorities governing DHS’s deployment of fencing and other infrastructure along or near the border, including by calling for the deployment of additional fencing, but such legislation has not been enacted.\(^{16}\)

DHS’s policy not to deploy a substantial amount of additional fencing, beyond what is expressly required by law, appeared to be premised primarily on policy considerations and funding constraints, rather than significant legal impediments.\(^{17}\) Indeed, nothing in current statute would appear to bar DHS from installing hundreds of miles of additional physical barriers along the U.S.-Mexico border, even beyond the 700 miles required by law, so long as the action was determined appropriate to deter illegal crossings in areas of high illegal entry or was deemed warranted to achieve “operational control” of the southern border.\(^{18}\)

This report provides an overview of the key statutory authorities and requirements governing DHS’s construction of barriers along the international borders of the United States. It also includes appendixes listing federal laws that have been waived by DHS in furtherance of border construction projects. The report, however, does not discuss proposals to modify this framework or fund an expansion of border fencing.

Key Statutory Authorities and Requirements

Prior to 1996, federal immigration statutes did not expressly authorize or require the construction of barriers along the U.S. international borders.\(^{19}\) In the preceding years, authority to deploy any

\(^{16}\) See, e.g., H.R. 399, 114th Cong., 1st Sess. (2015) (legislation reported by House Homeland Security Committee); S. 208, 114th Cong., 1st Sess. (2015); H.R. 4962, 113rd Cong., 2d Sess. (2014). In the 113rd Congress, the Senate-passed immigration reform bill, S. 744, would have required DHS to develop and implement a border security strategy, which would have included ensuring the construction of at least 700 miles of pedestrian fencing along the southwest land border. Benchmarks for the implementation of these strategies would have constituted “triggers” to be achieved before many unlawfully present aliens would be permitted to obtain provisional legal status, and then become eligible for full-fledged legal permanent resident status.

\(^{17}\) For more extensive discussion of ongoing activities and operations by DHS to secure the border between ports of entry, see CRS Report R42138, *Border Security: Immigration Enforcement Between Ports of Entry*, by Carla N. Argueta.

\(^{18}\) See IIRIRA §102(a) (providing general authority to construct barriers along the international borders to deter crossings in areas of high illegal entry) and (b)(1)(A) (providing for the construction of fencing along at least 700 miles of the U.S.-Mexico border, as well as “additional physical barriers ... to gain operational control of the southwest border”).

\(^{19}\) Border construction activities had been previously authorized primarily for purposes such as boundary demarcation. For example, Congress had earlier authorized the executive branch “to construct and maintain fences, monuments and other demarcations of the boundary line between the United States and Mexico,” in accordance with relevant boundary and water allocation treaties between the two countries. Act of August 19, 1935, 49 Stat. 660. Such authority was sometimes used to assist in immigration controls. See also S. Rept. 81-848, at 2 (discussing funds provided through FY1949 for the construction of ranch-type and chain-link fencing, as an aid to the Department of Agriculture, Immigration and Naturalization Service, and the Bureau of Customs “in maintaining their controls at the border and as an aid to demarcating the boundary line”). Indeed, in the years immediately after World War II, legislative proposals were considered to fund two large-scale fencing projects proposed by the International Boundary and Water Commission (the international body responsible for overseeing implementation of the water and boundary treaties between the United States and Mexico). Together, these projects would have potentially covered over 1,000 miles of the southwest border with fencing. Some supporters of funding these projects suggested that, in addition to providing (continued...
such barriers appears to have primarily derived from the general statutory responsibility of the Attorney General (and now the Secretary of Homeland Security) to “guard the boundaries and borders of the United States against the illegal entry of aliens.”

Perhaps the most prominent example of this general authority being employed to construct barriers occurred in the early 1990s, when the U.S. Border Patrol (with the assistance of the Department of Defense’s Army Corps of Engineers) installed 10-foot-high, welded-steel fencing along roughly 14 miles of the border near San Diego.

In 1996, Congress passed IIRIRA, which expressly instructed immigration authorities to construct barriers along the international land borders to deter unauthorized migration. This requirement, contained in IIRIRA Section 102, has been amended on three occasions, and its current language can be viewed at Appendix A. Among other things, IIRIRA Section 102 in its current form:

- generally authorizes DHS to construct barriers and roads along the international borders in order to deter illegal crossings at locations of high illegal entry;
- requires the construction of reinforced fencing covering at least 700 miles along the southwest border, though the Secretary is not required to install fencing at any particular location;
- authorizes for the installation of additional physical barriers and infrastructure to gain operational control of the southwest border;
- requires a specified amount of fencing in priority areas along the southwest border, which DHS was instructed to have completed by December 31, 2008; and
- provides the Secretary of Homeland Security with authority to waive any legal requirements which may impede construction of barriers and roads under Section 102.

(...continued)

assistance in boundary demarcation, the proposed fencing could deter illegal border crossings by aliens and smugglers and prevent the spread of disease from domesticated animals that grazed along the U.S.-Mexico border. Ultimately, however, Congress opted not to act on these proposals. For background, see S.Rept. 80-470 (1947) (report accompanying S.J.Res. 46, 80th Cong., 1st Sess., describing fencing projects that had been proposed by International Boundary and Water Commission and discussing potential benefits of the funding proposal); S.Rept. 83-2227 (1954) (report accompanying S.114, 83rd Cong., 2d Sess., discussing the scaling back of the International Boundary and Water Commission fencing proposal, and including written statements from executive officials opining that benefits of the fencing proposal did not warrant the expenditures necessary to complete the project).

20 For several decades, the authority to interpret, implement, and enforce immigration laws was primarily vested with the Attorney General. The Attorney General, in turn, delegated authority over immigration enforcement and service functions to the Department of Justice’s Immigration and Naturalization Service (INS), within which the U.S. Border Patrol was located. Following the establishment of DHS pursuant to the Homeland Security Act of 2002 (P.L. 107-296), the INS was abolished and its enforcement functions were generally transferred to DHS, along with Border Patrol. See 6 U.S.C. §251. IIRIRA §102 has been amended to specifically reference the DHS Secretary, rather than the Attorney General, as having responsibility for carrying out the construction of barriers along the border.

24 IIRIRA§102, as amended, also includes provisions concerning (1) the availability of judicial review of DHS waivers of legal requirements that constrain expeditious construction of fencing; (2) the acquisition of easements on private land to construct fencing; and (3) consultation requirements with federal, state, tribal, and private entities regarding the
The following sections discuss each of these requirements, including how they have been modified over the years.

General Authority to Install Barriers and Roads to Deter Illegal Crossings

Section 102(a) of IIRIRA provides that the Secretary of Homeland Security “shall take such actions as may be necessary to install additional physical barriers and roads ... in the vicinity of the United States border to deter illegal crossings in areas of high illegal entry into the United States.” Although this provision is fashioned as a statutory command, providing that the Secretary “shall” take action, this command is qualified by the language that follows, which affords the Secretary the discretion to determine the appropriate amount of “additional” barriers to deploy, as well as the most appropriate locations to install such barriers “to deter illegal crossings.”

To the extent that IIRIRA Section 102(a) constitutes a discrete, judicially reviewable command for the Secretary to construct “additional” fencing, immigration authorities seem to have satisfied this mandate by deploying hundreds of miles of additional barriers and roads along the border since IIRIRA was enacted in 1996. Accordingly, this provision perhaps most reasonably could be construed as conferring general authority to the Secretary of Homeland Security to...

(...continued)

25 A federal statute’s use of the word “shall” in reference to authorized agency action is often construed as imposing a mandatory obligation upon the agency to perform such action. See, e.g., Lopez v. Davis, 531 U.S. 230, 241 (2001) (describing statute’s use of “shall” as imposing a “discretionless” obligation upon an agency, compared to the statute’s separate use of “may” to provide permissive authority for agency action). However, the appropriate interpretation of “shall” in a provision ultimately depends upon the context. For additional discussion, see CRS Report 97-589, *Statutory Interpretation: General Principles and Recent Trends*, by Larry M. Eig.

26 It seems unlikely that a court would find it had jurisdiction to consider a legal challenge as to the adequacy of DHS’s implementation of IIRIRA §102(a). The Administrative Procedure Act (APA) authorizes a reviewing court to “compel agency action unlawfully withheld or unreasonably delayed,” 5 U.S.C. §706(c), which the Supreme Court has construed to apply to “discrete agency action that [the agency] is *required* to take.” Norton v. S. Utah Wilderness All. (SUWA), 542 U.S. 55, 64 (2004) (italics in original). Writing for the unanimous Court in SUWA, Justice Scalia opined that the APA was not intended to enable “broad programmatic challenges” to the manner in which an agency carries out a statutory duty:

> The principal purpose of the APA limitations we have discussed—and of the traditional limitations upon mandamus from which they were derived—is to protect agencies from undue judicial interference with their lawful discretion, and to avoid judicial entanglement in abstract policy disagreements which courts lack both expertise and information to resolve. If courts were empowered to enter general orders compelling compliance with broad statutory mandates, they would necessarily be empowered, as well, to determine whether compliance was achieved—which would mean that it would ultimately become the task of the supervising court, rather than the agency, to work out compliance with the broad statutory mandate, injecting the judge into day-to-day agency management…. The prospect of pervasive oversight by federal courts over the manner and pace of agency compliance with such congressional directives is not contemplated by the APA.

Id. at 66-67. See also United States v. Arizona, No. 2:10-cv-01413-SRB, Order Dismissing Az.’s Counterclrs., at *16 (D. Az., October 21, 2011) (“While the construction of the fencing and infrastructure improvements may be phrased in mandatory language, the IIRIRA... leaves the Secretary and the DHS with a great deal of discretion in deciding how, when, and where to complete the construction. Moreover, [IIRIRA does] not mandate any discrete agency action with the clarity to support a judicial order compelling agency action.”) (internal citations omitted).

27 SUWA, 542 U.S. at 64 (APA claim to judicially compel agency action, on the ground that such action had been unlawfully withheld or unreasonably delayed by the agency, “can proceed only where a plaintiff asserts that an agency failed to take a *discrete* agency action that it is *required* to take.”).
construct barriers and roads along the international borders, so as to deter crossings in areas of “high illegal entry” (a term not defined by the statute). As discussed later in this report, more specific requirements are imposed upon the Secretary by IIRIRA Section 102(b), which requires the Secretary, in exercising the authority conferred under Section 102(a), to ensure that fencing and other barriers are deployed along specified mileage of the southwest border.

Section 102(a) generally authorizes the construction of roads and physical barriers, without specifying any particular form that such barriers may take (e.g., reinforced fencing, multilayered fencing, or concrete barriers). Barriers and roads are authorized to be installed along any of the international borders of the United States, at least so long as DHS determines their installation is appropriate to deter unauthorized crossings in areas of high illegal entry.

The provision’s authorization for the installation of barriers and roads only applies to areas “in the vicinity of the United States border.” The phrase “vicinity of the United States border” is not defined under IIRIRA, nor is it described in other federal immigration statutes. As a result, there may be some ambiguity as to the authorized distance from the border where roads and barriers may be constructed. The sole federal court to consider the usage of “vicinity” in IIRIRA Section 102 interpreted the term as including land “situated near the border,” rather than only land directly adjacent to the border.

Some DHS regulations unrelated to the border fence have described distances up to 25 miles from a location as being within its “vicinity.” The Supreme Court, in non-binding dicta, also once characterized a search occurring 25 miles from the border as being within the “general vicinity of the border,” though it does not appear that the Court ascribed legal significance to that phrase. There is also no indication in the legislative history of IIRIRA, however, that Congress contemplated the term “vicinity of the United States border” as referring to a specific distance.

28 See Save Our Heritage Org. v. Gonzales, 533 F.Supp.2d 58, 61 (D.D.C. 2008) (distinguishing the Secretary’s “general authority” to install barriers under IIRIRA §102(a) from the specific mandate under IIRIRA §102(b) to construct fencing in certain areas).

29 IIRIRA §102(b)(1)(A) (“In carrying out subsection (a), the Secretary of Homeland Security shall construct reinforced fencing along not less than 700 miles of the southwest border... “).

30 United States v. 1.16 Acres of Land, More or Less, Situate in Cameron Cty., Tex., 585 F.Supp.2d 901, 907 (S.D. Tex. 2008) (relying on dictionary definition of “vicinity” to interpret IIRIRA provision authorizing acquisition of lands “adjacent to or in the vicinity of an international land border when ... essential to control and guard the boundaries and borders of the United States”).

31 Regulations concerning the admission of non-citizens for purposes of transit to or from the United Nations Headquarters District generally provide that such persons remain “in immediate vicinity” of the District, which “is that area lying within a twenty-five mile radius of Columbus Circle, New York, NY.” 8 C.F.R. §214.2(c)(2). Regulations specifying the distance which holders of border crossing cards—a form of documentation that may be issued to eligible Mexican citizens, enabling the holders to briefly travel to and from the United States without having to be issued multiple arrival/departure records by CBP—generally apply to travel within 25 miles from the border, though exceptions have been made authorizing travel of 75 miles within Arizona and 55 miles in New Mexico. 8 C.F.R. §235.1(h).

33 Arguably, provisions in federal immigration law and other federal statutes may be relevant in assessing what may plausibly or plausibly be deemed “the vicinity of the United States border” for purposes of IIRIRA Section 102. The Immigration and Nationality Act authorizes immigration enforcement officers to engage in warrantless searches of vessels and vehicles within a “reasonable distance” from the border for purposes of detecting illegal entrants. INA §287(a)(3); 8 U.S.C. §1357(a)(3). The term “reasonable distance” has long been interpreted under regulation to potentially cover distances up to 100 miles from the border. 8 C.F.R. §287.1(a)(2). The INA also expressly provides that immigration officers may plausibly access private lands to detect unlawfully present aliens, provided that such lands are located (continued...)
Requirement for Installation of Fencing Along the Southwest Border

IIRIRA Section 102(b) imposes specific requirements upon the Secretary of Homeland Security to construct reinforced fencing along the southwest border. The nature of these requirements has changed over the years, including to expand the mileage along the border where fencing must be installed, and to afford the Secretary greater discretion in determining the type of fencing that may be employed and the particular location where fencing shall be installed. In addition to minimum fencing requirements, IIRIRA Section 102(b) authorizes the deployment of “additional physical barriers, roads, lighting, cameras, and sensors to gain operational control of the southwest border.”

Original Requirement to Augment the San Diego Border Fence

IIRIRA Section 102(b) directed immigration authorities to supplement the already existing 14-mile primary border fence near San Diego with two additional layers of fencing. Environmental concerns and litigation resulted in significant delays in fulfilling this requirement. Over eight years after IIRIRA was enacted, DHS had not completed the fencing project.

As discussed later in this report, subsequent expansion of the Secretary of Homeland Security’s authority to waive legal requirements that impeded construction of fencing projects, facilitated DHS’s efforts to complete a second layer of fencing along the San Diego border. Other amendments made to IIRIRA, discussed below, removed the statutory requirement that DHS

...(continued)

“within a distance of twenty-five miles” from the boundaries of the United States. Id.

34 IIRIRA §102(b)(1)(A).

35 P.L. 104-208, div. C, §102(b). As originally enacted, IIRIRA §102(b) also provided authority for the acquisition of necessary easements to facilitate fence construction, required that certain safety features be incorporated into the design of the fence, and authorized an appropriation not to exceed $12 million. The current version of IIRIRA has relocated the provisions concerning easements and safety features, and has revised the appropriations authorization to cover “such sums as may be necessary to carry out” the requirements of Section 102(b). See IIRIRA (as amended), §102(b)(2)-(4).

36 See CRS Report RS22026, Border Security: The San Diego Fence, by Jerome P. Bjelopera and Michael John Garcia. In late 2003, the California Coastal Commission (CCC) essentially halted further construction of the San Diego Fence. The CCC determined that CBP had not demonstrated, among other things, that the project was “to the maximum extent practicable” consistent with the policies of the California Coastal Management Program—a state program approved under the federal Coastal Zone Management Act, 16 U.S.C. §§1451, et seq. See California Coastal Commission, W8a Staff Report and Recommendation on Consistency Determination, CD-063-03, October 2003, available at https://documents.coastal.ca.gov/reports/2003/10/W8a-10-2003.pdf [hereinafter “CCC Report”]. According to the CCC Report, neither the CCC nor federal immigration authorities construed IIRIRA as mandating the construction of second and third layers of fencing along the entirety of the 14-mile fencing project, though the CCC Report does not discuss the reasons why this conclusion had been reached. Id. at 4 n.1.

37 See infra at “Authority to Waive Legal Requirements Impeding Construction of Roads and Barriers.”

38 Dep’t of Homeland Sec., “Determination Pursuant to Section 102 of the Illegal Immigration Reform and Immigrant Responsibility Act of 1996 as Amended by Section 102 of the REAL ID Act of 2005,” 70 Federal Register 55622-02 (2005) (waiving certain legal requirements to facilitate completion of San Diego fence project). Legislation has been introduced in the 114th Congress to compel improvements or modifications to current fencing in San Diego and other border areas. See H.R. 399, Secure Our Borders First Act of 2015, 114th Cong., 1st Sess. (as reported by the House Homeland Security Committee) (requiring replacement of certain fencing in San Diego border sector, along with construction of seven additional miles of double-layered fencing in the border sector).
complete the San Diego fencing project that had been authorized by IIRIRA when it was originally enacted in 1996.\(^{39}\)

Expansion of Fencing Requirements Under the Secure Fence Act of 2006

IIRIRA Section 102(b) was substantially revised by the Secure Fence Act of 2006.\(^{40}\) Section 102(b)’s original requirement concerning fencing in the San Diego area was replaced with a much more expansive instruction to deploy “at least 2 layers of reinforced fencing, [and] the installation of additional physical barriers, roads, lighting, cameras, and sensors” along five specified stretches of the southwest border.\(^{41}\) CBP estimated that this mandate covered roughly 850 miles.\(^{42}\) The fencing mandate imposed by the Secure Fence Act was somewhat limited by a specification that “other means” could be used to secure an area where “the topography ... has an elevation grade that exceeds 10 percent.”\(^{43}\)

In addition to this general mandate, the Secure Fence Act also provided deadlines for the completion of certain border projects. In particular, the act amended IIRIRA Section 102(b) to designate a stretch of border between Calexico, CA, and Douglas, AZ, as a priority area.

\(^{39}\) DHS could apparently still deploy additional fencing layers in the San Diego region pursuant to the general authority conferred to it under IIRIRA Section 102, if the agency deemed further fencing to be appropriate. Save Our Heritage Org. v. Gonzales, 533 F.Supp.2d 58, 61 (D.D.C. 2008) (although IIRIRA Section 102(b) was amended to remove earlier requirement that DHS construct fencing along the border near San Diego, DHS could still complete the fencing project pursuant to the general authority conferred by IIRIRA Section 102(a)).

\(^{40}\) The Secure Fence Act also instructed the DHS Secretary, within 18 months, to “take all actions [he] determines necessary and appropriate to achieve and maintain operational control over the entire international land and maritime border,” and provide Congress with annual reports on “progress made in achieving and maintaining operational control.” P.L. 109-367, §2. “Operational control” is defined as “the prevention of all unlawful entries into the United States, including entries by terrorists, other unlawful aliens, instruments of terrorism, narcotics, and other contraband.” DHS has construed this mandate as not requiring that the agency have actually obtained operational control of the borders within 18 months of the Secure Fence Act’s enactment. Rather, the executive branch has interpreted the act as requiring DHS to have, within 18 months of enactment, taken all steps it determined necessary to achieve operational control, and keep Congress regularly informed of the steps it was taking through the submission of annual reports. See United States v. Arizona, No. 2:10-cv-01413-SRB, Counterdefendants’ Reply in Support of Motion to Dismiss Counterclaims, at 5-6 (D. Az., July 12, 2011). See also Department of Homeland Security Appropriations Act, 2010, P.L. 111-83, 123 Stat. 2142, 2146 (requiring, as a condition to the obligation of certain funds, that the DHS Secretary provide a report on the “progress made ... in terms of obtaining operational control of the entire border of the United States.”) A legal challenge by the State of Arizona, which alleged that DHS had failed to comply with the requirements of the Secure Fence Act, was dismissed on jurisdictional grounds, as the reviewing district court found that the act’s requirement concerning “operational control” did not mandate a discrete action that the court could compel. United States v. Arizona, No. 2:10-cv-01413-SRB, Order Dismissing Az.’s Countercls., at 15. (D. Az., October 21, 2011).

\(^{41}\) Secure Fence Act, P.L. 109-367, §3. The act mandated fencing

(i) extending from 10 miles west of the Tecate, California, port of entry to 10 miles east of the Tecate, California, port of entry;

(ii) extending from 10 miles west of the Calexico, California, port of entry to 5 miles east of the Douglas, Arizona, port of entry;

(iii) extending from 5 miles west of the Columbus, New Mexico, port of entry to 10 miles east of El Paso, Texas; (iv) extending from 5 miles northwest of the Del Rio, Texas, port of entry to 5 miles southeast of the Eagle Pass, Texas, port of entry; and

(v) extending 15 miles northwest of the Laredo, Texas, port of entry to the Brownsville, Texas, port of entry.

\(^{42}\) 153 CONG. REC. 9890 (2007) (statement by Sen. Jeff Sessions, observing that DHS had found that, because of topographical issues along the border, the Secure Fence Act effectively required deployment of fencing along “close to 854 topographical miles”).

\(^{43}\) Secure Fence Act, P.L. 109-367, §3.
directed DHS to ensure that “an interlocking surveillance camera system” would be installed along this area by May 30, 2007, and to provide for the completion of fencing along this stretch by May 30, 2008. A separate 30-mile stretch of fencing near Laredo, TX, was required to be deployed by December 31, 2008. No timetable was specified, however, for DHS to complete double-layered fencing in the remaining stretches of the border.

Modification of Fencing Requirements Pursuant to the Consolidated Appropriations Act, 2008

The most recent revisions to IIRIRA Section 102 were enacted slightly more than a year after Congress passed the Secure Fence Act (and prior to the statutory deadlines for the deployment of double-layered fencing under the earlier act). The Consolidated Appropriations Act, 2008 (2008 Appropriations Act) amended IIRIRA Section 102(b) to significantly increase the Secretary of Homeland Security’s discretion as to where to construct fencing along the southwest border. In particular, the 2008 Appropriations Act modified IIRIRA Section 102(b) in four ways:

- **Eliminated earlier requirement of double-layered fencing**—Whereas the prior language of IIRIRA Section 102(b), as amended by the Secure Fence Act, had generally required “at least 2 layers of reinforced fencing” be deployed in specified areas, Section 102(b) now mandates only a single layer of reinforced fencing (while not precluding additional layers from being deployed, if deemed appropriate).

- **Provided more flexible requirements concerning location of fencing and other border infrastructure**—While the Secure Fence Act required fencing to be installed along specific stretches of the southwest border, potentially totaling roughly 850 miles, the 2008 Appropriations Act replaced this specification with a more general requirement that fencing be deployed “along not less than 700 miles of the southwest border where fencing would be most practical and effective.” DHS was also instructed to construct “additional physical barriers, roads, lighting, cameras, and sensors to gain operational control of the southwest border.” The Appropriations Act also amended IIRIRA Section 102(b) to provide that the Secretary was not obligated to deploy fencing or other border security infrastructure “in a particular location along an international border of the United States, if the Secretary determines that the use or placement of such resources is not the most appropriate means to achieve and maintain operational control over the international border at such location.”

- **New deadline for construction of fencing in “priority areas”**—The earlier version of IIRIRA Section 102(b) required the construction of fencing along specified stretches of the border, totaling roughly 370 miles, by May 2008, and fencing along another 30-mile section by December 2008. This was replaced with a new requirement that the Secretary of Homeland Security identify 370 miles “or other mileage” along the southwest border where fencing would be
“most practical and effective,” and complete construction of such fencing by December 31, 2008. 49

- **New consultation requirements**—As amended, Section 102(b) of IIRIRA now requires the Secretary to consult with the Secretaries of the Interior and Agriculture, state and local governments, Indian tribes, and property owners “to minimize the impact on the environment, culture, commerce, and quality of life” in areas near where fencing is to be constructed. 50 The provision further provides that this consultation requirement does not create or negate any right to legal action by an affected person or entity. 51

Select Issues Concerning Current IIRIRA Section 102(b)

As noted above, the 2008 Appropriations Act substantially modified IIRIRA Section 102(b) just over a year after the Secure Fence Act had done the same. These revisions, along with sometimes conflicting statements made by DHS officials to Congress concerning the agency’s interpretation of its duties under Section 102(b), have potentially contributed to some disagreement regarding the nature of DHS’s obligations under IIRIRA Section 102(b). The following paragraphs detail the legislative history of the most recent revisions to IIRIRA Section 102(b), the key elements of the requirements it imposes, and potential constraints on judicial review of implementation of the statute’s fencing requirements.

Legislative History

The legislative history behind the 2008 Appropriations Act’s amendment to IIRIRA Section 102(b) is convoluted, and the explanatory materials for the enacted omnibus do not elaborate upon the amendment’s purpose. 52 Nonetheless, materials in the Congressional Record may shed some light as to the sponsors’ intended purpose, along with the context in which the proposed amendment was being considered.

The modifications to IIRIRA Section 102(b) appear to derive from language originally contained in a floor amendment offered during Senate consideration of the FY2008 homeland security appropriations bill. The floor amendment, offered by Senator Lindsey Graham and co-sponsored by a number of other Senators, would have added a new division entitled the “Border Security First Act of 2007” to the appropriations legislation. 53 In addition to modifying the fencing requirements contained in IIRIRA Section 102(b), the amendment would have required the deployment of 300 miles of vehicle barriers and 700 linear miles of fencing along the U.S.-Mexico border within two years; provided additional resources and requirements for DHS immigration enforcement programs at the border and within the interior of the United States; and

49 IIRIRA §102(b)(1)(B).
50 IIRIRA §102(c)(i). The Consolidated Appropriations Act further provided that funds appropriated for FY2008 could not be expended for border construction activities under IIRIRA Section 102, unless DHS satisfied this consultation requirement. P.L. 110-161, div. E, §564(b).
51 IIRIRA §102(c)(ii).
made several substantive changes to the Immigration and Nationality Act and the U.S. Criminal Code.\footnote{See 153 Cong. Rec. S9948-9961 (daily ed., Jul 25, 2007) (reprinting text of amendment).}

Senator Graham and a number of co-sponsors thereafter spoke in favor of the amendment, with three Senators specifically commenting upon the amendment’s fencing provisions. Both Senator Graham and Senator Jeff Sessions, an amendment co-sponsor, characterized the amendment as providing for 700 miles of border fencing.\footnote{See id. at 9871 (statement by Sen. Graham that, “The goal of this amendment is to provide complete operational control of the U.S.-Mexican border. It will … [among other things] … allow us to appropriate … 300 miles of vehicle barriers … [and] 700 miles of border fencing.”), and 9878 (statement by Sen. Sessions describing the amendment as ensuring the funding of 700 miles of border fencing).} Senator John Cornyn, another co-sponsor, highlighted the amendment’s proposed change to IIRIRA Section 102(b) as ensuring that DHS consulted with local officials and property owners regarding proposed fencing in a given area.\footnote{Id. at 9891 (statement by Sen. Cornyn). With respect to DHS decisions regarding the location of fencing, Sen. Cornyn stated:

> Coming from a border State with 1,600 miles of common border with Mexico, this is a personal issue to many of my constituents, particularly. While some, such as [fellow amendment co-sponsor Sen. Sessions], believe strongly in the need for more fencing along the border, it is controversial along the border in south Texas….I noticed most of the property abutting the Rio Grande River is private property. I am not sure the Border Patrol or the Department of Homeland Security has really thought through the fencing idea and what it would mean to condemn through eminent domain proceedings private property along the border in Texas. I am informed that in Arizona and other places, much of the property along the border is already owned by the Federal Government, so we don’t have that issue. But I have found in Texas, this is a controversial issue. I have been pleased to work with my colleague, Senator Hutchison, to make sure that in this amendment and in every opportunity, we have insisted upon consultation with local elected officials and property owners to achieve the most effective means of border security, recognizing that result is nonnegotiable but how we get there should be the subject of consultation and negotiation.

Id.}

The proposed amendment was later ruled by the Senate chair to be out of order, because some topics of the amendment were deemed non-germane to the appropriations bill being considered.\footnote{See id. at 9895-9897 (concerning deliberations on decision to rule amendment out of order). The Senate voted to sustain the decision of the chair by a vote of 52-44.}

The following day, Senator Graham offered a new amendment that was more limited in scope.\footnote{S.Amdt. 2480, offered as an amendment to S.Amdt. 2383, proposed in the nature of a substitute to H.R. 2638, Department of Homeland Security Appropriations Act, 2008, 110th Cong., 1st Sess.}

The new amendment did not include the original amendment’s proposed modification of IIRIRA Section 102(b), or those provisions of the earlier amendment that would have substantively modified federal immigration and criminal statutes. However, the new amendment contained the earlier version’s provision requiring DHS to deploy 300 miles of vehicle barriers and 700 linear miles of fencing along the southwest border within two years, along with a related provision appropriating funds for the completion of this project.\footnote{See 153 Cong. Rec. S10059 (daily ed., Jul 26, 2007) (reprinting text of amendment).}

The amendment to the homeland security appropriations bill was adopted by a vote of 89-1.\footnote{Id. at S10061.}

Separately, Senator Patty Murray offered an amendment on behalf of Senator Kay Bailey Hutchison to revise IIRIRA Section 102(b).\footnote{S.Amdt. 2486, offered as an amendment to S.Amdt. 2383, proposed in the nature of a substitute to H.R. 2638, Department of Homeland Security Appropriations Act, 2008, 110th Cong., 1st Sess. The text of the amendment is (continued...)}
amendment were for the most part identical to those found in the amendment offered by Senator Graham the previous day. The Hutchison amendment was approved by a voice vote, and both it and the second Graham amendment (which Senator Hutchison also co-sponsored) were included in the Senate-passed version of the homeland security appropriations bill.

Later in the year, 11 regular appropriations measures for FY2008, including appropriations for homeland security, were combined into an omnibus bill that became the 2008 Appropriations Act. The omnibus legislation reconciled differences between the competing House- and Senate-passed homeland security appropriations bills. The final act included the provision in the Senate-passed bill that revised IIRIRA Section 102(b), which had been added by the Hutchison amendment. However, the final act did not retain the Senate-passed bill’s provisions that had been added by the Graham amendment, which would have separately imposed a two-year deadline for the completion of 700 linear miles of fencing and 300 miles of vehicle barriers, and provided appropriations to ensure that these deadlines were met.

Type of Fencing Required Under Current Law

The 2008 Appropriations Act amended IIRIRA in a manner that provides DHS with significant discretion as to the manner in which to install fencing—undoing some of the more specific requirements that had previously been imposed. Whereas the Secure Fence Act had amended IIRIRA Section 102(b) to provide that “at least 2 layers of reinforced fencing” were to be installed along specified stretches of the border, the 2008 Appropriations Act replaced this with a more general requirement that “reinforced fencing” be installed along the southwest border. In other words, IIRIRA Section 102(b) no longer requires DHS to install two or more layers of reinforced fencing at any location along the border—a single layer of reinforced fencing appears sufficient to satisfy the statutory mandate. DHS would appear to have discretion to construct additional layers of fencing pursuant to its general authority under IIRIRA Section 102(a), however, if it deems such fencing to be appropriate.

(...continued)

62 Whereas the original Graham amendment would have required the deployment of fencing along 370 miles of the southwest border by the end of 2008, the revised amendment introduced by Sen. Hutchison called for 370 miles “or other mileage identified” by the Secretary of Homeland Security to be constructed in that period. The Hutchison amendment also did not include the earlier amendment’s requirement that DHS complete a triple-layered fence near San Diego.

63 Id. at S10103.

64 Id. at S10059.

66 Further discussion of the process by which the omnibus was enacted can be found in out-of-print CRS Report RL34298, Consolidated Appropriations Act for FY2008: Brief Overview, by Robert Keith (available upon request).

68 Explanatory materials produced for the enacted Appropriations Act do not address why the Hutchison amendment was included in the final version of the act, but not the Graham amendment. See HOUSE APPROPRIATIONS COMMITTEE PRINT ON 2008 APPROPRIATIONS ACT, supra note 52.

69 See Save Our Heritage Org. v. Gonzalez, 533 F. Supp. 2d 58 (D.D.C. 2008) (upholding authority of DHS to construct additional double-layered fencing along border near San Diego under IIRIRA Section 102(a)).
Some disagreement has arisen over DHS’s use of “vehicle fencing” to satisfy IIRIRA’s fencing requirements. Vehicle fencing is a type of barrier designed to inhibit the illegal crossing of vehicles into the United States, but not pedestrians. Some Members of Congress have argued that the “fencing” referred to in IIRIRA Section 102 should be limited to the type that is effective at preventing all illegal entrants, whether traveling by vehicle or by foot.

On the other hand, IIRIRA Section 102(b) does not mandate that any particular type of fencing must be deployed, beyond providing that such fencing be “reinforced.” The statute does not specify, for example, that deployed fencing must be of a particular height, or be constructed in a particular style (e.g., using bollard, wire mesh, or chain link). In the absence of language specifying the use of a particular kind of fencing, it would appear that DHS enjoys broad discretion to assess the appropriate type of fencing to deploy in order to achieve operational control of the southwest border.

The January 25, 2017 executive order issued by President Trump instructs the Secretary of Homeland Security to construct a “physical wall” along the U.S.-Mexico border. The term is defined to refer to a “contiguous, physical wall or other similarly secure, contiguous, and impassable physical barrier.” This definition seems broad enough to include at least some types of fencing, at least so long as such fencing was considered by DHS to be significantly “secure” and “impassable” to be deemed a wall.

70 See, e.g., HEARING BEFORE THE HOUSE HOMELAND SECURITY COMMITTEE: THE CHALLENGE OF ALIGNING PROGRAMS, PERSONNEL, AND RESOURCES TO ACHIEVE BORDER SECURITY, SERIAL NO. 110-129, 110th Cong., 2d Sess., Prepared Statement of DHS Secretary Chertoff (distinguishing between pedestrian and vehicle fencing, but counting both types in discussing DHS efforts to satisfy IIRIRA Section 102(b)’s fencing requirements); HOUSE COMMITTEE ON HOMELAND SECURITY, DEPARTMENT OF HOMELAND SECURITY APPROPRIATIONS FOR 2010, PART 1A, COMMITTEE PRINT (2010), CBP Budget Request and Supporting Information, at 667 (“As of April 4, 2009 ... CBP has constructed fencing totaling 618.6 miles along the southwest border (316.6 miles of pedestrian and 302 miles of vehicle fence) and contracts for all fencing projects needed to complete the approximately 670 miles of pedestrian or vehicle fence have been awarded.”).

71 Vehicle fencing is “used primarily in remote areas to prohibit vehicles engaged in drug trafficking and alien smuggling operations from crossing the border.” GOV’T ACCOUNTABILITY OFFICE, SECURE BORDER INITIATIVE FENCE CONSTRUCTION COSTS, January 9, 2009, at 2.

72 See, e.g., 155 CONG. REC. S7227-S7228 (daily ed., July 8, 2009) (statement by Sen. James DeMint in support of amendment, approved by Senate by ultimately not enacted, requiring fencing under IIRIRA Section 102(b) to be pedestrian fencing).

73 “Reinforced fencing” is not defined by statute, but is commonly used to refer to fencing which is constructed in a manner that makes it more durable and sturdy than a typical fence.

74 Photos of various types of fencing that have been deployed by DHS along the southwest border can be viewed at http://nemo.cbp.gov/borderpatrol/2435_southwest.pdf (identifying locations of installed fencing as of June 2011).

75 While IIRIRA Section 102(b) seeks to distinguish “fencing” from other types of “physical barriers,” it does not specify any particular features that deployed fencing must have, beyond being reinforced. Accordingly, at least so long as deployed barriers can reasonably be construed to constitute “fencing,” as that term is ordinarily used, it seems that DHS would have considerable discretion to determine the appropriate type to be deployed at any particular location.

76 Border Fence Executive Order, supra note 5, ¶4(a)

77 Id. ¶3(e).
Miles Along the Border vs. Total Miles of Fencing

While IIRIRA Section 102(b) is sometimes characterized as requiring DHS to deploy “700 miles of fencing,” the express language of the text seems to impose a slightly different mandate. Section 102(b) requires DHS to deploy fencing “along not less than 700 miles of the southwest border.” This seems to be a somewhat different requirement, which prioritizes the actual mileage of the border covered by fencing, rather than just the number of miles of fencing deployed. For example, if DHS hypothetically deployed 30 miles of fencing, but did so through the construction of a 10-layered, 3-mile-long fence, it would have only installed fencing along 3 miles of the border. On the other hand, if DHS deployed such fencing in a single layer of fencing, it would have deployed fencing along 30 miles of the border.

Likely because of the phraseology of IIRIRA Section 102(b), DHS seems to only count the mileage of primary layers of fencing deployed along the southwest border when discussing its efforts to satisfy its statutory mandate, and not the total amount of fencing that it has deployed (i.e., including secondary and tertiary layers of fencing that run behind some stretches of primary fencings).

Priority Fencing Mandate

As amended by the 2008 Appropriations Act, IIRIRA 102(b) contains two distinct but related mandates. One of the mandates, which can be referred to as the priority fencing mandate, required DHS to identify and complete construction of fencing in priority areas of the southwest border by December 31, 2008. The second mandate, which can be referred to as the general fencing mandate, requires reinforced fencing to be deployed along “not less than 700 miles” of the southwest border, but contains no deadline for deployment. This second mandate also contemplates the construction of additional roads, barriers, and border infrastructure to achieve operational control, but these infrastructure requirements appear in a difference clause than the fencing requirement. The mileage requirement contained in IIRIRA Section 102(b) appears to apply only to fencing, and not to other infrastructure described in the subsection.

Section 102(b)’s priority fencing mandate required DHS, before December 31, 2008, to identify either 370 miles “or other mileage” along the southwest border where fencing would be most appropriate to deter unlawful migration and smuggling activities. Construction of the identified fencing was required to have also been completed by the end of 2008. Although DHS initially planned to deploy 670 miles of fencing pursuant to this mandate, it subsequently revised these plans prior to the reaching the deadline for priority fence construction. According to a 2010

78 See Written Responses by DHS Secretary Napolitano to Questions by House Homeland Security Committee, supra note 15, at 65 (identifying only primary pedestrian and vehicle fencing when identifying mileage of fencing deployed along southwest border pursuant to IIRIRA Section 102(b)).

79 This second mandate also contemplates the construction of additional roads, barriers, and border infrastructure to achieve operational control, but these infrastructure requirements appear in a difference clause than the fencing requirement. The mileage requirement contained in IIRIRA Section 102(b) appears to apply only to fencing, and not to other infrastructure described in the subsection.

80 See, e.g., HEARING BEFORE THE HOUSE HOMELAND SECURITY COMMITTEE: THE CHALLENGE OF ALIGNING PROGRAMS, PERSONNEL, AND RESOURCES TO ACHIEVE BORDER SECURITY, SERIAL NO. 110-129, 110th Cong., 2d Sess., Prepared Statement of DHS Secretary Chertoff (“We made a commitment to have in place a total of 670 miles of pedestrian and vehicle fencing—including 370 miles of pedestrian fence and 300 miles of vehicle fence-on the southern border by the end of this calendar year to disrupt the entry of illegal immigrants, drugs, and vehicles.”).

81 The Secretary’s authority to identify “other mileage” for installation of priority fencing expired on December 31, 2008. IIRIRA §102(b)(1)(B)(i).
report by the Government Accountability Office (GAO), DHS opted to comply with the priority fencing mandate by ensuring that reinforced fencing had been deployed along 370 miles of the southwest border.

General Fencing Mandate

Although the priority fencing mandate of IIRIRA Section 102(b) has been satisfied, the general fencing mandate has not yet been fulfilled. DHS has thus far deployed reinforced fencing along roughly 653 miles of the border. At least on first look, it would appear that the agency would need to install additional fencing along nearly 50 miles of the southwest border to meet the requirements of Section 102(b). In recent years, however, there have been conflicting views among some policymakers as to the firmness of the general fencing mandate. The following section discusses these views. However, any dispute regarding the inflexibility of the 700-mile requirement may be rendered moot if the Trump Administration goes forward with plans to deploy a physical barrier along a greater portion of the U.S.-Mexico border.

The rigidity of the requirement that DHS deploy fencing along at least 700 miles of the border turns on the relationship between two clauses in IIRIRA Section 102. Although one clause of IIRIRA Section 102(b) requires fencing “along not less than 700 miles” of the border, another clause in that subsection provides:

Notwithstanding [the general fencing mandate of this section] nothing in this paragraph shall require the Secretary of Homeland Security to install fencing, physical barriers, roads, lighting, cameras, and sensors in a particular location along an international border of the United States, if the Secretary determines that the use or placement of such resources is not the most appropriate means to achieve and maintain operational control over the international border at such location.

The meaning and effect of this proviso is arguably open to interpretation. One way to read the clause is simply to reflect the discretion that Congress intended to afford DHS in determining where to deploy at least 700 miles of fencing along the southwest border. As discussed previously, prior to amendments made by the 2008 Appropriations Act, the subsection had required DHS to deploy fencing along specific stretches of the southwest border that were identified within the statutory command. The new proviso could be interpreted to emphasize the discretion that DHS was afforded as a result of the revisions made by the 2008 Appropriations Act. While DHS is required to construct fencing along at least 700 miles of the border, the agency retains discretion to determine the most appropriate stretches along the 1,933 mile-land border where the fencing should be deployed.

82 A 2009 GAO Report states:

In September 2008, DHS revised its goal of completing the full 670 miles of fencing by December 31, 2008. As an interim step, DHS committed to have 661 miles either built, under construction, or under contract by December 31, 2008, but did not set a goal for the number of miles it planned to complete by December 31, 2008. As of December 31, 2008, DHS had completed 578 miles of fencing, meeting the interim statutory goal to complete 370 miles of fencing by that time.

83 See Remarks of DHS Secretary Jeh Johnson, supra note 10 (describing amount of fencing deployed by October 2014).

84 IIRIRA §102(b)(1)(D).

85 Secure Fence Act, P.L. 109-367, §3. See also supra note 41 (reprinting text of Secure Fence Act provision identifying particular stretches of the border where double-layered fencing was required to be deployed).
Relatedly, the “notwithstanding” proviso to the general fencing mandate affords a potential response to claims that DHS did not place fencing at a location where it would be “most practical and effective.” DHS is not required to install fencing at a location if “the Secretary determines that the placement of such resources is not the most appropriate means to achieve and maintain operational control ... at such location.” This is phrased in a manner that suggests that the Secretary’s determination not to place fencing at a location would be afforded a very high degree of deference by a reviewing court. In other words, the “notwithstanding” clause enables DHS to readily answer claims by parties seeking to compel some portion of the required border fencing at a location where the fencing would allegedly be “most practical and effective.”

Arguably, however, the proviso could be interpreted more broadly, to signify something other than simply the discretion that DHS possesses in determining the stretches of the border along which to construct fencing. Although the proviso is not crafted as an express waiver, the clause’s usage of “notwithstanding” could be construed to supersede any conflicting requirements imposed by the general fencing mandate. Under a broad interpretation of the “notwithstanding” proviso, it might be argued that the Secretary is not necessarily required to deploy fencing along 700 miles of the border, if the Secretary concludes that fencing is the appropriate means of achieving operational control along a lesser mileage of the border.

There are difficulties, however, with interpreting the “notwithstanding” proviso so broadly. As an initial matter, the proviso does not expressly state that DHS may opt to construct a lesser amount of fencing than is specified elsewhere in Section 102(b). Rather, the proviso states that DHS is not required to construct fencing “at a particular location,” if the Secretary of Homeland Security determines that the installation of that infrastructure is not appropriate for “such location.” As noted above, this provision could reasonably be construed to mean that, in carrying out its general fencing mandate to deploy fencing along 700 miles of the southwest border, DHS is not legally required to install any portion of this required fencing at “any particular location.”

The ability to construe the proviso in more than one way may be significant. Courts typically follow the interpretive principle that a “statute should be construed so that effect is given to all its provisions, so that no part will be inoperative or superfluous, void or insignificant....” If Section 102(b)’s proviso is construed to mean that DHS is only required to deploy the amount of fencing along the border that it deems appropriate, the clause would render Section 102(b)’s mandate that fencing be deployed “along at least 700 miles of the border” superfluous. On the other hand, if the proviso is interpreted to mean that, in carrying out its mandate to construct fencing along at least 700 miles of the border the border, DHS is not legally required to install the required fencing at any particular location, every provision of IIRIRA Section 102(b) can be given effect.

The legislative history behind IIRIRA Section 102(b)’s fencing requirements also seems to support a narrow construction of Section 102(b)’s “notwithstanding” clause. As discussed

86 Id. at §102(b)(1)(A).
87 See Webster v. Doe, 486 U.S. 592, 600 (1988) (describing statute, providing that CIA Director may terminate employment of personnel whenever the Director “deems such termination necessary or advisable in the interests of the United States,” as “exu[ding] deference to the Director, and appears to us to foreclose the application of any meaningful judicial standard of review.”).
88 The provision is entitled a “Limitation on requirements.”
89 See, e.g., Cisneros v. Alpine Ridge Grp., 508 U.S. 10, 19 (1993) (“As we have noted previously in construing statutes, the use of ... a ‘notwithstanding’ clause clearly signals the drafter’s intention that the provisions of the ‘notwithstanding’ section override conflicting provisions of any other section.”).
previously, the amendments made to IIRIRA Section 102(b) by the 2008 Appropriations Act were originally part of a package of amendments, approved by the Senate as part of a homeland security appropriations bill, which were intended to ensure that fencing along 700 miles of the border would be constructed expeditiously. The legislative history of these amendments’ consideration, along with their plain text, seems to indicate that the amendments’ purpose was to ensure that fencing was deployed along 700 miles of the border within two years. Indeed, the Senator who offered the amendment to IIRIRA Section 102(b) also co-sponsored these related amendments. While Congress ultimately opted to enact one of these amendments into law but not the other, presumably the Senate would not have originally approved both amendments if they were understood to be conflicting.

To date, it appears that every federal court which has discussed IIRIRA Section 102(b) has described the provision in mandatory terms: DHS is required to deploy fencing along 700 miles of the southwest border, but it retains discretion to determine the appropriate locations in which to deploy the required fencing. It should be noted, however, that no court has definitively ruled that an alternative interpretation is not permissible, or closely examined the interplay between the “notwithstanding” proviso and the general fencing requirement. But the uniform interpretation may suggest that, as a matter of first impression, Section 102(b) may be most reasonably construed as establishing a mandate to deploy fencing along at least 700 miles of the border.

For its part, DHS has appeared to take conflicting views regarding the firmness of IIRIRA Section 102(b)’s general fencing mandate. Initially, DHS appeared to construe the 700-mile specification as a firm requirement. In notices issued in the Federal Register in 2008 describing border fencing projects undertaken under IIRIRA Section 102(b), Secretary of Homeland Security Michael Chertoff stated that “Congress has called for the installation of fencing, barriers, roads, lighting, cameras, and sensors on not less than 700 miles of the southwest border”

In March 2009, Secretary of Homeland Security Janet Napolitano wrote to the House Homeland Security Committee in response to questions regarding DHS’s obligations to deploy fencing along

91 See supra at “Legislative History.”

92 153 CONG. REC. S10059 (daily ed. July 26, 2007) (adding Sen. Hutchinson as co-sponsor to Graham amendment to homeland security appropriations bill, approved same day as amendment to IIRIRA Section 102(b), requiring completion of 700 miles of fencing within two years).

93 See Gilman v. Dep’t of Homeland Sec., 32 F.Supp.3d 1, 5 (D.D.C. 2014) (describing IIRIRA Section 102(b) as having been “amended to mandate ‘reinforced fencing along not less than 700 miles of the southwest border’ and [to charge] the Secretary of Homeland Security with completing ... reinforced fencing [in priority areas] by the end of 2008. The precise location of the fence, however, was left to ... [DHS] to determine ‘where fencing would be most practical and effective....’ ”); United States v. Arizona, No. 2:10-cv-01413-SRB, Order Dismissing Az.’s Countercls., at 16 (D. Az., October 21, 2011) (“[A]s amended by the 2008 Appropriations Act, [IIRIRA Section 102(b)] provides for the construction of 700 miles of fencing and additional infrastructure along the border ‘where [it] would be most practical and effective.’”); United States v. 1.04 Acres of Land, More or Less, Situate in Cameron Cty., Tex., 538 F.Supp.2d 995, 1004 (S.D. Tex. 2008) (describing the most recent amendments to IIRIRA Section 102(b) as “remov[ing] references to specific areas for the construction of the fence, giving the Secretary discretion on where to put the fencing. The Secretary of Homeland Security now has a general mandate to construct at least 700 miles of fencing along the United States-Mexico border where fencing would be most practical and effective.”). See also United States v. 1.16 Acres of Land, More or Less, Situate in Cameron Cty., Tex., 585 F.Supp.2d 901, 907 n.3 (S.D. Tex. 2008) “[IIRIRA] Section 102(b) requires the Secretary of Homeland Security to construct a minimum number of miles of fencing in identified areas in the country.”).

the southwest border. Secretary Napolitano described IIRIRA as mandating that DHS construct at least 700 miles of fencing, but at least for the immediate future, DHS would focus on fence deployment in priority areas:

As amended, the Act mandates the completion of 700 total miles of fence. It also mandates that the Secretary identify priority areas “where fencing would be the most practical and effective in deterring smugglers and aliens attempting to gain illegal entry into the United States.” As of March 6, 2009, DHS has completed approximately 611 of the 661 miles of fence identified by the Border Patrol as priority areas. While fencing remains an important tool in achieving effective control, it is only one element of our overall border security strategy that incorporates the proper mix of technology, personnel, and tactical infrastructure. Currently, there are no immediate funded plans to construct additional fencing.\(^95\)

DHS later appeared to modify its interpretation of the IIRIRA Section 102(b), and began to describe the “notwithstanding” proviso as permitting it to deploy fencing along less than 700 miles of the border, if the agency deemed a lesser amount of fencing to be appropriate to achieve operational control.\(^96\) Indeed, four years after describing IIRIRA Section 102(b) as imposing a firm mandate, Secretary Napolitano gave testimony before the Senate Judiciary Committee in which she appeared to take the view that DHS was legally permitted to construct a lesser amount of fencing.\(^97\)

To date, DHS has not publicly released a formal legal opinion describing its interpretation of the fencing mandate established by IIRIRA Section 102(b), or announced whether or how its opinion has changed over the years. In defending DHS against a legal challenge by the State of Arizona in 2011,\(^98\) in which Arizona sought to compel DHS to complete construction of fencing along 700 miles of the border (and undertake other immigration enforcement actions), the Department of Justice did not dispute the existence of this mandate, but instead argued that DHS decisions as to where to locate such fencing and the speed by which fencing was to deployed were committed to agency discretion.\(^99\)

\(^{95}\) Written Responses by DHS Secretary Napolitano to Questions by House Homeland Security Committee, supra note 15, at 65. Although Secretary Napolitano’s written statement refers to DHS’s obligation to complete “700 total miles of fence,” rather than fencing along “700 miles of the border,” it is not clear that this was a purposeful distinction. As previously noted, DHS has appeared to consistently count only primary pedestrian and vehicle fencing towards its efforts to fulfill the mandates of IIRIRA Section 102(b), rather than any secondary or tertiary fencing that may be deployed behind it. See id. (describing DHS as having “completed 611 miles of fence along the southwest border—301 miles of vehicle fence and 310 miles of primary pedestrian fence”).

\(^{96}\) See GAO Report, supra note 82, at 8. HOUSE COMMITTEE ON APPROPRIATIONS, DEPARTMENT OF HOMELAND SECURITY APPROPRIATIONS FOR 2011, Pt. 3, COMMITTEE PRINT, Written Responses by Chief David Aguilar, CBP Acting Deputy Commissioner, to Questions Posed by Rep. Sam Farr, at 210 (“To date, DHS has completed 645.8 miles of fencing out of nearly 652 planned miles, including 298.5 miles of vehicle barriers and 347.3 miles of pedestrian fence (the Border Patrol has determined after extensive study that only 652 miles—not 700 miles—of fencing is operationally necessary to secure the southwest border.”).

\(^{97}\) COMPREHENSIVE IMMIGRATION REFORM, SENATE COMMITTEE ON THE JUDICIARY, SERIAL NO. J–113–4, February 13, 2013, at 11 (Secretary Napolitano responded to a question regarding fence deployment by stating, “On the fence, the original act was for 700 miles. There was a subsequent amendment or adjustment to that—I think it was proposed by Senator Hutchison—to 655 miles. All but one mile of that is now complete, and the one mile or different little sections, most of them are in some litigation or another with private property owners. But the fence, to the extent it has been appropriated for, is complete.”).

\(^{98}\) For more extensive discussion of this litigation, as well as other lawsuits brought by U.S. states which challenge federal immigration enforcement policies, see CRS Report R43839, State Challenges to Federal Enforcement of Immigration Law: From the Mid-1990s to the Present, by Kate M. Manuel.

\(^{99}\) Arizona, No. 2:10-cv-01413-SRB, Counterdefendants’ Reply in Support of Their Motion to Dismiss Counterclaims, (continued...)
It should be noted that, in assessing the permissibility of an agency’s interpretation of the laws it administers, reviewing courts typically accord the agency’s interpretation of these statutes with some degree of deference, so long as the construction is reasonable. In determining whether an agency’s construction of a statute is reasonable, legislative intent is a touchstone for a reviewing court’s analysis—an agency’s interpretation might be entitled to deference when congressional intent is ambiguous and the agency’s construction of the statute is reasonable. Moreover, agency interpretations of statutory requirements are usually afforded a lesser degree of deference when the agency interpretation is not the result of a notice-and-comment rulemaking process or formal adjudication. In such circumstances, the level of deference given to the agency’s interpretation “will depend upon the thoroughness evident in its consideration, the validity of its reasoning, its consistency with earlier and later pronouncements, and all those factors which give it power to persuade, if lacking power to control.” The appropriate degree of deference to

(...continued)

at 9 (D. Az., July 12, 2011) (“DHS has already completed 649 of the 700 miles—over 92% of the target that Congress set a little over three years ago without a deadline—and that much of this fencing covers the Arizona border.”); Counterdefendants’ Motion to Dismiss Counterclaims and Memorandum of Law in Support Thereof, at 22 (D. Az., April 12, 2001) (“Section 102 of the IIRIRA (as amended) vests in the Secretary complete discretion for determining how to gain operational control of the border and where fencing and additional measures should be utilized in that effort…. Further, the Act prescribes no deadline for completing the construction of 700 miles of fencing or installing additional physical barriers, roads, lighting, cameras, and sensors along the southwest border, despite the fact that the Act prescribed deadlines in other instances.”).

Id. at 842-43 (“If the intent of Congress is clear, that is the end of the matter: for the court, as well as the agency, must give effect to the unambiguously expressed intent of Congress. If, however, the court determines Congress has not directly addressed the precise question at issue, the court does not simply impose its own construction on the statute, as would be necessary in the absence of an administrative interpretation. Rather, if the statute is silent or ambiguous with respect to the specific issue, the question for the court is whether the agency’s answer is based on a permissible construction of the statute.”); United States v. Shimer, 367 U.S. 374, 383 (1961) (observing that when an agency is tasked with “accommodation of conflicting policies that were committed to the agency’s care by the statute, we should not disturb it unless it appears from the statute or its legislative history that the accommodation is not one that Congress would have sanctioned”).

In Chevron, U.S.A., Inc. v. Natural Resources Defense Council, Inc., 467 U.S. 837, 844 (1984), the Supreme Court recognized situations where Congress has expressly or impliedly delegated interpretative authority over a statute to an agency, a reviewing court will typically oblige to an agency’s interpretation so long as it is not “arbitrary, capricious, or manifestly contrary to the statute.” Id. at 844. Typically, a reviewing court will find an express or implied delegation of interpretive authority warranting Chevron deference in situations where there is “express congressional authorizations to engage in the process of rulemaking or adjudication that produces regulations or rulings for which deference is claimed.” United States v. Mead Corp., 533 U.S. 218, 229-30 (2001). See also Christensen v. Harris Cty., 529 U.S. 576, 587 (2000) (“Interpretations such as those in opinion letters—like interpretations contained in policy statements, agency manuals, and enforcement guidelines, all of which lack the force of law—do not warrant Chevron-style deference.”)

Skidmore v. Swift & Co., 323 U.S. 134, 140 (1944). In some instances, the Supreme Court has recognized that “[a]n agency interpretation of a relevant provision which conflicts with the agency’s earlier interpretation is entitled to considerably less deference than a consistently held agency view.” INS v. Cardoza-Fonseca, 480 U.S. 421, 446, n.30 (1987) (internal quotations omitted). However, a change in agency interpretation is not itself a ground to view the later construction as impermissible, at least so long as reasons for the change in policy are adequately explained. See, e.g., National Cable & Telecommunications Ass’n v. Brand X Internet Services, 545 U.S. 967, 981 (2005) (“Agency inconsistency is not a basis for declining to analyze the agency’s interpretation under the Chevron framework. Unexplained inconsistency is, at most, a reason for holding an interpretation to be an arbitrary and capricious change from agency practice under the Administrative Procedure Act. For if the agency adequately explains the reasons for a reversal of policy, change is not invalidating, since the whole point of Chevron is to leave the discretion provided by the ambiguities of a statute with the implementing agency.”) (internal quotations and citations omitted).
which DHS’s interpretation of the statutory requirements imposed by IIRIRA should be afforded may be subject to differing views.104

Assuming that DHS’s interpretation of the requirements under IIRIRA Section 102(b) is subject to legal challenge, the degree of deference that a reviewing court gives to the agency’s interpretation may be informed by a number of factors, including whether (1) the plain text of the statute is ambiguous, and DHS’s interpretation is reasonable; (2) other indicia of legislative intent favor a particular interpretation; and (3) the agency’s apparent modification of its interpretation of IIRIRA Section 102(b) entitles its current interpretation to a lesser degree of deference.

\textbf{Potential Constraints on Judicial Review}

Regardless of the appropriate interpretation of Section 102(b)’s general fencing mandate and the “notwithstanding” proviso, the statute imposes no clear deadline for when the contemplated fencing must be deployed. In the 2011 litigation in which Arizona sought to compel DHS to complete construction of fencing required under IIRIRA Section 102(b), the reviewing federal district court dismissed Arizona’s motion, in part because “no deadline mandates completion of the fencing and infrastructure developments or any required discrete action by a specified time.”105 The court further observed that, although “the construction of the fencing and infrastructure improvements may be phrased in mandatory language,” IIRIRA affords DHS “a great deal of discretion in deciding how, when, and where to complete the construction.”106

The absence of a deadline for the completion of the fencing requirements of IIRIRA Section 102(b) does not necessarily mean that DHS has no judicially enforceable legal obligation to complete any remaining fencing that is statutorily required. The Administrative Procedure Act (APA), for example, provides courts with the authority to compel agency action, when such action has been “unlawfully withheld or unreasonably delayed.”107 Determining whether an agency has unreasonably delayed undertaking a required action is a fact-specific determination made on a case-by-case basis, with reviewing courts typically showing more deference to an agency when there is not a statutory deadline for agency action.108

104 In \textit{NationsBank of North Carolina, N.A. v. Variable Annuity Life Insurance Co.}, 513 U.S. 251 (1996), the Supreme Court afforded \textit{Chevron} deference to the Comptroller of Currency’s “deliberative conclusions” regarding the interpretation of banking laws, on account of the Comptroller being “charged with the enforcement of banking laws to an extent that warrants the invocation” of a high standard of deference to his interpretations. Subsequently in \textit{United States v. Mead Corp.}, the Supreme Court seemed to suggest that the conclusion it reached in \textit{NationsBank} was at least partially on account of “longstanding precedent” recognizing the Comptroller’s interpretative authority. \textit{Mead Corp.}, 533 U.S. at 231 n.13. Accordingly, the possible relevance of \textit{NationsBank} to decisions outside the banking context, including with respect to DHS interpretations of fencing requirements of IIRIRA, is unclear.

105 United States v. Arizona, No. 2:10-cv-01413-SRB, Order Dismissing Az.’s Countercls., at 16 (D. Az., October 21, 2011).

106 \textit{Id.}

107 5 U.S.C. §706(1).

108 For further discussion, see CRS Report R43013, \textit{Administrative Agencies and Claims of Unreasonable Delay: Analysis of Court Treatment. See also} Telecoms. Research and Action Ctr. v. FCC, 750 F.2d 70, 79-80 (D.C. Cir. 1984) (observing that “the first stage of judicial inquiry is to consider whether the agency’s delay is so egregious as to warrant mandamus,” and identifying several factors that should be appropriately considered when assessing an agency delay claim). In situations where a statutory provision requiring agency action does not contain a statutory deadline for completion of such action, some reviewing courts considering APA-based challenges to the agency inaction will assess whether the action was “unreasonably delayed” rather than “unlawfully withheld.” \textit{See} Forest Guardians v. Babbitt, 174 F.3d 1178 (10th Cir. 1999).
If a court determined that DHS had unreasonably delayed fulfillment of its obligations under IIRIRA Section 102(b), it might deem the completion of at least 700 miles of fence along the southwest border to constitute “a discrete agency action” that it would potentially have the power to compel. \(^{109}\) The district court in the *Arizona* case found that completion of the border fence was not a “discrete agency action” that it could compel DHS to take, but it did not explain the basis for this conclusion. \(^{110}\)

Moreover, even assuming that a court might have jurisdiction to review a claim that DHS has unreasonably delayed fence construction, it is not clear who would have standing to make such a claim. \(^{111}\) To demonstrate standing, a plaintiff must (1) show a concrete and particularized, actual or imminent injury; (2) demonstrate a fairly traceable, causal connection between the injury and the defendant’s conduct; and (3) demonstrate that it is likely that the injury will be redressed by a favorable court decision. It may be difficult for a plaintiff to identify a concrete, particularized injury that would be effectively remedied if DHS deployed fencing along an additional 50 miles of the border. In the *Arizona* case, the district court presumed without deciding that Arizona had standing but dismissed its claims. \(^{112}\)

Authority to Waive Legal Requirements Impeding Construction of Roads and Barriers

Section 102(c) of IIRIRA confers the Secretary of Homeland Security with broad authority to waive legal requirements that may impede the construction of barriers and roads along the border. The nature and scope of this waiver authority changed significantly pursuant to modifications made by the REAL ID Act of 2005. In the years following, the Secretary of Homeland Security employed this waiver authority to facilitate the construction of hundreds of miles of fencing and other infrastructure along several sections of the southwest border. More recently, however, this waiver authority has not been employed to facilitate further large-scale border projects. President Trump’s executive order calling for immediate construction of additional physical barriers along the U.S.-Mexico border did not directly call for the invocation of this waiver authority by the Secretary, but such authority could be employed at a later date to facilitate the deployment of a border wall.

Original Waiver Authority

When initially enacted in 1996, IIRIRA Section 102(c) expressly authorized the waiver the Endangered Species Act (ESA) and the National Environmental Policy Act (NEPA). \(^{113}\) to the

\(^{109}\) *SUWA*, 542 U.S. at 64. Even assuming that the deployment of fencing “along not less than 700 miles of the border where it would be most practical and effective” could be considered a discrete agency action that a court could compel, a court would unlikely be able to direct DHS to deploy such fencing at a specific location. *See id.* at 65 (“*W*hen an agency is compelled by law to act within a certain time period, but the manner of its action is left to the agency’s discretion, a court can compel the agency to act, but has no power to specify what the action must be.”); IIRIRA §102(b)(1)(D) (providing that DHS is not required to deploy fencing at “any particular location” when the DHS Secretary determines that other means are more appropriate for achieving operational control of that location).

\(^{110}\) *Arizona*, No. 2:10-cv-01413-SRB, Order Dismissing Az.’s Counterclrs., at 16 (D. Az., October 21, 2011) (in considering Arizona’s motion seeking to compel completion of fencing, finding that IIRIRA, as amended, did “not mandate any discrete agency action with the clarity to support a judicial order compelling agency action,” but not explaining reasoning for this conclusion).

\(^{112}\) *Arizona*, No. 2:10-cv-01413-SRB, Order Dismissing Az.’s Counterclrs., at 4-5.

\(^{113}\) P.L. 104-208, div. C, §102c. A general overview of relevant NEPA and ESA requirements in found in Appendix B.
extent that such waivers were determined necessary by the Attorney General to expeditiously construct barriers and roads under Section 102. Other federal laws, however, remained applicable to border construction projects. Federal immigration authorities appear to have not employed IIRIRA Section 102(c), as originally enacted, to waive NEPA and ESA requirements. In 2004, eight years after IIRIRA mandated completion of a second and third layer of fencing along the San Diego border, fencing was still not completed due to litigation and concerns related to environmental statutes other than NEPA and the ESA. The California Coastal Commission essentially halted the San Diego fencing project after determining that DHS had not demonstrated, among other things, that the project was “consistent to the maximum extent practicable” with the policies of the California Coastal Management Program—a state program approved under the federal Coastal Zone Management Act, 16 U.S.C. §§1451, et seq.

Expansion of Waiver Authority Under the REAL ID Act

In part due to delays in the construction of fencing near San Diego, Congress amended IIRIRA Section 102(c) via the REAL ID Act of 2005. As amended, IIRIRA Section 102(c) permits the Secretary of Homeland Security to waive “all legal requirements” necessary to ensure expeditious construction of these security barriers. Such waivers are effective upon publication in the Federal Register. Federal district courts are provided with exclusive jurisdiction to review claims alleging that the actions or decisions of the Secretary violate the U.S. Constitution, and district court rulings may be reviewed only by the Supreme Court, whose review is discretionary.

The scope of this waiver authority is substantial—with some observers describing it as possibly having greater reach than any other waiver authority conferred by statute—leading some to express concern over its breadth and the limited scope of judicial review available for waiver decisions. Although IIRIRA Section 102(c), as amended by the REAL ID Act, could not

114 See CCC Report, supra note 36, at 4.
115 For further discussion, see CRS Report RS22026, Border Security: The San Diego Fence, by Jerome P. Bjelopera and Michael John Garcia, available upon request.
117 See H.Rept. 109-72, 109th Cong., 1st Sess. (2005) at 170-72 (conference report for emergency supplemental appropriations legislation to which the REAL ID Act was attached, describing purposes of the act).
118 As initially introduced as H.R. 418, the REAL ID Act required the Secretary of Homeland Security to waive “all laws” necessary to ensure expeditious construction of the security barriers. H.R. 418 was passed by the House as a stand-alone piece of legislation, but was subsequently attached as an amendment to House-passed H.R. 1268, the emergency supplemental appropriations bill for FY2005. During conference, language was revised in H.R. 1268, so that the Secretary was authorized, but not required, to waive “all legal requirements” deemed necessary to ensure construction of the security barriers. The conferees also added provisions to the REAL ID Act which made waiver decisions effective upon publication in the Federal Register and permitted federal court review of waiver decisions only in limited circumstances. See H.Rept. 109-72, 109th Cong., 1st Sess. (2005) at 170-72. The conference version of H.R. 1268 was enacted on May 11, 2005.
119 IIRIRA §102(c)(1).
120 See David J. Barron and Todd D. Rakoff, In Defense of Big Waiver, 113 COLUM. L. REV. 265, 290 (2013) (examining history of broad statutory waivers, and observing that “[a]s a matter of its formal reach … [the REAL ID Act] waiver may be the biggest Congress has yet passed”).
121 See, e.g., Kate R. Bowers, Saying what the Law Isn’t: Legislative Delegations of Waiver Authority in Environmental Laws, 34 HARV. ENVTL. L. REV. 257 (2010) (criticizing REAL ID Act’s waiver expansion on policy grounds and on ground that it may represent a constitutionally impermissible delegation of legislative authority and result in the usurpation of judicial authority by the Executive); David J. Barron and Todd D. Rakoff, supra note 120, at 289-90, 337-39 (discussing modern usage of large-scale delegations of waiver authority to administrative agencies and generally defending their constitutionally, but expressing concern regarding the breadth of the REAL ID Act waiver).
properly be construed to permit the Secretary to waive application of the Constitution to fencing projects, the waiver potentially could be employed with respect to any other existing legal requirement—provided that the Secretary of Homeland Security concluded that compliance with the requirement would impede expeditious construction of barriers and roads. Waivers issued under IIRIRA Section 102(c) have not only targeted federal and state statutes, but also any regulations and requirements deriving from or relating to such laws.

Nonetheless, the waiver authority conferred by IIRIRA Section 102(c) is not absolute. The Secretary may only waive those legal requirements that, in effect, would impede the construction of barriers and roads under Section 102. The authority does not appear to permit the Secretary to waive legal requirements that only tangentially relate to, or do not necessarily interfere with, the construction of roads and barriers. The decision of whether to waive a legal requirement is the responsibility of the Secretary of Homeland Security, and authority may be exercised in his discretion. Until such time as the Secretary waives an applicable law, however, DHS must generally follow all legal requirements normally imposed on federal agencies.

To date, the Secretary of Homeland Security has provided notice in the *Federal Register* on five occasions that he was invoking the waiver authority conferred under IIRIRA Section 102(c):

- **San Diego Border Sector**—On September 22, 2005, a notice was issued in the *Federal Register* indicating that waiver authority had been exercised over various legal requirements in order to ensure the expeditious construction of the San Diego border fence. The waiver applies to “all federal, state, or other laws, regulations and legal requirements of, deriving from, or related to the subject,” of various federal statutes listed in Appendix B.

- **Barry M. Goldwater Range (BMGR) in Southwestern Arizona**—A *Federal Register* notice was published on January 19, 2007, indicating that the Secretary was waiving various legal requirements in order to ensure the expeditious construction of physical barriers and roads in the vicinity of the BMGR in

122 See, e.g., Williams v. Rhodes, 393 U.S. 23, 29 (1968) (“[T]he Constitution is filled with provisions that grant Congress or the States specific power to legislate in certain areas; these granted powers are always subject to the limitations that they may not be exercised in a way that violates other specific provisions of the Constitution.”). Indeed, IIRIRA Section 102(c)(2)(A) expressly provides that federal district courts have jurisdiction to hear claims arising from border construction projects “alleging a violation of the Constitution of the United States.”

123 In exercising waiver authority under IIRIRA, the DHS Secretary appears to have construed it as applying to physical infrastructure projects built in connection with the construction of barriers and roads, such as radio towers. See, e.g., Dep’t of Homeland Sec., “Determination Pursuant to Section 102 of the Illegal Immigration Reform and Immigrant Responsibility Act of 1996, as Amended,” 73 Federal Register 19078 (April 8, 2008) (waiving laws related to access, staging, and construction in the project area including “installation and upkeep of fences, roads, supporting elements, draining, erosion controls, safety features, surveillance, communication and detection equipment of all types, radar and radio towers and lighting”).

124 With respect to each of the fencing projects conducted between 2008 and 2011 in which the Secretary had exercised waiver authority, DHS’s CBP prepared an environmental stewardship plan (ESP) concerning the potential environmental effects of the project. After a project was completed, CBP would prepare an environmental stewardship summary report (ESSR) “documenting the final ‘footprint’ of the sections built under the waiver to provide an “as built” summary for the public and regulatory agencies.” CBP, *Environmental Stewardship Plans (ESPs) Environmental Stewardship Summary Reports (ESSRs)*, available at http://www.cbp.gov/about/environmental-cultural-stewardship/nepa-documents/esp-essr.(providing links to ESPs and ESSRs).

southwestern Arizona. The waiver applies to all “[f]ederal, [s]tate, or other laws, regulations and legal requirements of, deriving from, or related to the subject” of several federal statutes listed in Appendix C.

- **San Pedro Riparian National Conservation Area in Southeastern Arizona**—On October 5, 2007, Defenders of Wildlife and the Sierra Club brought suit seeking a temporary restraining order (TRO) enjoining DHS from border fence and road-building activities in the San Pedro Riparian National Conservation Area, located in the vicinity of the U.S. border in southeastern Arizona. On October 10, 2007, the presiding district court judge issued a TRO halting fence construction activities in the Conservation Area, finding the relevant federal agencies had failed to carry out an environmental assessment as legally required under NEPA. On October 26, 2007, a notice was published in the Federal Register indicating that the Secretary of Homeland Security had exercised waiver authority over various legal requirements in order to ensure the expeditious construction of physical barriers or roads through the San Pedro Riparian National Conservation Area (including any and all lands covered by the TRO), thereby enabling DHS to resume fence construction. The waiver applies to “all federal, state, or other laws, regulations and legal requirements of, deriving from, or related to the subject” of a collection of federal statutes listed in Appendix D.

- **Hidalgo County, Texas**—On April 3, 2008, notice was given in the Federal Register that the Secretary of Homeland Security had exercised his waiver authority under IIRIRA Section 102(c) to ensure the construction of barriers and roads in Hidalgo County, Texas. The waiver applies to “all federal, state, or other laws, regulations and legal requirements of, deriving from, or related to the subject” of various federal statutes listed in Appendix E.

- **Border Projects in California, Arizona, New Mexico, and Texas**—On April 3, 2008, the Secretary of Homeland Security gave notice in the Federal Register of the waiver of various laws in relation to border construction projects in California, Arizona, New Mexico, and Texas. The waiver applies to “all federal, state, or other laws, regulations and legal requirements of, deriving from, or related to the subject” of various federal statutes listed in Appendix F.

In multiple instances, lawsuits were brought challenging the constitutionality of an issued waiver. Constitutional claims raised in these collective cases included arguments that the waiver authority was an impermissible delegation of Congress’s lawmaker authority; the waiver provision

128 A description of NEPA’s requirements is found in Appendix B.
violated the Presentment Clause by effectively enabling the executive branch to “repeal” or “amend” existing laws to exempt border infrastructure projects from their coverage; and the waiver authority’s application to state and local laws violated federalism and anti-commandeering principles. In each case, the reviewing federal district court upheld the exercise of waiver authority as constitutionally valid. Parties in two of the cases sought Supreme Court review, but the Court declined to grant certiorari in either case.

Conclusion

Pursuant to IIRIRA Section 102, Congress has conferred DHS with clear authority to construct barriers and roads along the international land borders to deter illegal crossings in areas of high illegal entry. More specifically, it has required fencing to be constructed along specified mileage of the southwest border. In recent years, legislative attention has primarily focused upon the fencing requirements contained in IIRIRA Section 102(b). Prior versions of Section 102(b) imposed specific requirements as to the location where fencing was to be installed and the layers of fencing to be constructed. The current provision affords DHS with significantly greater discretion to determine the appropriate location, layers, and types of fencing to be installed along the southwest border.

Whether DHS has discretion to construct less fencing than the amount specified under IIRIRA Section 102(b), on account of a proviso that posits that the agency is not required to construct fencing at any “particular location” where it deems fencing to be inappropriate, has been the subject of disagreement (and apparently inconsistent views by DHS itself). While there appears to be stronger support for construing Section 102(b) to establish a firm mandate for the deployment of fencing along 700 miles of the border, with the agency retaining discretion as to the locations along the border where fencing should be installed, it is not clear whether a court would have the ability to compel DHS to install additional fencing (or that a plaintiff would have standing to bring such a claim). If Congress disagrees with DHS’s implementation of the fencing mandate under Section 102(b), it would likely need to enact legislation to modify or clarify the fencing requirements found in current statute.

But even assuming that DHS satisfies the fencing requirements under Section 102(b), the general authority conferred to the agency under Section 102(a) permits it to construct additional fencing or other barriers along the U.S. land borders. Moreover, Section 102(b) authorizes DHS to deploy additional physical barriers—beyond the mandated fencing along 700 miles of the southwest border—in order to obtain operational control of the southwest border. There is nothing in current statute that would appear to bar DHS from potentially installing hundreds of miles of additional fencing or other physical barriers along the border, at least so long as the action was determined appropriate to deter illegal crossings in areas of high illegal entry. In addition, IIRIRA Section 102(c) grants DHS authority to waive any legal requirement that would impede the expeditious construction of additional barriers and roads. DHS’s decision not to deploy a substantial amount of additional fencing, beyond what is required under IIRIRA Section 102(b), appears primarily premised on policy considerations and funding constraints, rather than significant legal impediments. Accordingly, policymakers may deem it appropriate to review and assess the scope

of DHS's authority to construct barriers, and the manner in which such authority is exercised, even after any requirements under IIRIRA Section 102(b) are satisfied.
Appendix A. IIRIRA Section 102, as Amended (Text)134

Sec. 102 - Improvement of Barriers at Border

(a) In General.-The Secretary of Homeland Security shall take such actions as may be necessary to install additional physical barriers and roads (including the removal of obstacles to detection of illegal entrants) in the vicinity of the United States border to deter illegal crossings in areas of high illegal entry into the United States.

(b) Construction of Fencing and Road Improvements Along the Border.-

(1) Additional fencing along southwest border.-

(A) Reinforced fencing.-In carrying out subsection (a), the Secretary of Homeland Security shall construct reinforced fencing along not less than 700 miles of the southwest border where fencing would be most practical and effective and provide for the installation of additional physical barriers, roads, lighting, cameras, and sensors to gain operational control of the southwest border.

(B) Priority areas.-In carrying out this section [amending this section], the Secretary of Homeland Security shall-

(i) identify the 370 miles, or other mileage determined by the Secretary, whose authority to determine other mileage shall expire on December 31, 2008, along the southwest border where fencing would be most practical and effective in deterring smugglers and aliens attempting to gain illegal entry into the United States; and

(ii) not later than December 31, 2008, complete construction of reinforced fencing along the miles identified under clause (i).

(C) Consultation.-

(i) In general.-In carrying out this section, the Secretary of Homeland Security shall consult with the Secretary of the Interior, the Secretary of Agriculture, States, local governments, Indian tribes, and property owners in the United States to minimize the impact on the environment, culture, commerce, and quality of life for the communities and residents located near the sites at which such fencing is to be constructed.

(ii) Savings provision.-Nothing in this subparagraph may be construed to-

(I) create or negate any right of action for a State, local government, or other person or entity affected by this subsection; or

(II) affect the eminent domain laws of the United States or of any State.

(D) Limitation on requirements.-Notwithstanding subparagraph (A), nothing in this paragraph shall require the Secretary of Homeland Security to install fencing, physical barriers, roads, lighting, cameras, and sensors in a particular location along an international border of the United States, if the Secretary determines that the use

or placement of such resources is not the most appropriate means to achieve and maintain operational control over the international border at such location.

(2) Prompt acquisition of necessary easements.-The Attorney General, acting under the authority conferred in section 103(b) of the Immigration and Nationality Act [8 U.S.C. 1103(b)] (as inserted by subsection (d)), shall promptly acquire such easements as may be necessary to carry out this subsection and shall commence construction of fences immediately following such acquisition (or conclusion of portions thereof).

(3) Safety features.-The Attorney General, while constructing the additional fencing under this subsection, shall incorporate such safety features into the design of the fence system as are necessary to ensure the well-being of border patrol agents deployed within or in near proximity to the system.

(4) Authorization of appropriations.-There are authorized to be appropriated such sums as may be necessary to carry out this subsection. Amounts appropriated under this paragraph are authorized to remain available until expended.

(c) Waiver.-

(1) In general.-Notwithstanding any other provision of law, the Secretary of Homeland Security shall have the authority to waive all legal requirements such Secretary, in such Secretary’s sole discretion, determines necessary to ensure expeditious construction of the barriers and roads under this section [amending this section]. Any such decision by the Secretary shall be effective upon being published in the Federal Register.

(2) Federal court review.-

(A) In general.-The district courts of the United States shall have exclusive jurisdiction to hear all causes or claims arising from any action undertaken, or any decision made, by the Secretary of Homeland Security pursuant to paragraph (1). A cause of action or claim may only be brought alleging a violation of the Constitution of the United States. The court shall not have jurisdiction to hear any claim not specified in this subparagraph.

(B) Time for filing of complaint.-Any cause or claim brought pursuant to subparagraph (A) shall be filed not later than 60 days after the date of the action or decision made by the Secretary of Homeland Security. A claim shall be barred unless it is filed within the time specified.

(C) Ability to seek appellate review.-An interlocutory or final judgment, decree, or order of the district court may be reviewed only upon petition for a writ of certiorari to the Supreme Court of the United States.
Appendix B. Legal Requirements Waived by DHS for the Construction of the San Diego Border Fence

<table>
<thead>
<tr>
<th>Laws Waived</th>
<th>Pertinent Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Procedure Act (APA)</td>
<td>The APA establishes the general procedures that an agency must follow when promulgating a legislative rule. An agency must publish a notice of proposed rulemaking in the Federal Register, afford interested persons an opportunity to participate in the proceeding through the submission of written comments or, at the discretion of the agency, by oral presentation, and when consideration of the matter is completed, incorporate in the rules adopted “a concise general statement of their basis and purpose.” A final rule must be published in the Federal Register “not less than 30 days before its effective date.”</td>
</tr>
<tr>
<td>Clean Air Act (CAA)</td>
<td>The CAA requires the Environmental Protection Agency to establish minimum national standards for air quality, known as National Ambient Air Quality Standards (NAAQS), and assigns primary responsibility to the states to assure compliance with the standards. Areas not meeting the standards, referred to as “nonattainment areas,” are required to implement specified air pollution control measures. Federal agencies must comply with the federal general air conformity rule set forth by the CAA and codified in 40 CFR Part 51. The general conformity rule requires federal agencies to ensure that actions are consistent with the applicable state plan. The states administer the CAA through a comprehensive permitting program.</td>
</tr>
<tr>
<td>Coastal Zone Management Act (CZMA)</td>
<td>The CZMA requires federal agency activity within or outside the coastal zone that affects any land or water use or natural resource of the coastal zone to be carried out in a manner that is consistent to the maximum extent practicable with the policies of an approved state management program. The federal agency must submit a consistency determination to the applicable state agency.</td>
</tr>
<tr>
<td>Endangered Species Act (ESA)</td>
<td>Section 7 of the ESA mandates that each federal agency consult with the Fish and Wildlife Service (FWS) or National Marine Fishery Services (NMFS), depending on the listed species involved, to ensure that its actions are “not likely to jeopardize the continued existence of any endangered species or threatened species, or result in the destruction or adverse modification of” designated critical habitat. Once consulted, FWS or NMFS must, if listed species might be affected, prepare a biological opinion related to the actual impact of the proposed action. Mitigation measures could be required.</td>
</tr>
<tr>
<td>Federal Water Pollution Control Act (Clean Water Act)</td>
<td>Section 404 of the Clean Water Act establishes a program to regulate the discharge of dredged or fill material into waters of the United States, including wetlands. Section 404 requires a permit before dredged or fill material may be discharged into waters of the United States, unless the activity is exempt.</td>
</tr>
<tr>
<td>Migratory Bird Treaty Act (MBTA)</td>
<td>Section 2 of the MBTA sets out the types of prohibited conduct and states: “Unless and except as permitted by regulations ... it shall be unlawful at any time, by any means, or in any manner, to pursue, hunt, take, capture, kill, attempt to do these acts, [or] possess ... any migratory bird, [or] any part, nest, or eggs of any such bird....” Violations of the MBTA may result in civil or criminal penalties.</td>
</tr>
<tr>
<td>Laws Waived</td>
<td>Pertinent Requirements</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>National Environmental Policy Act (NEPA)</td>
<td>Under NEPA, an environmental impact statement must be prepared for “every recommendation or report on proposals for legislation and other major federal actions significantly affecting the quality of the human environment.” NEPA regulations require that if an agency is uncertain whether an action’s impacts on the environment will be significant, it generally must prepare an environmental assessment (EA). An EA is carried out to clarify issues and determine the extent of an action’s environmental effects.</td>
</tr>
<tr>
<td>42 U.S.C. §§4321, et seq.</td>
<td></td>
</tr>
<tr>
<td>National Historic Preservation Act (NHPA)</td>
<td>In accordance with the NHPA and its implementing regulations, sites determined to be eligible for inclusion in the National Register of Historic Places must be protected, either through avoidance or other mitigative action, from direct and indirect impacts. The NHPA also has procedural requirements, including public notice and comment.</td>
</tr>
<tr>
<td>(Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td></td>
</tr>
</tbody>
</table>
Legal Requirements Waived by DHS for the Construction of Physical Barriers and Roads in the Vicinity of the Barry M. Goldwater Range in Southwest Arizona

<table>
<thead>
<tr>
<th>Laws Waived</th>
<th>Pertinent Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Procedure Act (APA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>Endangered Species Act (ESA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>Federal Water Pollution Control Act (Clean Water Act)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>33 U.S.C. §§1251, et seq.</td>
<td></td>
</tr>
<tr>
<td>Military Lands Withdrawal Act of 1999</td>
<td>Section 3031 of the Military Lands Withdrawal Act of 1999 withdrew federal lands administered by the Bureau of Land Management from the public domain for 25 years, transferred these lands to the Secretaries of the Air Force and the Navy for this period, and reserved the lands for U.S. military training, testing, and other related purposes within the Barry M. Goldwater Range. The Secretaries of the Air Force, Navy, and Interior were required to prepare an Integrated Natural Resources Management Plan (INRMP) under the Sikes Act which, among other things, provided that “all gates, fences, and barriers constructed on such lands ... be designed and erected to allow wildlife access, to the extent practicable and consistent with military security, safety, and sound wildlife management use.”</td>
</tr>
<tr>
<td>P.L. 106-65, Div. B</td>
<td></td>
</tr>
<tr>
<td>National Environmental Policy Act (NEPA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>42 U.S.C. §§4321, et seq.</td>
<td></td>
</tr>
<tr>
<td>National Historic Preservation Act (NHPA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>National Wildlife Refuge System Administration Act</td>
<td>The National Wildlife Refuge System (NWRS) was primarily established to ensure the conservation of fish, wildlife, and plants. Designated areas may be used for other purposes (e.g., hunting, timber harvest, and grazing) only to the extent that such activities are compatible with the purposes for which the refuge was created. The refuges are managed by the Fish and Wildlife Service.</td>
</tr>
<tr>
<td>16 U.S.C. §§668dd-668ee</td>
<td></td>
</tr>
<tr>
<td>Sikes Act</td>
<td>The Sikes Act requires the Secretary of Defense to carry out a program providing for the conservation and rehabilitation of natural resources on U.S. military installations under the jurisdiction of the Secretary (including federal lands withdrawn from the public domain, transferred to the Secretary, and reserved for U.S. military use). In cooperation with the Secretary of the Interior, the Secretary of each military department is required to prepare and implement an Integrated Natural Resources Management Plan (INRMP) for each military installation under the jurisdiction of that Secretary if the installation contains “significant” natural resources.</td>
</tr>
</tbody>
</table>
Laws Waived

<table>
<thead>
<tr>
<th>Laws Waived</th>
<th>Pertinent Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilderness Act</td>
<td>The Wilderness Act established a National Wilderness Preservation System on federal lands “where the earth and its community of life are untrammeled by man, where man himself is a visitor who does not remain.” Within designated wilderness areas, section 4(c) of the act generally prohibits structures or installations, motor vehicle or other forms of mechanical transport, and roads.</td>
</tr>
</tbody>
</table>

Appendix D. Legal Requirements Waived by DHS for the Construction of Physical Barriers and Roads in the Vicinity of the San Pedro Riparian National Conservation Area in Southeast Arizona

<table>
<thead>
<tr>
<th>Laws Waived</th>
<th>Pertinent Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Procedure Act (APA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>5 U.S.C. §§551, et seq.</td>
<td>The Antiquities Act authorizes the President to declare as national monuments federal lands that contain historic landmarks, historic and prehistoric structures, and other objects of historic or scientific interest. Other provisions authorize the Secretaries of the Interior, Agriculture, and Army to issue permits to qualified institutions for the excavation of archaeological sites and gathering of objects of antiquity on lands under their respective jurisdictions. Penalties are provided for removing, excavating, or damaging resources protected under the act.</td>
</tr>
<tr>
<td>Antiquities Act</td>
<td>The Antiquities Act authorizes the President to declare as national monuments federal lands that contain historic landmarks, historic and prehistoric structures, and other objects of historic or scientific interest. Other provisions authorize the Secretaries of the Interior, Agriculture, and Army to issue permits to qualified institutions for the excavation of archaeological sites and gathering of objects of antiquity on lands under their respective jurisdictions. Penalties are provided for removing, excavating, or damaging resources protected under the act.</td>
</tr>
<tr>
<td>16 U.S.C. §§431, et seq.</td>
<td>The Antiquities Act authorizes the President to declare as national monuments federal lands that contain historic landmarks, historic and prehistoric structures, and other objects of historic or scientific interest. Other provisions authorize the Secretaries of the Interior, Agriculture, and Army to issue permits to qualified institutions for the excavation of archaeological sites and gathering of objects of antiquity on lands under their respective jurisdictions. Penalties are provided for removing, excavating, or damaging resources protected under the act.</td>
</tr>
<tr>
<td>(Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td>The Antiquities Act authorizes the President to declare as national monuments federal lands that contain historic landmarks, historic and prehistoric structures, and other objects of historic or scientific interest. Other provisions authorize the Secretaries of the Interior, Agriculture, and Army to issue permits to qualified institutions for the excavation of archaeological sites and gathering of objects of antiquity on lands under their respective jurisdictions. Penalties are provided for removing, excavating, or damaging resources protected under the act.</td>
</tr>
<tr>
<td>Archaeological and Historic Preservation Act (AHPA)</td>
<td>The purpose of the AHPA is to provide for the preservation of historical and archeological data which might otherwise be irreparably lost or destroyed as the result of, among other things, any alteration of terrain caused by a federal construction project. If a federal agency becomes aware that its activities in connection with a construction project may cause irreparable loss or destruction of significant scientific, prehistorical, historical, or archeological data, the agency must notify the Secretary of the Interior. If the Secretary deems such data to be significant and in danger of being irrevocably lost or destroyed, he is authorized to take action to protect and recover it.</td>
</tr>
<tr>
<td>16 U.S.C. §§469, et seq.</td>
<td>The purpose of the AHPA is to provide for the preservation of historical and archeological data which might otherwise be irreparably lost or destroyed as the result of, among other things, any alteration of terrain caused by a federal construction project. If a federal agency becomes aware that its activities in connection with a construction project may cause irreparable loss or destruction of significant scientific, prehistorical, historical, or archeological data, the agency must notify the Secretary of the Interior. If the Secretary deems such data to be significant and in danger of being irrevocably lost or destroyed, he is authorized to take action to protect and recover it.</td>
</tr>
<tr>
<td>Archeological Resources Protection Act (ARPA)</td>
<td>ARPA generally prohibits the damage, removal, excavation, or alteration of any archeological resource located on public lands or Indian lands, except pursuant to a permit issued by the appropriate federal land manager.</td>
</tr>
<tr>
<td>16 U.S.C. §§470aa, et seq.</td>
<td>ARPA generally prohibits the damage, removal, excavation, or alteration of any archeological resource located on public lands or Indian lands, except pursuant to a permit issued by the appropriate federal land manager.</td>
</tr>
<tr>
<td>Arizona-Idaho Conservation Act of 1988</td>
<td>The Arizona-Idaho Conservation Act established the San Pedro Riparian National Conservation Area to protect public lands surrounding the San Pedro River in Cochise County, Arizona. The Secretary of the Interior is responsible for managing the area in a manner that conserves, protects, and enhances its wildlife and other resources. The Secretary may only permit uses of the conservation area that are determined to further the primary purposes for which the conservation area was established, and may implement limits to visitation and use. Except in limited circumstances, motorized vehicles are permitted only on designated roads. Persons who violate the act or its implementing regulations are subject to a fine and/or imprisonment.</td>
</tr>
<tr>
<td>16 U.S.C. §§460xx, et seq.</td>
<td>The Arizona-Idaho Conservation Act established the San Pedro Riparian National Conservation Area to protect public lands surrounding the San Pedro River in Cochise County, Arizona. The Secretary of the Interior is responsible for managing the area in a manner that conserves, protects, and enhances its wildlife and other resources. The Secretary may only permit uses of the conservation area that are determined to further the primary purposes for which the conservation area was established, and may implement limits to visitation and use. Except in limited circumstances, motorized vehicles are permitted only on designated roads. Persons who violate the act or its implementing regulations are subject to a fine and/or imprisonment.</td>
</tr>
<tr>
<td>Clean Air Act (CAA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>42 U.S.C. §§7401, et seq.</td>
<td>CERCLA authorizes federal actions to respond to the release or substantial threat of a release of a hazardous substance into the environment, and of a pollutant or contaminant which may present an imminent and substantial endangerment to the public health or welfare. The act established liability of certain persons associated with a release of hazardous substances for cleanup costs, natural resource damages, and the costs of federal public health studies. Federal departments, agencies, and instrumentalities are subject to the act to the same extent as nongovernmental entities, including for purposes of liability.</td>
</tr>
<tr>
<td>Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)</td>
<td>CERCLA authorizes federal actions to respond to the release or substantial threat of a release of a hazardous substance into the environment, and of a pollutant or contaminant which may present an imminent and substantial endangerment to the public health or welfare. The act established liability of certain persons associated with a release of hazardous substances for cleanup costs, natural resource damages, and the costs of federal public health studies. Federal departments, agencies, and instrumentalities are subject to the act to the same extent as nongovernmental entities, including for purposes of liability.</td>
</tr>
<tr>
<td>Laws Waived</td>
<td>Pertinent Requirements</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Farmland Protection Policy Act (FPPA) 7 U.S.C. §§4201, et seq.</td>
<td>The FPPA requires the Department of Agriculture, in cooperation with other federal entities, to develop criteria for identifying the effects of federal programs on the conversion of farmland to nonagricultural uses. Federal agencies are thereafter required to use these criteria to identify farmland that is converted by federal programs and take into account the adverse effects of such programs on the preservation of farmland. Agencies must consider alternative actions, as appropriate, that could lessen such adverse effects.</td>
</tr>
<tr>
<td>Federal Land Policy and Management Act (FLPMA) 43 U.S.C. §§1701, et seq.</td>
<td>The FLPMA primarily establishes guidelines for the management, protection, and use of federal public lands, as administered by the Secretary of the Interior through the Bureau of Land Management. The law provides for BLM lands to be managed on a multiple-use, sustained-yield basis. Provisions pertain to land use planning, acquisition, exchange, disposal, withdrawal, rights of way, range management, wilderness study, and advisory groups, among others. Some provisions also pertain to National Forest System lands.</td>
</tr>
<tr>
<td>Federal Water Pollution Control Act (Clean Water Act) 33 U.S.C. §§1251, et seq.</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>Fish and Wildlife Coordination Act (FWCA) 16 U.S.C. §§661, et seq.</td>
<td>The FWCA generally provides that whenever the waters of any stream or other body of water are proposed to be modified by a federal agency, the agency must first consult with the United States Fish and Wildlife Service, Department of the Interior, and the head of the agency exercising administration over the wildlife resources of the state where the construction will occur, with a view to the conservation of wildlife resources.</td>
</tr>
<tr>
<td>Historic Sites, Buildings, and Antiquities Act (HSBAA) 16 U.S.C. §§461, et seq. (Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td>The HSBAA declares it the national policy to preserve historic sites, buildings, and objects of national significance. The Secretary of the Interior, through the National Park Service, is charged with implementing the policy of the HSBAA, including through the acquisition, maintenance, administration of historic sites.</td>
</tr>
<tr>
<td>Noise Control Act (NCA) 42 U.S.C. §§4901, et seq.</td>
<td>Pursuant to the NCA, the federal government has established standards for maximum sound levels generated from a variety of commercial products, railways, and interstate motor carriers.</td>
</tr>
</tbody>
</table>
The Safe Drinking Water Act provides federal authority for the establishment of standards and treatment requirements for public water supplies, control of the underground injection of wastes, and protection of sources of drinking water. Federal agencies involved in certain activities that may contaminate drinking water are subject to all federal, state, and local requirements concerning the protection of water systems to the same extent as any person is subject to such requirements.

Through the SWDA, as amended by RCRA, entities that transport or generate hazardous waste are required to comply with regulations concerning the management of waste. Moreover, each federal agency engaged in any activity resulting, or which may result, in the disposal or management of solid waste or hazardous waste is subject to all federal, state, and local requirements concerning such waste to the same extent as any person is subject to such requirements.

The Wild and Scenic Rivers Act establishes a National Wild and Scenic Rivers System (System) protecting rivers and adjacent lands with important scenic, recreational, geologic, fish and wildlife, historic, cultural, or other similar values. Components of the System are to be administered in a manner that preserves their free-flowing condition in order to protect water quality and to fulfill other national conservation purposes.
Appendix E. Legal Requirements Waived by DHS for the Construction of Physical Barriers and Roads in Hidalgo County, Texas

<table>
<thead>
<tr>
<th>Laws Waived</th>
<th>Pertinent Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Indian Religious Freedom Act (AIRFA) 42 U.S.C. §1996</td>
<td>AIRFA ensures American Indian groups access to religious sites by directing federal agencies to consult with American Indian spiritual leaders to determine appropriate procedures to protect access and other religious rights.</td>
</tr>
<tr>
<td>Archeological Resources Protection Act (ARPA) 16 U.S.C. §§470aa, et seq.</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>Clean Air Act (CAA) 42 U.S.C. §§7401, et seq.</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>Coastal Zone Management Act (CZMA) 16 U.S.C. §§1451, et seq.</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>Eagle Protection Act 16 U.S.C. §§668, et seq.</td>
<td>The Eagle Protection Act provides for the protection of the bald eagle and the golden eagle by prohibiting the taking, possession, and commerce of such birds.</td>
</tr>
<tr>
<td>Federal Grant and Cooperative Agreement Act of 1977 31 U.S.C. §§6303-6305</td>
<td>The Federal Grant and Cooperative Agreement Act governs the use of various types of agreements. This act imposes standards mandating the use of procurement contracts, grants, and cooperative agreements in specific situations, while allowing the use of non-standard agreements in other situations.</td>
</tr>
</tbody>
</table>
Laws Waived

<table>
<thead>
<tr>
<th>Federal Water Pollution Control Act (Clean Water Act)</th>
<th>See Appendix B for description of requirements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 U.S.C. §§1251, et seq.</td>
<td></td>
</tr>
<tr>
<td>Fish and Wildlife Act of 1956</td>
<td>The Fish and Wildlife Act establishes a comprehensive national fish, shellfish, and wildlife resources policy. The law requires the Secretary of Interior to develop measures for “maximum sustainable production of fish,” make economic studies of the industry and recommend measures to insure the stability of fisheries, take steps “required for the development, management, advancement, conservation and protection of the fisheries resources,” and take steps “required for the development, management, advancement, conservation, and protection of fish and wildlife resources” through research, acquisition of land or water, development of existing facilities, and other means.</td>
</tr>
<tr>
<td>16 U.S.C. §§742a, et seq.</td>
<td></td>
</tr>
<tr>
<td>Fish and Wildlife Coordination Act (FWCA)</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>Historic Sites, Buildings, and Antiquities Act (HSBAA)</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>(Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td></td>
</tr>
<tr>
<td>Migratory Bird Treaty Act (MBTA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>National Environmental Policy Act (NEPA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>42 U.S.C. §§4321, et seq.</td>
<td></td>
</tr>
<tr>
<td>National Historic Preservation Act (NHPA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>(Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td></td>
</tr>
<tr>
<td>National Wildlife Refuge System Administration Act</td>
<td>See Appendix C for description of requirements.</td>
</tr>
<tr>
<td>16 U.S.C. §§668dd-668ee</td>
<td></td>
</tr>
<tr>
<td>Native American Graves Protection and Repatriation Act (NAGPRA)</td>
<td>NAGPRA requires federal agencies and other institutions receiving federal funding to return Native American cultural items and human remains to their respective people. If federal officials anticipate that activities on federal and tribal land might have an effect on American Indian burial, or their activities inadvertently discover such burials, they must consult with American Indian tribal officials as part of their compliance duties.</td>
</tr>
<tr>
<td>Noise Control Act (NCA)</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>42 U.S.C. §§4901, et seq.</td>
<td></td>
</tr>
<tr>
<td>Religious Freedom Restoration Act (RFA)</td>
<td>RFRA generally provides that the government may not substantially burden a person’s exercise of religion, except when the government demonstrates that the action is in furtherance of a compelling government interest and is the least restrictive means of furthering that interest.</td>
</tr>
<tr>
<td>42 U.S.C. §2000bb</td>
<td></td>
</tr>
</tbody>
</table>
Laws Waived

<table>
<thead>
<tr>
<th>Law</th>
<th>Pertinent Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers and Harbors Act of 1899</td>
<td>The Rivers and Harbors Act prohibits the obstruction of navigable waters of the United States, or to excavate, fill, or alter the course, condition, or capacity of any port, harbor, channel, or other area within the reach of the act, unless a permit from the Army Corps of Engineers is obtained.</td>
</tr>
<tr>
<td>33 U.S.C. §403</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>Safe Drinking Water Act</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>42 U.S.C. §§300f, et seq.</td>
<td></td>
</tr>
<tr>
<td>Solid Waste Disposal Act (SWDA),</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>as amended by the Resource Conservation and Recovery Act (RCRA)</td>
<td></td>
</tr>
<tr>
<td>42 U.S.C. §§6901, et seq.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix F. Legal Requirements Waived by DHS for the Construction of Physical Barriers and Roads at Various Project Areas Located in California, Arizona, New Mexico, and Texas

<table>
<thead>
<tr>
<th>Laws Waived</th>
<th>Pertinent Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Procedure Act (APA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>American Indian Religious Freedom Act (AIRFA)</td>
<td>See Appendix E for description of requirements.</td>
</tr>
<tr>
<td>42 U.S.C. §1996</td>
<td></td>
</tr>
<tr>
<td>Antiquities Act</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>(Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td></td>
</tr>
<tr>
<td>Archaeological and Historic Preservation Act (AHPA)</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>Archeological Resources Protection Act (ARPA)</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>Arizona Desert Wilderness Act §§301(a)-(f)</td>
<td>The waived sections of the Arizona Desert Wilderness Act designate certain lands in the Havasu National Wildlife Refuge, Imperial National Wildlife Refuge, Kofa National Wildlife Refuge, and Cabeza Prieta National Wildlife Refuge (all in Arizona) as components of the National Wilderness Preservation System to be administered under the Wilderness Act.</td>
</tr>
<tr>
<td>P.L. 101-628</td>
<td></td>
</tr>
<tr>
<td>California Desert Protection Act §§102(29) and 103</td>
<td>The waived provisions of the California Desert Protection Act designate certain lands managed by BLM as the Jacumba Wilderness, to be managed in accordance with the Wilderness Act.</td>
</tr>
<tr>
<td>P.L. 103-433</td>
<td></td>
</tr>
<tr>
<td>Clean Air Act (CAA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>42 U.S.C. §§7401, et seq.</td>
<td></td>
</tr>
<tr>
<td>Coastal Zone Management Act (CZMA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>42 U.S.C. §§9601, et seq.</td>
<td></td>
</tr>
<tr>
<td>Eagle Protection Act</td>
<td>See Appendix E for description of requirements.</td>
</tr>
<tr>
<td>Endangered Species Act (ESA)</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>Farmland Protection Policy Act (FPPA)</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>Laws Waived</td>
<td>Pertinent Requirements</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Federal Water Pollution Control Act (Clean Water Act) 33 U.S.C. §§1251, et seq.</td>
<td>See Appendix B for description of requirements.</td>
</tr>
<tr>
<td>Fish and Wildlife Coordination Act (FWCA) 16 U.S.C. §§661, et seq.</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>(Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td></td>
</tr>
<tr>
<td>Multiple Use and Sustained Yield Act of 1960 16 U.S.C. §§528-531</td>
<td>The Multiple Use and Sustained Yield Act declares that national forests are to be managed for outdoor recreation, range, timber, watershed, and fish and wildlife purposes, and in a way that provides a high level of resource outputs for perpetuity, but does not impair the productivity of the land.</td>
</tr>
<tr>
<td>(Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td></td>
</tr>
<tr>
<td>National Park Service General Authorities Act 16 U.S.C. §§1a-1, et seq.</td>
<td>The National Park Service General Authorities Act is the organic statute for the National Park Service. The act calls for the preservation of certain lands and empowers the National Park Service to issue regulations and manage these lands.</td>
</tr>
<tr>
<td>(Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td></td>
</tr>
<tr>
<td>National Park Service Organic Act 16 U.S.C. §§1, 2-4</td>
<td>The National Park Service Organic Act calls for the preservation of certain lands and empowers the Secretary of the Interior to issue regulations and manage these lands. The Secretary of the Interior may make such regulations as necessary or proper for the use and management of parks, monuments, and reservations under the National Park Service’s jurisdiction.</td>
</tr>
<tr>
<td>(Act repealed by P.L. 113-287, §7; similar provisions now codified in Title 54 of the U.S. Code)</td>
<td></td>
</tr>
<tr>
<td>Laws Waived</td>
<td>Pertinent Requirements</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>National Parks and Recreation Act of 1978 §401(7), 403, and 404 P.L. 95-625</td>
<td>These sections of National Parks and Recreation Act designate a number of areas, including the Organ Pipe Cactus National Monument in Arizona as “wilderness” to be administered under the Wilderness Act.</td>
</tr>
<tr>
<td>Noise Control Act (NCA) 42 U.S.C. §§4901, et seq.</td>
<td>See Appendix D for description of requirements.</td>
</tr>
<tr>
<td>Otay Mountain Wilderness Act of 1999 P.L. 106-145</td>
<td>The Otay Mountain Wilderness Act designates certain public lands in California as “wilderness” to be managed in accordance with the Wilderness Act. Any lands acquired by the United States within the designated area shall become part of the designated “wilderness area,” and shall also be managed in accordance with the Wilderness Act.</td>
</tr>
</tbody>
</table>

Author Contact Information

Michael John Garcia
Acting Section Research Manager
mgarcia@crs.loc.gov, 7-3873
We can and it's already on the agenda (not specific but under one of the last categories). This is the same issue that popped up in early Feb. [EXTERNAL], working with the Southern District AUSA, laid out the facts - the letter relates to an existing case, nothing new.

Sent from my BlackBerry 10 smartphone on the Verizon Wireless 4G LTE network.

Can we discuss who would be best to contact at DOJ regarding these letters associated with old fence condemnation?

Even before President Trump was inaugurated, U.S. citizens who own land along the border reportedly began receiving letters from the Justice Department informing them that the federal government wants their land to build a fence (i.e. the president’s border wall), that it intends to acquire their land and the amount of compensation the government is offering.

Yvette Salinas, a Texan whose ailing mother owns a small parcel of land with her siblings near the Rio Grande was informed by the “Declaration of Taking” letter sent by DOJ that her 1.2 acres was worth $2,900, according to a story in the Texas Observer. She told the Observer that the family’s 16 acres has been in her family for five generations. The government’s letter asks recipients to sign in order to receive compensation, acknowledge that they “do not have an interest” in the case or do not intend to make a claim. It doesn’t really say what landowners should do if, like Salinas, they don’t want to sell their land.

Salinas called the letter “scary” and said “you feel you have to sign.” Her family is consulting a lawyer about its next steps. If other border landowners have the same reluctance to sell as Salinas, the government may have a long battle ahead to secure all the land necessary for the wall, given that the federal government doesn’t own most of it. The nearly 2,000-mile southern border is composed of federal, state, tribal and private lands. There are 632 miles of federal or tribal land -- 33 percent -- and the other 67 percent, most of which is in Texas, is private or state-owned, according to the Government Accountability Office (GAO). The Washington Post points out that the president would need Congress to pass a bill to acquire the tribal lands for his wall.
Good morning all –

FYSA – Attached is a report published last week by the Congressional Research Service (CRS) titled Barriers along the U.S. Borders: Key Authorities and Requirements. Some good info in here to read through.

Branch Chief, Communications and Workforce Strategy
Border Patrol & Air and Marine Program Management Office
Facilities Management and Engineering
Office of Facilities and Asset Management
Mobile: (b) (6)
Per our conversation this morning, can you please send the email you previously sent on how DOJ is addressing this issue. Also, in regards to the list of landowners, I understand it won’t be possible to provide a list of pending landowners but we need to establish a process with DOJ where they can alert us and the sector when these letters will be going out so that BP has awareness. Finally, can we ask DOJ for a list of the landowners that have received recent letters so that we can share with BP?

Thank you

Even before President Trump was inaugurated, U.S. citizens who own land along the border reportedly began receiving letters from the Justice Department informing them that the federal government wants their land to build a fence (i.e. the president’s border wall), that it intends to acquire their land and the amount of compensation the government is offering.

Yvette Salinas, a Texan whose ailing mother owns a small parcel of land with her siblings near the Rio Grande was informed by the “Declaration of Taking” letter sent by DOJ that her 1.2 acres was worth $2,900, according to a story in the Texas Observer. She told the Observer that the family’s 16 acres has been in her family for five generations. The government’s letter asks recipients to sign in order to receive compensation, acknowledge that they “do not have an interest” in the case or do not intend to make a claim. It doesn’t really say what landowners should do if, like Salinas, they don’t want to sell their land.

Salinas called the letter “scary” and said “you feel you have to sign.” Her family is consulting a lawyer about its next steps. If other border landowners have the same reluctance to sell as
Salinas, the government may have a long battle ahead to secure all the land necessary for the wall, given that the federal government doesn’t own most of it. The nearly 2,000-mile southern border is composed of federal, state, tribal and private lands. There are 632 miles of federal or tribal land -- 33 percent -- and the other 67 percent, most of which is in Texas, is private or state-owned, according to the Government Accountability Office (GAO). The Washington Post points out that the president would need Congress to pass a bill to acquire the tribal lands for his wall.

(b) (6)
Director, BPAM PMO
(b) (6) desk)
(b) (6) mobile)
Thank you for drafting this. I have made some minor edits as follows:

- BPAM PMO has prepared an initial draft of a scoping letter to be used for the first planned RGV fence segment [b] (7)(E) as well as an initial list of stakeholders in the area. The letters may be revised to include all proposed segments in RGV and the RGV [b] (7)(E), phase 2 project.
- Once wording is agreed upon (after internal edits and DOI review), the letters will be sent via regular mail.
- This first scoping letter will be focused on proposed RGV activities to kick off our environmental planning. Similar letters will be drafted for each of the FY17 projects in SDC, EPT, and ELC.

Below are some bullets for your consideration. Please review/update as needed. Thank you!

- BPAM PMO has prepared an initial draft of a scoping letter to be used for the first planned RGV fence segment [b] (7)(E) as well as an initial list of stakeholders in the area.
- Once wording is agreed upon (after internal edits and DOI review), the letters will be sent via regular mail.
- This first scoping letter is only focused on the initial segment for RGV to kick off our environmental planning that will be needed for this project. Similar letters will be drafted for each of the FY17 projects.
together one to two bullets on it and sent to (b)(6) to review?

(b)(6) – heads up. (b)(6) per (b)(6) would like to an update on this. It will be included in a larger summary, so we don’t need much – just a quick recap.

Due 3 pm today.

(b)(6)
Director, Business Operations Division
Border Patrol & Air and Marine Program Management Office
Facilities Management and Engineering
Office of Facilities and Asset Management
Mobile: (b)(6)

From:
Sent: Friday, July 28, 2017 6:19 AM
To:
Cc:
Subject: RE: Draft Consultation Letters for Forst RGV Segment

Hi (b)(6)

Thanks for the explanation. Glad to know we’re doing separate letters for each of the FY17 projects. It might be worthwhile to do a call about who should get those letters. How does your day look today?

Thanks (b)(6)

Best,

(b)(6)

From: (b)(6)
Sent: Thursday, July 27, 2017 7:15 PM
To:
Cc:
Subject: RE: Draft Consultation Letters for Forst RGV Segment

(b)(6)
Hi – You are correct, this letter is meant to address the first proposed segment in RGV. Normally, we would produce project specific scoping letters that would then be sent to stakeholders that have potential to be affected by the project. This first scoping letter was only focused on the initial segment for RGV to kick off our environmental planning that will be needed for this project. We will also draft similar letters for each of the FY17 projects but some of the stakeholders will be different (e.g. SDC fence replacement stakeholders will be different from RGV stakeholders).

In regards to the list of tribes, the list of tribes provided do have a potential nexus to the regional area. While all of the tribes don’t have tribal land in the project area, many (if not all) have possible traditional use of the area.

I am happy to discuss the strategy and content of the scoping letter if needed, please let me know.

Thank you.

From:
Sent: Thursday, July 27, 2017 4:19 AM
To:
Cc:
Subject: RE: Draft Consultation Letters for Forst RGV Segment

Hi

Thanks for the letter and the list. If I’m reading it correctly, the letter is about an FY18 proposed project. I thought the notifications we were doing at this stage were for the FY 17 funded projects (and replacement fencing).

It could also include FY18 proposed, but are we also doing stakeholder outreach (via letter) on the FY17 projects?

Also curious on the list of tribes . . . do the tribes listed have a nexus to the land affected by the project? I imagine they do because you listed them, but I’m just interested in learning how we define the “nexus” (my word, not yours).

Thanks

From:
Sent: Tuesday, July 25, 2017 2:59 PM
To: [REDACTED]

Subject: Draft Consultation Letters for Forst RGV Segment

All – As we discussed last week, we have prepared the attached initial draft of a scoping letter to be used for the first planned RGV fence segment [REDACTED]. In addition, I’ve attached an initial list of stakeholders in the area that we would typically coordinate or consult with. The proposed process for these letters would be to circulate them internally for edits and comments then send to DOI for review. Once we’ve agreed on the wording, we would send the letters out via regular mail. Please review at your convenience and let me know if you would like to discuss.

Thank you,

[REDACTED]

Real Estate and Environmental Branch Chief
Border Patrol and Air & Marine
Program Management Office
24000 Avila Road, Suite 5020
Laguna Niguel, CA 92677

Phone: [REDACTED]
Cell: [REDACTED]
Hi - Would you be able to reach out to RGV sector to see if they have a list of the NGOs?

Thanks. The meeting with DOI/BIA is tomorrow afternoon at 3:00pm. It’s a conference call. set it up.

As for adding NGOs, I think RGV should develop a list of the groups who should receive the letter. It may be broader than just the ones they met with a few weeks ago. Also, is there a similar letter for the San Diego sector projects?

Is there an updated draft of the RGV letter?

Thanks.

- I received a couple of comments from DOI that need to be incorporated into the letters. The only remaining question is whether we want to include the group of NGOs that sector met with a couple of weeks ago on the distribution list. I recommend we include the NGOs.

Can you remind me of the date of your meeting with tribes and BIA, is that meeting scheduled for this week?
Hi All,

Just checking back on this . . . not sure where we stand in advance of the call tomorrow with DOI.

Thanks,

From:

Hi All,

In advance of tomorrow’s call with DOI/BIA, I just want to check in on the status of the scoping letter and the list of tribes who would receive it. I’ve attached the last draft that I reviewed. Happy to get on a call today to discuss, if needed.

Thanks,
Thanks. Here are a couple thoughts/comments on the letter. Overall – looks good to me.

All – Based on our call last Friday, I have revised the scoping letters for RGV to include all planning. Also, attached are the proposed maps to be included.

Please review and provide any comments/edits.

Thank you,

Thanks for the explanation. Glad to know we’re doing separate letters for each of the FY17 projects. It might be worthwhile to do a call about who should get those letters. How does your day look today?

Thanks
Good afternoon

Thank you for your excellent comments - please see my responses below. CBP - please respond to my questions/comments below.

1) We completed a concurrence on the TIMR project on the Tohono O'odham Nation in 2016. The concurrence is part of the 2016 reinitiated biological opinion (BO) on the original TIMR consultation completed in 2012. Attached are the a) 2016 TIMR BO with concurrence on the TON portion of the project (I attached an unsigned copy because the signed version is so large); and b) the original 2012 TIMR biological opinion (the 2016 TIMR BO references the 2012 BO quite a bit, so you will need both to get the complete picture of TIMR). Also, below are links to both BOs on our website. Please let me know if you have any questions on these.

Because we worked with [REDACTED] and [REDACTED] on the TIMR project, I am copying them here in case they can be of assistance. [REDACTED] - with whom at the Nation did you coordinate with on the TIMR TON project?

2) The TIMR BO BMPs are included in the 2012 and 2016 BOs (attached).

3) I could not find in CBP's Biological Assessment if they report on the [REDACTED] however, there is a BMP to reduce [REDACTED] (All [REDACTED] methods in accordance with industry standards.).

- [REDACTED] - could you please answer [REDACTED] questions on [REDACTED].

4) Agreed! I added that language and we will include the TON in email correspondence as well. [REDACTED]. - do you agree (since this is part of your description of the proposed action)?

5) This is an interesting observation on lesser long-nosed bats. I propose to change the date to the beginning of November. [REDACTED] - do you agree?

I am happy to set up a call if anyone would like to discuss my responses. Otherwise, we'll wait to hear back from CBP.

Thank you very much,
On Mon, Mar 13, 2017 at 4:42 PM, (b) (6) wrote:

Good Day (b) (6)

You will attached the comments from the Nation’s Wildlife and Vegetation Management program. We apologize for the delay but the Natural Resources Technician was on leave last week on Friday, and I needed his signature on the response.

Have a good evening.

Sincerely,

(b) (6)

Assistant Director

Department of Natural Resources

Tohono O’odham Nation
Mr. Paul Enriquez, Acting Division Director
Real Estate and Environmental Services Division
Border Patrol Facilities and Tactical Infrastructure
Program Management Office
U.S. Customs and Border Protection
1300 Pennsylvania Avenue NW
Washington, DC 20229

RE: Reinitiation of Formal Section 7 Consultation and Conference on the Tactical Infrastructure Maintenance and Repair Program (TIMR), including TIMR on the Tohono O’odham Nation, along the U.S./Mexico international border in Arizona

Dear Mr. Enriquez:

Thank you for your February 3, 2015 request for consultation (for TIMR on the Tohono O’odham Nation), and March 9, 2015 request for reinitiation of formal consultation (for TIMR) with the U.S. Fish and Wildlife Service (FWS) pursuant to section 7 of the Endangered Species Act of 1973 (16 U.S.C. 1531-1544), as amended (ESA). Your requests were received by us on February 3 and March 18, 2015, respectively, and were supplemented with additional information in the form of electronic mail. At issue are possible effects of the proposed TIMR along the U.S./Mexico international border in Arizona, including the Tohono O’odham Nation. Since the issuance of our November 6, 2012 Biological Opinion on TIMR (02EAAZOO-2012-F-0170) several additional species have been listed and additional critical habitat has been designated or proposed within the action area. Additionally, U.S. Customs and Border Protection (CBP) has proposed additions to the description of the proposed action, specifically addressing Pozo Nuevo and Bates Wells roads within Organ Pipe Cactus National Monument (OPCNM), and is proposing to expand TIMR to the Tohono O’odham Nation (TON). Accordingly, CBP has requested reinitiation of consultation to address the effects to newly listed species and critical habitat and proposed critical habitat, as well as effects of the proposed project additions.

With regard to newly listed species and proposed or designated critical habitat, CBP determined that the ongoing TIMR project “may affect and is likely to adversely affect” the threatened northern Mexican gartersnake (*Thamnophis eques megalops*) and its proposed critical habitat. This species and proposed critical habitat are the subject of this biological and conference opinion (in addition to Sonoran pronghorn – see below). CBP additionally determined that the proposed project “may affect, but is not likely to adversely affect” the threatened yellow-billed
Mr. Paul Enriquez

cuckoo (*Coccyzus americanus*) and its proposed critical habitat; acuña cactus (*Echinomastus erectocentrus* var. *acunensis*) and its proposed critical habitat; as well as designated critical habitat for the endangered jaguar (*Panthera onca*). We concur with your determination on these species and provide our rationale in Appendix A.

For proposed project additions within OPCNM, CBP determined that the proposed project “may affect, and is likely to adversely affect” the endangered Sonoran pronghorn (*Antilocapra americana sonoriensis*) and “may affect, but is not likely to adversely affect” endangered lesser long-nosed bat (*Leptonycteris yerbabuenae*). Your determination for Sonoran pronghorn is the same as in the 2012 biological opinion and Sonoran pronghorn are the subject of this biological opinion (in addition to the northern Mexican gartersnake – see above). Your determination for the lesser long-nosed bat is the same as in the 2012 biological opinion and we concur with your new determination on this species and provide our rationale in Appendix A.

With regard to expanding TIMR to the TON, CBP determined that the proposed project “may affect, but is not likely to adversely affect” the threatened yellow-billed cuckoo and its proposed critical habitat, the endangered jaguar and its critical habitat, and the endangered lesser long-nosed bat. We concur with your determination on these species and provide our rationale in Appendix A.

Apart from the species addressed in the 2012 Biological Opinion and those mentioned above, CBP has determined that there would be no effect to all other listed species and their designated or proposed critical habitats that occur within the action area for TIMR.

This biological and conference opinion is based on information provided in CBP’s 2012 Biological Assessment addressing the proposed TIMR along the U.S./Mexico international border in Arizona; CBP’s February 3, 2015 letter proposing to expand TIMR to the TON; CBP’s March 9, 2015 Analysis of Effects on Listed Species and Critical Habitat Related to Re-initiation of Section 7 Consultation on the CBP TIMR along the U.S./Mexico Border in Arizona; emails; telephone conversations and meetings between our staffs; and other sources of information found in the administrative record supporting this biological opinion. Literature cited in this biological opinion is not a complete bibliography of all literature available on the types of activities included in TIMR or the species addressed in this consultation. A complete administrative record of this consultation is on file at this office.

CONSULTATION HISTORY

Prior to 2015: See Consultation History in the Biological Opinion on TIMR (#02EAAZOO-2012-F-0170, dated November 6, 2012).
February 3: FWS received CBP’s February 3, 2015 letter requesting our concurrence that the proposed expansion of TIMR to TON lands may affect, but is not likely to adversely affect the yellow-billed cuckoo.

March 18, 2015: FWS received CBP’s March 9, 2015 letter requesting reinitiation of consultation on the TIMR Program.

August 2015 to June 2016: FWS and CBP communicate numerous times via electronic mail and teleconference to clarify the description of the proposed action and clarify and, in some cases, change species effects determinations. FWS and CBP also mutually agreed to address all three components of TIMR in one reinitiated consultation, including improvements to Pozo Nuevo and Bates Well roads in OPCNM and expanding TIMR to the TON.

June 30: FWS provided the draft biological and conference opinion to CBP for review and comment.

BIOLOGICAL and CONFERENCE OPINION

DESCRIPTION OF THE PROPOSED ACTION

CBP is requesting this reinitiation of section 7 consultation for two reasons: 1) to address the effects of TIMR on several additional species that have been listed and additional critical habitat has been designated or proposed within the action area since the issuance of the November 6, 2012 Biological Opinion on TIMR (02EAAZOO-2012-F-0170); 2) to address the effects of proposed additions to TIMR, specifically within OPCNM; and 3) to address the expansion of TIMR to the TON. The description of the proposed action to address the first project component listed above is the same as that included in the 2012 TIMR Biological Opinion and supporting documents, with minor changes described below. The description of the proposed action to address the second project component listed above is included in CBP’s March 9, 2015 letter. The description of the proposed action to address the third project component listed above is included in CBP’s February 3, 2015 letter. The complete description of the proposed action from these documents is incorporated herein by reference, and summarized below.

Brief Summary of Project Component #1 (additional listed species and critical habitat):

As stated above, the description of the proposed action to address this project component listed is the same as that included in the 2012 TIMR Biological Opinion and supporting documents, with minor changes. A brief summary of the 2012 description of the proposed action with the minor changes follows. The purpose of this project is to ensure that the physical integrity of the existing tactical infrastructure and associated supporting elements continue to perform as intended and assist the United States Border Patrol (USBP) in securing the U.S./Mexico
international border in Arizona. Tactical infrastructure will be maintained to ensure USBP agent safety by preventing potential vehicular accidents by minimizing and eliminating hazardous driving conditions. The scope of TIMR includes reactive maintenance and repair activities (e.g., resolving damage from intentional sabotage or severe weather events) and preventative/scheduled maintenance and repair activities designed to ensure environmental sustainability (e.g., culvert replacement, drainage and grate cleaning, preventative measures to prevent soil erosion) over the functional life of the covered infrastructure. All maintenance and repair activities will be coordinated by the CBP Facilities Management and Engineering (FM&E) Sector Coordinator and managed by the Project Management Office’s Maintenance and Repair Supervisor.

The tactical infrastructure proposed to be maintained and repaired consists of fences and gates, roads and bridges/crossovers, drainage structures and grates, lighting and ancillary power systems, and communication and surveillance tower components (including, but not limited to Remote Video Surveillance System [RVSS] and Secure Border Initiative (SBI)net towers, which shall hereafter be referred to as towers). Figures 1, 2a, and 2b depict the general area where the existing tactical infrastructure components covered in this biological opinion are found. The tactical infrastructure occurs in both USBP sectors in Arizona: Tucson and Yuma. The Tucson Sector is entirely within Arizona, and a portion of the Yuma Sector is in Arizona (see Figures 1, 2a, 2b).

CBP currently uses approximately 1,100 miles of road within the region of analysis. This represents an estimated 17.5 percent of all local roads within the area, although the exact number of miles of roads used within Arizona could change over time to accommodate CBP needs. Approximately 500 miles (8 percent) of local roadways within 25 miles of the U.S./Mexico international border in Arizona are covered under this BO. These roads have not been subject to previous NEPA analysis or waived from analysis. The remaining 600 miles of roads used by CBP are not covered under the BO because CBP does not have rights to maintain them, they are covered under previous NEPA analysis and/or section 7 consultations, or they have been waived from analysis. Major changes to roadway networks and major upgrades to existing roadways (i.e., paving of previously unpaved roads or widening of existing roads) would require separate consultation under section 7 of the ESA.

A total of 124 miles of non-waived roads within the designated jaguar critical habitat are proposed to be maintained under the TIMR program. A total of 130 miles of non-waived roads within northern Mexican gartersnake proposed critical habitat are proposed to be maintained under the TIMR program. A total of 7 miles of non-waived roads within yellow-billed cuckoo proposed critical habitat are proposed to be maintained under the TIMR program. In the 2012 biological opinion, about 100 miles of roads were to be maintained within the range of the endangered Sonoran pronghorn; under the current action, this number is increased to 110 miles of roads.
Mr. Paul Enriquez

In the 2012 TIMR Biological Opinion, an estimated 250 low water crossings were to be maintained and repaired. Under the current action, 500 low water crossings will be maintained and repaired as part of the statewide TIMR program. In any given year, a much smaller number of low water crossings will actually be maintained, as many crossings do not require annual maintenance. As described in more detail under the description of project component #2, a total of 65 low water crossings will be maintained within the range of the endangered Sonoran pronghorn (the 2012 TIMR Biological Opinion included 15 low water crossings).

Best Management Practices

All best management practices included in the 2012 TIMR Biological Opinion will continue to be implemented. Some have been revised or added to reflect best management practices (BMPs) suitable for newly listed species. These are included below.

Geology and Soil Resources

1. Silt fencing and floating silt curtains should be installed and maintained to prevent movement of soil and sediment and to minimize turbidity increases in water. Wherever silt fences or floating silt curtains are used in gartersnake proposed critical habitat, mesh sizes should be less than or equal to .25", preferably 1/8" or less to avoid snake entanglement hazards which are becoming increasingly common, as reflected in the literature.

The remaining BMPs under this section (#s 2-4) remain unchanged.

Wildlife

4. Minimize animal collisions during maintenance and repair activities by not exceeding speed limits of 35 miles per hour (mph) on major unpaved roads (i.e., graded with ditches on both sides) and 25 mph on all other unpaved roads. During periods of decreased visibility (e.g., night, poor weather, curves), do not exceed speeds of 25 mph. Speed limits should not exceed 20 mph within gartersnake proposed critical habitat (snakes, especially small snakes are extremely difficult to see while driving, even at slow speeds).

6. To prevent entrapment of wildlife species, ensure excavated, steep-walled holes or trenches are either completely covered by plywood or metal caps at the close of each work day or provided with one or more escape ramps (at no greater than 1,000-foot intervals and sloped less than 45 degrees) constructed of earth fill or wooden planks. Within proposed critical habitat for the northern Mexican gartersnake, because plywood covers will not prevent snake from falling into trenches, escape ramps should be spaced at 100-foot intervals.

7. Each morning before the start of maintenance activities and before such holes or
trenches are filled, ensure they are thoroughly inspected for trapped animals. Ensure that any animals discovered are allowed to escape voluntarily (by escape ramps or temporary structures), without harassment, before maintenance activities resume; or are removed from the trench or hole by a qualified person and allowed to escape unimpeded. Within proposed critical habitat for the northern Mexican gartersnake, inspections should occur at morning, mid-day, and prior to daily work stop to ensure entrapped snakes do not die from prolonged exposure.

The remaining BMPs under this section (#s 1-3, 5) remain unchanged.

Threatened and Endangered Species and Other Protected Species

Species-Specific BMPs

Northern Mexican Gartersnake

1. No in-water work will occur within streams or other waterbodies with known occurrences of northern Mexican gartersnakes or critical habitat\(^1\) without further consultation with the FWS.

Chiricahua Leopard Frog

1. During the mid-to late part of the active season of the species (May through October), Chiricahua leopard frog monitoring will be conducted by a qualified biologist within designated critical habitat or other locations where this species might occur and within dispersal range of these sites (one mile overland of critical habitat or other locations where this species might occur, 3 miles of that habitat along ephemeral drainages in that habitat, and 5 miles of that habitat along perennial streams in that habitat) immediately prior to and during ground-disturbing maintenance activities and use of heavy equipment. If a Chiricahua leopard frog is found in the project area and is in danger of being harmed (e.g. in the path of vehicles or foot traffic), work will cease in the area of the frog until either the qualified biological monitor can safely move the individual to a nearby location in accordance with FWS Endangered Species Permit requirements, or it moves away on its own.

2. To minimize frog mortality, in-water work within occupied and critical habitat of the species will occur in the early part of the active season, prior to the monsoon (March through May) (active season for this species is March through October) so that frogs can escape to the best of their ability. (This BMP may conflict with Sonoran tiger

\(^1\) As of June 2016, critical habitat for the northern Mexican gartersnake is proposed and therefore this BMP applies to proposed critical habitat. However, once critical habitat is designated, this BMP will apply to designated critical habitat.
Mr. Paul Enriquez

salamander BMP #2. In areas where there is overlap between Sonoran tiger salamander and Chiricahua leopard frog ranges, CBP will base TIMR Program activity implementation on the species most likely to occur in the area and on the potential for effects to either species. Currently, as of June 2016, the only location where the two species overlap is Peterson Ranch Pond in Scotia Canyon. In addition, maintenance will be designed and implemented so that the hydrology of streams, ponds, and other habitat is not altered.

4. To prevent the spread of amphibian diseases among drainages via water or mud on maintenance vehicles and equipment, all maintenance work within Chiricahua leopard frog critical habitat or any potentially occupied habitat, shall conform to amphibian disease prevention protocols as described in the Recovery Plan for the Chiricahua leopard frog. Equipment would either be disinfected between uses at different sites or rinsed and air dried.

Chiricahua leopard frog BMPs 3 and 5-8 remain unchanged.

New Mexico Ridge-nosed Rattlesnake

1. Maintenance vehicles will not exceed a speed of 15 to 20 mph during periods of elevated roaming and foraging activities from July through August within New Mexico ridge-nosed rattlesnake habitat (i.e., pine-oak woodlands at elevations above 5,000 feet). In the U.S., the species only occurs in the Peloncillo and Animas Mountains. Because the Animas Mountains are privately owned, this BMP only applies to habitat in the Peloncillos.

Birds: Masked bobwhite, Mexican spotted owl, Southwestern willow flycatcher, Yuma clapper rail, and Yellow-billed cuckoo.

1. No maintenance and repair activities will be conducted within areas classified as protected activity centers of Mexican spotted owls during the nesting season.

2. CBP will avoid TIMR activities during the yellow-billed cuckoo migration/nesting season in Arizona, May 15 - September 30, in suitable yellow-billed cuckoo habitat. If emergency TIMR activities must occur during the migration/nesting season, see BMP #4 below.

3. Vegetation control in suitable habitat of threatened or endangered bird species (see Table 1 for a description of suitable habitat and nesting season for each species) will be limited to the minimum necessary to maintain drivable access roads and to maintain the functionality of other tactical infrastructure. This limited vegetation control will be conducted outside of the nesting season (see Table 1). With the exception of yellow-billed cuckoo, this restriction does not apply to areas where protocol surveys have been
conducted and it has been determined that the area is not occupied and does not contain primary constituent elements (PCEs).

4. For all other maintenance activities to be conducted within suitable habitat of a threatened or endangered bird species during the nesting season (see Table 1), the following avoidance measures will apply. A qualified biologist will conduct a survey for threatened and endangered birds prior to initiating maintenance activities. If a threatened or endangered bird is present, a qualified biologist will survey for nests approximately once per week within 1,300 feet (Mexican spotted owl) or 500 feet (all other species, except for yellow-billed cuckoos) of the maintenance area for the duration of the activity. If an active nest is found, no maintenance will be conducted within 1,300 feet (Mexican spotted owl) or 300 feet (all other species, except for yellow-billed cuckoos) of the nest until the young have fledged. For yellow-billed cuckoos, surveys must be conducted within one week of the scheduled maintenance because cuckoos can move into habitat throughout the breeding season. If cuckoos are found within 1,300 feet of proposed maintenance activities, no work will be conducted.

Sonoran Pronghorn

2. During maintenance activities, if a Sonoran pronghorn is observed by a maintenance crew upon arrival at the work site and within 1 mile of the work site, delay beginning use of heavy mobile equipment (road grader, dump trucks, etc) until the animal(s) moves greater than one mile from the work site. Adhere to speed limits of 25 miles per hour or less for all project vehicles. If, however, pronghorn are detected along or near the access roads or roads to be maintained, vehicles will slow to 5 to 15 mph until they are a safe distance from the pronghorn (a safe distance is generally considered one at which pronghorn are not at risk of being struck by a vehicle and fleeing from a vehicle).

Sonoran pronghorn BMPs 1 and 3 remain unchanged.

Acuna cactus

1. Within or adjacent to acuña cactus critical habitat, to minimize fugitive dust generation, monitor dust during construction and conduct abatement of fugitive dust when there is a visible plume of dust extending more than 30 feet from the dust source. Abatement would include reducing travel speeds and/or applying dust suppressants, such as water.

All other species-specific BMPs remain unchanged.

Conservation Measures

All conservation measures included in the 2012 TIMR Biological Opinion will continue to be implemented.
Mr. Paul Enriquez

CBP will continue to provide an annual report to FWS within three months of the end of the calendar year for all TIMR activities that took place within the range of listed species. The report will include the Conservation Measures and Best Management Practices that were implemented, any federally-listed species observed at or near project sites, any monitoring of endangered species for which the biological opinion determines there will be an adverse effect, and any take as outlined within the incidental take statements below. CBP and the FWS Arizona Ecological Services Office will meet annually either in person or via teleconference to discuss this report.

Description of Project Component #2 (proposed additions within OPCNM):

As stated above, the description of the proposed action to address this project component is included in CBP’s March 9, 2015 letter, and is described below. CBP proposes to improve 29.04 miles of road within OPCNM, including the 15.55 mile long Pozo Nuevo Road and the 13.49 mile long Bates Well Road (improvements to Bates Well Road are limited to low water crossings only) (Figure 3). Because the proposed improvements are beyond the scope of work addressed in the 2012 Biological Opinion, they are included in this reinitiation of formal consultation.

Improvements to Pozo Nuevo and Bates Well roads will likely be executed in phases over several years subject to the availability of funding. OPCNM will conduct the work and each phase may roughly last several months. Standard vehicles and heavy equipment will be used for the project, including water trucks, road graders, and dump trucks.

Pozo Nuevo Road Improvements:

The condition of the 15.55 mile long Pozo Nuevo Road is poor to very bad, and it is currently the most degraded of all the roads proposed for improvement within OPCNM. The entire length of the Pozo Nuevo Road is open to the public. Improvements of the Pozo Nuevo Road are split into three segments, as described below.

Segment 1: From the intersection of Pozo Nuevo Road with the border road to the foot of the junction of the Quitobaquito Hills and Cipriano Hills, the road is incised up to 2 feet and approximately 14 feet wide. A significant portion of this road segment is located within the Aguajita Wash. Elsewhere in this segment there is severe wash-boarding.

Segment 2: From the junction of the Quitobaquito Hills and Cipriano Hills north to the foothills of the Bates Mountains the road is rough, narrow, and rocky. The road width is typically 12 feet wide, with short sections as narrow as 8 feet wide.

Segment 3: From the foothills of the Bates Mountains north to the intersection with Bates Well Road, the road is approximately 12 feet wide with severe washboard and pothole conditions.
Mr. Paul Enriquez

For all segments, the existing, disturbed road footprint will be used during the project and the project will not result in any expansion in the length or width of roads. Additionally, no road realignment is proposed. Along the roadway, potholes will be filled, road surfaces will be compacted (as required), and improved water drainage measures will be installed. These water-drainage measures will include restoring the natural contour by infilling down-cut roads and grading the road to ensure it properly sheds water and reestablishes natural sheet flow across the road. The improvement methods used in the project will be similar in nature to the methods currently used for road maintenance and repairs within OPCNM.

Of the 53 wash (low water) crossings on Pozo Nuevo Road, 24 wash crossings meet the threshold standard for improvement. CBP proposes to improve these wash (low water) crossings via a combination of articulated concrete mat and poured concrete. The matting will be bordered by rip rap on the upstream and downstream sides to ensure the mat is retained in place during flood flows and to protect it from scour and erosion. This rip rap will extend several feet from the edge of the road.

To provide a safe driving environment for CBP and the general public, pull-offs are required at regular intervals (several pull-offs per mile). To minimize new disturbance, all pull-offs will be strategically located within previously disturbed areas. Staging areas and construction turn-arounds, approximately 50-foot in diameter, will be identified in coordination with the National Park Service (NPS) and will be located in previously impacted sites.

Bates Well Road Improvements:

The Bates Well Road within OPCNM is 13.49 miles in length and its condition is fair to poor. It is a public road used for both tower access and border patrol operations, and is the access road that will be used during improvements to Pozo Nuevo. Along Bates Well Road, CBP proposes to improve low water crossings. Of the 35 low water crossings along Bates Well Road, 20 low water crossings meet the threshold standard for improvement. These low water crossings will be improved using the same methods described for Pozo Nuevo Road. Standard maintenance and repair along the road will be conducted in accordance with the existing 2012 TIMR Biological Opinion.

Please note while 44 low water crossings (24 on Pozo Nuevo and 20 on Bates Well) are currently identified for improvement, a maximum total of 50 low water crossings may be improved on these roads. Once improved, these new low water crossings will be maintained under TIMR. Under the 2012 TIMR Biological Opinion, 15 low water crossings were to be maintained within the range of the endangered Sonoran pronghorn. Therefore, with the addition of a maximum of 50 additional crossings, a total of 65 low water crossings will be maintained under TIMR within the range of the endangered Sonoran pronghorn.

Conservation Measures:
In addition to all the conservation measures included in the TIMR Biological Opinion, the following additional conservation measures will be implemented to minimize the effects of the proposed project on Sonoran pronghorn:

3. The number of vehicle trips per day will be minimized to reduce the likelihood of disturbing Sonoran pronghorn along the route. Vehicle convoys, multi-passenger vehicles, and other methods will be used to reduce the number of vehicle trips needed.

4. Speed limits of 25 miles per hour or less for all project vehicles will be adhered to. If, however, pronghorn are detected along or near the access roads or roads to be improved, vehicles will slow to 5 to 15 mph until they are a safe distance from the pronghorn (a safe distance is generally considered one at which pronghorn are not at risk of being struck by a vehicle or fleeing from a vehicle).

5. During road improvement activities, if a Sonoran pronghorn is observed within 1 mile of the activity, any work that could disturb the animal will cease.

6. All motorized equipment will possess properly working mufflers and will be kept properly tuned to reduce backfires. All motorized generators will be in baffle boxes (a sound-resistant box that is placed over or around a generator), will have an attached muffler, or will use other noise-abatement methods in accordance with industry standards.

7. Generally, no improvement activities will occur during the fawning season (March 15 to July 31) within suitable Sonoran pronghorn habitat within the range of this species. However, some flexibility with these dates is possible, depending on forage conditions. If CBP determines that improvement activities are needed in these areas during the fawning season, exceptions to working during the fawning season may be granted through coordination with the FWS and other the relevant Federal land managers, depending on forage conditions.

8. Any fill materials used on site will be certified weed-free.

9. A program to control invasive species will be implemented following construction.

Description of Project Component #3 (expansion of TIMR to the TON):

CBP proposes to expand the TIMR program to include maintenance and repair of 220 miles of existing roads on the TON (Figure 4); however, the number of miles of roads and locations of roads to be maintained within the TON may change over time in response to changing border security considerations. If possible future project changes may affect listed species or critical habitat in a manner or to an extent not considered in this consultation, CBP will reinitiate consultation per 50 CFR 402.16 (see the Reinitiation Notice at the end of this biological
The proposed program, including all best management practices and conservation measures, will be the same as the road maintenance and repair program described in the Biological Assessment Addressing Proposed Tactical Infrastructure Maintenance and Repair Along the U.S./Mexico International Border in Arizona (CBP, April 2012) and resulting 2012 Biological Opinion. Additionally, Best Management Practice #1 for yellow-billed cuckoos added above in the Project Component #1, will also be implemented as part of the proposed expansion of TIMR to the TON; and road maintenance and repair activities will occur only during daylight hours.

ACTION AREA

No changes (see Figures 2a and 2b for maps of the action area provided by CBP in their 2012 biological assessment for TIMR), with the exception of the additions of Pozo Nuevo and Bates Well roads on OPCNM (Figure 3) and the addition of TIMR on the TON (Figure 4).

STATUS OF THE SPECIES - SONORAN PRONGHORN

Herein we update specific paragraphs of some sections of the 2012 Biological Opinion relating to the status and baseline of the Sonoran pronghorn. Paragraphs not revised herein remain as presented in the 2012 Biological Opinion.

Description, Legal Status, and Recovery Planning

The Sonoran subspecies of pronghorn was first described by Goldman (1945) and is the smallest of the four subspecies of pronghorn (Nowak and Paradiso 1983, Brown and Ockenfels 2007). The subspecies was listed throughout its range as endangered on March 11, 1967 (32 FR 4001) under the Endangered Species Preservation Act of October 15, 1966 without critical habitat. Five populations (three in the U.S. and two in Mexico) of the Sonoran pronghorn are extant: 1) a population in southwestern Arizona on CPNWR, OPCNM, Bureau of Land Management (BLM) – Ajo Block, and BMGR (endangered population; known as the “Cabeza” population), 2) a population in southwestern Arizona on Kofa NWR, YPG, and surrounding areas (nonessential experimental 10(j) population; known as the “Kofa population”) (established in 2013), 3) a population in southwestern Arizona on BMGR-East, east of Highway 85 (nonessential experimental 10(j) population; known as the “Sauceda” population) (initiated in December 2015); 4) a population in the Pinacate Region of northwestern Sonora (known as the “Pinacate” population), and 5) a population on the Gulf of California west and north of Caborca, Sonora (known as the “Quitovac” population (see Figures 5 and 6). The five populations are predominantly geographically isolated due to barriers such as roads and fences; however, some animals have crossed highways. In 2014 in Arizona, several individuals (from the endangered Cabeza population) crossed Highway 85 and spent some time on the east side of OPCNM within the nonessential essential experimental range of the species. Although animals that cross Highway 85 into the eastern portion of OPCNM (i.e., within the nonessential experimental boundary) are biologically considered part of the endangered population in...
Mr. Paul Enriquez

Arizona, for section 7 purposes they are treated as part of the nonessential experimental population (USFWS 2011). Additionally, two bucks released in Saucedo unit in December 2015, crossed Highway 85 to the west into the Cabeza unit.

The FWS and the Sonoran Pronghorn Recovery Team recently revised the Sonoran Pronghorn Recovery Plan. The revised plan addresses Sonoran pronghorn populations both in Mexico and the U.S. and will be finalized in 2016.

Life History and Habitat

No changes.

Distribution and Abundance

United States

Endangered Wild Population

The December 2012 and 2014 aerial surveys resulted in an estimated 159 and 202 Sonoran pronghorn in the endangered U.S. population, respectively (Table 2).

10(j) Wild Population

A final Environmental Assessment and final 10(j) rule (USFWS 2011) were published in April and May, 2011, respectively, to establish a nonessential experimental population of Sonoran pronghorn in Arizona. See Figure 6 for a map of 10(j) Nonessential Experimental Population area for Sonoran pronghorn in southwestern Arizona. In 2013, the first wild population was established under the 10(j) rule on Kofa NWR with captive-bred animals from CPNWR. The population continues to be augmented with captive bred animals and additionally, fawns have been born in the wild population. As of January 2016, there are an estimated 70 animals in the 10(j) population on and near Kofa NWR.

To establish a third population in Arizona, in December 2015, 26 Sonoran pronghorn were released on BMGR East, east of Highway 85, under the 10(j) rule.

Semi-captive Breeding Facilities

CPNWR

As part of a comprehensive emergency recovery program, a total of 11 adult pronghorn (10 females and one male) were initially captured (from Sonora and Arizona) and placed into a semi-captive breeding pen at CPNWR in 2004. The breeding program has been very successful and as of January 2016 there were 48 pronghorn in the enclosure at CPNWR (note this number changes frequently with births and releases). Since establishing the program, a number of
pronghorn have died in the pen due to various causes, including epizootic hemorrhagic disease, malnutrition (prior to the introduction of alfalfa hay in the pen), bobcat predation, entanglement in the fence, and capture operations. Sonoran pronghorn have been released from the pen every year since 2006, many into the endangered population and others to establish the two nonessential experimental populations.

The objective is to produce at least 20 fawns each year to be released into the endangered U.S. population; supplement 10(j) populations at Kofa NWR and BMGR East, east of Highway 85; and establish any additional populations needed for pronghorn recovery.

Kofa NWR

In December 2011, 13 Sonoran pronghorn were moved from the CPNWR breeding pen to the newly built breeding pen in the King Valley on Kofa NWR to initiate the breeding program on the refuge. As with the CPNWR pen, the Kofa breeding program has been successful and produced pronghorn for release into the wild. As of January 2016, the Kofa pen contains 29 pronghorn (note this number changes frequently with births and releases).

Mexico

In December 2013, surveys could not be conducted for the Sonoran pronghorn population west Mexico Highway 8 (Pinacate population) due to aircraft shortage; however, surveys of the population in the area southeast of Mexico Highway 8 (Quitovac population) indicated pronghorn numbers increased since 2011, with an estimated 2013 total of 434 (372 observed) (Table 2). The December 2014 aerial surveys resulted in an estimated 122 in the area west of Mexico Highway 8 (Pinacate population) (Table 2). The November 2015 aerial surveys resulted in an estimated 979 (845 observed) individuals combined for both populations (including 862 pronghorn [749 observed] in the area southeast of Mexico Highway 8 known or the Quitovac population and 117 [96 observed] to the west of the highway or the Pinacate population) (Table 2).

Threats

Barriers that Limit Distribution and Movement

Since 2008, canals have been the cause of seven pronghorn deaths, including four from the Cabeza Prieta population and three from the Kofa population, all of which were pen-raised. Of the Cabeza Prieta population, three bucks drowned in the Palomas Canal in 2008, and one doe drowned in the Wellton Canal in 2010. Of the Kofa population, two bucks and one doe died as a result of the Wellton Mohawk Canal. More specifically, two of nine pronghorn released in January 2013 died due to canal-related incidents. One male was pulled out of the Wellton Mohawk Canal that runs from the SW to ENE between the southern Kofa boundary and
Mr. Paul Enriquez

Interstate 8 on May 16, 2013 and was found dead three days later nearby. Another dead buck was pulled out of the same canal 13.7 km (8.5 mi) east on May 17, 2013. A female was rescued alive from the Wellton Mohawk Canal on May 16, 2013 (along with the male that later died), and was rescued alive again from another canal near Texas Hill on June 20, 2013. She was later seen alive north of Dateland (Christa Weise, FWS, personal communication, 2013). On August 19, 2015, a dead Sonoran pronghorn doe was discovered floating by the Texas Hill 3.9 Pump lift gate of the Wellton Mohawk Canal.

Vehicular Collision with Sonoran Pronghorn

Although vehicle collisions with Sonoran pronghorn are rare, they have been documented. An adult male pronghorn was struck and killed by a vehicle near kilometer post 29 on Mexico Highway 8 in July of 1996 (U.S. Fish and Wildlife Service 2002). NPS records include a Sonoran pronghorn found dead just east of SR 85 along Ajo Mountain Drive in 1972. It was suspected to have been struck and killed by a vehicle (electronic mail from Tim Tibbits, OPCNM, September 1, 2011). In 2003/2004 John Hervert (AGFD) investigated a Sonoran pronghorn mortality found a few hundred feet from Interstate 8. It had a broken leg, and so vehicle collision was suspected. In 2013, a doe was found dead east of Tacna on private property; based on initial examination it appears she may have been hit by a vehicle along a high speed dirt road. A fawn was struck by a vehicle and killed on Highway 85 in April 2015.

Human-caused Disturbance

In more recent studies, staff at OPCNM (2013) documented that during their typical morning activity period (post-sunrise), pronghorn on OPCNM experienced some form of potential disturbance once every 4 hours 10 minutes (even though monitoring was only conducted for 3 hours after sunrise each day, the results were calculated by summing the total number of observation hours and dividing by the total number of disturbance events). Actual disturbance responses took place once every 6 hours 15 minutes. Potential disturbance events resulted in the pronghorn running, about once every 8 hours 20 minutes. Helicopter overflights took place once every 6 hours 15 minutes; one out of four overflights resulted in pronghorn running, and one in four resulted in vigilance (standing, alert, watching disturbance source). Vehicles approaching within one mile occurred once every 12 hours 30 minutes. Half of these resulted in pronghorn running, but for the other half, the driver was contacted by radio and advised to drive slowly (<10 mph) past the observation area. These observations only represent pronghorn and human activity in the first 3 hours after sunrise, in a specific area of OPCNM. Types and intensities of activities likely vary through the 24-hour cycle, and across the landscape. These observations led to speculation that the levels of illegal border-related traffic in the area, and interdiction efforts, may have been sufficient to inhibit use of the area and 3-Jack Water Tank by Sonoran pronghorn.

Preliminary information from an ongoing study on the effects of human disturbance on Sonoran pronghorn indicates that pronghorn consistently exhibit visual responses to human activity,
Mr. Paul Enriquez

particularly vehicles traveling on a road within several kilometers. Although some instances
have been noted where a pronghorn did not exhibit a visual response (for example, one buck
did not appear disturbed by three vehicles driving at least 25 miles per hour about 1.5
kilometers away); most observations indicate that pronghorn exhibit a spectrum of responses,
from standing vigilant to running from the stimulus. For example, eight Sonoran pronghorn
were observed running a short distance and then vigilant towards utility vehicle noise 3.4
kilometers away. Another eight Sonoran pronghorn were observed running from several trucks
traveling fast (> 25 mph). Pronghorn were initially vigilant when the vehicles were 1.3
kilometers away but soon started running, travelling over 3.6 kilometers in under five minutes
until they were out of sight of the observers (email from Stephanie Doerries, University of
Arizona, May 7, 2014).

Habitat Disturbance

A mapping effort conducted by OPCNM documented the following number of miles of
unauthorized vehicle routes on each land management unit from 2008 to 2010: 7876.2 on
CPNWR, 1209.8 on OPCNM, and 240.9 on the BLM Ajo Block. Unauthorized route creation
continues to occur on all three of these important pronghorn areas. The proliferation of
unauthorized vehicle routes is a major impact on multiple resources, and provides an index of
the level of human activity currently taking place in pronghorn habitat. A cooperative effort
was completed recently by CBP, USFWS, NPS, and BLM to map and mark roads within the
range of the Sonoran pronghorn to indicate those roads that are open for use by these agencies,
and roads that are closed to vehicle traffic.

Fire

No changes.

Drought and Climate Change

No changes.

Disease

No changes.
ENVIRONMENTAL BASELINE – SONORAN PRONGHORN

Regulations implementing the Act (50 CFR § 402.02) define the environmental baseline as the past and present impacts of all Federal, state, or private actions in the action area; the anticipated impacts of all proposed Federal actions in the action area that have undergone formal or early section 7 consultation; and the impact of state and private actions which are contemporaneous with the consultation process. The environmental baseline defines the current status of the species and its habitat in the action area to provide a platform from which to assess the effects of the action now under consultation. The action area for the proposed action remains nearly the same as described in the 2012 biological opinion on TIMR and includes the area depicted in Figures 2a and 2b and the current range of the endangered pronghorn within the U.S. (Figure 5 – the endangered population range is depicted as the “Cabeza Prieta Range” in the figure).

Status of the Sonoran Pronghorn in the Action Area

Within the U.S. portion of the endangered Sonoran pronghorn’s range (i.e., Cabeza population), pronghorn interact to form one population in which interbreeding may occur. The Cabeza population is effectively separated from the Kofa, Sauceda, Pinacate, and Quitovac populations by various highways and interstates. Activities that may affect animals in any portion of the Cabeza population range may affect the size or structure of this population, or habitat use within the Cabeza range. Because of this, the entire Cabeza range of the Sonoran pronghorn is included in the action area for the TIMR Program.

Distribution, Abundance, and Life History

No changes.

Drought

From 2003 to 2016, rainfall and Sonoran pronghorn range conditions have varied, but have improved overall when compared to 2002. The March 2016 short-term drought status map indicates that southwestern Arizona is experiencing conditions of moderate drought and the January 2016 long-term drought status map indicates that southwestern Arizona is experiencing conditions of no drought to abnormally dry conditions (http://www.azwater.gov/azdwr/StatewidePlanning/drought/DroughtStatus2.htm).

Recovery Actions

A number of critically important recovery projects have been implemented in an attempt to reverse the decline of the U.S. endangered population of the Sonoran pronghorn. Many of these projects are designed to increase availability of green forage and water during dry periods and

2 The only change is that the range of the endangered Sonoran pronghorn population has been updated since 2012.
to offset to some extent the effects of drought and barriers that prevent pronghorn from accessing greenbelts and water, such as the Gila River and Río Sonoyta. As of 2016, 14 stand-alone developed waters and five waters associated with forage enhancement plots (three on Cabeza Prieta NWR and two on BMGR) have been developed for Sonoran pronghorn (within the range of the endangered U.S. population). Additionally, five forage enhancement plots, each consisting of a well, pump, pipelines and irrigation lines, have been developed to irrigate the desert and produce forage for pronghorn (within the range of the endangered U.S. population). As of September 2015, only two are operational due to normal wear and tear and vandalism by cross border violators (CBVs). Currently, there are also five supplemental feeding sites for Sonoran pronghorn within the range of the endangered U.S. population that are not associated with the pen.

Plots and waters located in areas with little human activity and better range conditions appear to be more effective (i.e., contribute to fawn and adult survival to a greater degree) than those located in areas of high human activity and poor range condition (i.e., experiencing drought) (personal communication with John Hervert, AGFD, September 16, 2009). Therefore, to ensure success of these measures, it is critical that human activity is avoided or significantly minimized near the plots and waters.

A semi-captive breeding pen at CPNWR was first stocked with pronghorn in 2004 and has successfully been producing pronghorn for release into the wild. Another semi-captive breeding pen at Kofa NWR was first stocked with animals in December 2011 and has also been successfully producing pronghorn for release.

These crucial projects, which are helping pull the U.S. population back from the brink of extinction, have been cooperative efforts among many agencies and organizations, including FWS, AGFD, MCAS-Yuma, LAFB, OPCNM, BLM, CBP, Arizona Desert Bighorn Sheep Society, Arizona Antelope Foundation, the Yuma Rod and Gun Club, the University of Arizona, the Los Angeles and Phoenix Zoos, and others.

Past and Ongoing Non-Federal Actions in the Action Area

No changes.

Past and Ongoing Federal Actions in the Action Area

Because of the extent of Federal lands in the action area, with the exception of CBV activities, most activities that currently, or have recently, affected the U.S. population or their habitat are Federal actions. The primary Federal agencies involved in activities in the action area include the MCAS-Yuma, Luke Air Force Base, FWS, BLM, OPCNM, and USBP. In the following discussion, we have categorized Federal actions affecting the pronghorn as: 1) those actions that have not yet undergone section 7 consultation (although in some cases consultation has
Mr. Paul Enriquez

been completed on components of the Federal activity), and 2) Federal actions that have undergone consultation.

Federal Actions For Which Consultation Has Not Been Completed

Examples of Federal actions for which consultation has not been completed include:
1) U.S. Border Patrol Activities in the Tucson and Yuma Sectors, Arizona
2) CBP Hybrid Fence on BMGR and Vehicle Fence on CPNWR
3) CBP Vehicle Fence on CPNWR (another small portion of the fence)

Federal Actions Addressed in Section 7 Consultations

As part of our discussion of all past and present actions affecting pronghorn within the action area, we list below all biological opinions issued to date on actions that may affect the pronghorn; we also explain any incidental take associated with the opinions. All of these formal consultations can be viewed on our website at http://www.fws.gov/arizonaes/Biological.htm.

1. Capture and collaring of pronghorn for research purposes, consultation number 02-21-83-F-0026. No incidental take was anticipated.
2. Capture and collaring of pronghorn for research purposes, consultation number 02-21-88-F-00060. No incidental take was anticipated.
3. Installation of a water source in the Mohawk Valley for pronghorn, consultation number 02-21-88-F-0081. No incidental take was anticipated.
4. Implementation of the CPNWR Comprehensive Conservation Plan, consultation number 22410-2006-F-0416, with reinitiations issued on November 21, 2013 and March 14, 2014. No incidental take was anticipated.
5. Change in aircraft type from the F-15A/B to the F-15E on BMGR-East [F-15E Beddown Project], consultation number 02-21-89-F-0008. Incidental take was anticipated only for the Beddown Project in the form of harassment as a result of aircraft overflights. This project was later incorporated into the biological opinion on Luke Air Force Base’s activities on the BMGR, listed below.
6. Widening of North Puerto Blanco Road, consultation number 02-21-01-F-0109, with a reinitiation issued on March 14, 2014. No incidental take was anticipated.
7. Improvements to SR 85 roadway and drainages, consultation 02-21-01-F-0546. No incidental take was anticipated.
8. Construction of a vehicle barrier on OPCNM, consultation number 02-21-02-F-237. No incidental take was anticipated.
9. U.S. Border Patrol Activities in the Yuma Sector, Wellton Station, Yuma, Arizona, consultation number 02-21-96-F-0334, issued September 5, 2000. Incidental take was anticipated in the form of harassment that is likely to injure up to one pronghorn in 10 years.
10. The BLM Lower Gila South Resource Management Plan-Goldwater Amendment, consultation number 02-21-90-F-0042, issued April 25, 1990. No incidental take was anticipated.

11. The BLM Lower Gila South Habitat Management Plan, consultation number 02-21-89-F-0213 issued on May 15, 1990. No incidental take was anticipated.

12. BLM Lower Gila South Resource Management Plan and Amendment, consultation number 02-21-85-F-0069, issued on March 27, 1998. No incidental take was anticipated.

15. U.S. Marine Corps Air Station-Yuma in the Arizona Portion of the Yuma Training Range Complex (Barry M. Goldwater Range West), consultation number 02-21-95-F-0114, issued on April 17, 1996, with reinitiations issued on November 16, 2001, August 6, 2003, October 21, 2009, and November 3, 2015. In the 2003 and 2009 versions of the biological opinion, no incidental take of pronghorn was anticipated. In the 2015 opinion, we anticipated take of one Sonoran pronghorn every 10 years in the form of direct mortality or injury and one pronghorn every 7 years in the form of harassment.

16. Luke Air Force Base Use of Ground-Surface and Airspace for Military Training on the BMGR, consultation number 02-21-96-F-0094, issued August 27, 1997, with reinitiations issued on November 16, 2001, August 6, 2003, May 3, 2010, and March 2014. In 2010 opinion, we anticipated take of one wild Sonoran pronghorn every 10 years, one pen-raised (free ranging) female pronghorn every 10 years, and four pen-raised (free ranging) male pronghorn every 10 years in the form of direct mortality or injury; and one wild Sonoran pronghorn of either sex, one pen raised (free ranging female) every 10 years, and two pen-raised (free ranging) male pronghorn every 10 years in the form of harassment.

17. Western Army National Guard Aviation Training Site Expansion Project, consultation number 02-21-92-F-0227, issued on September 19, 1997; however, Sonoran pronghorn was not addressed in formal consultation until reinitiations and revised opinions dated November 16, 2001 and August 6, 2003. No incidental take was anticipated.

19. CBP and USBP Permanent Vehicle Barrier from Avenue C to OPCNM, Arizona, consultation number 22410-2006-F-0113, issued September 15, 2006. No incidental take was anticipated. Subsequent to issuing the biological opinion, the action was
changed to include the installation of a section of hybrid-style fence designed to prevent the passage of pedestrians. Because all environmental laws were waived (as permitted by the Real ID Act of 2005) by Secretary of the Department of Homeland Security, CBP never reinitiated consultation with us regarding this change to their proposed action.

20. CBP and USBP 5.2-Mile Primary Fence near Lukeville, Arizona, consultation number 22410-2008-F-0011, issued February 11, 2008. No incidental take was anticipated.

21. SBI.net Ajo-1 Tower Project, Ajo Area of Responsibility, USBP Tucson Sector, Arizona, consultation number 22410-F-2009-0089, issued December 10, 2009, with reinitiations issued on March 15, 2010, April 29, 2011, September 16, 2011, and December 15, 2011. We anticipated take of three Sonoran pronghorn due to harassment within the first year of towers becoming operational and two every 5 years thereafter; and one due to direct mortality over the life of the project.

22. Tactical Infrastructure Maintenance and Repair Program (TIMR) along the U.S./Mexico international border in Arizona, consultation number 02EAAZOO-2012-F-0170, issued on November 6, 2012. We anticipated incidental take of one Sonoran pronghorn every 10 years for the duration of the TIMR Program in the form of harassment; and one Sonoran pronghorn over the total duration of the TIMR Program in the form of direct mortality.

23. Land Mobile Radio Modernization for Tactical Communications at Buck Peak, Christmas Pass, Granite Mountain (CPNWR), and Cobre along the U.S./Mexico international border in Pima, Santa Cruz, and Yuma counties, Arizona, consultation number 02EAAZOO-2012-F-0200, issued April 23, 2013. No incidental take was anticipated.

24. Activities and Operations at the United States Army Garrison Yuma Proving Ground, Yuma and La Paz Counties, Arizona, consultation number 02EAAZ00-2014-F-0161, issued on September 9, 2014. We anticipated incidental take of four Sonoran pronghorn over the life of the project (10-20 years), including two in the form of direct mortality or injury and two in the form of harm.

25. Implementation of the Ecological Restoration Plan on Organ Pipe Cactus National Monument, Cabeza Prieta National Wildlife Refuge, and Bureau of Land Management Ajo Block, Pima County, Arizona, consultation number 02EAAZ00-2014-F-0538, issued on October 2, 2014, with a reinitiation issued on August 28, 2015. No incidental take was anticipated.

26. Granting of Wildlife and Sport Fish Restoration (WSFR) Program Funds to the Arizona Game and Fish Department to Implement Aspects of Sonoran Pronghorn Recovery, consultation number 02EAAZ00-2015-F-0045, issued on November 18, 2014. We anticipated incidental take of 26 Sonoran pronghorn over the life of project (5 years), including: 1) incidental take of a total of 20 pen-raised Sonoran pronghorn over the life of the project in the form of directly mortality or injury due to capture and release operations associated with the captive breeding pens; 2) incidental take of a total of 4 Sonoran pronghorn over the life of the project in the form of directly mortality or injury due to capture and release operations of wild pronghorn; and 3) incidental take of two wild Sonoran pronghorn over the life of the project in the form of harassment from
Mr. Paul Enriquez

project activities that disturb Sonoran pronghorn (e.g., surveys, monitoring, pen maintenance) and/or direct injury or mortality from collision with a vehicle associated with the project.

In summary, the current biological opinions that anticipate incidental take are:

1) the Yuma Sector opinion, in which we anticipated take in the form of harassment that is likely to injure up to one pronghorn in 10 years;

2) the Ajo 1 Tower opinion, in which we anticipated take of three Sonoran pronghorn due to harassment within the first year of towers becoming operational and two every 5 years thereafter; and one due to direct mortality over the life of the project;

3) the Luke Air Force Base Opinion, in which we anticipated take of one wild Sonoran pronghorn every 10 years, one pen-raised (free ranging) female pronghorn every 10 years, and four pen-raised (free ranging) male pronghorn every 10 years in the form of direct mortality or injury; and one wild Sonoran pronghorn of either sex, one pen raised (free ranging female) every 10 years, and two pen-raised (free ranging) male pronghorn every 10 years in the form of harassment;

4) the TIMR opinion, in which we anticipated take of one Sonoran pronghorn every 10 years for the duration of the TIMR Program in the form of harassment; and one Sonoran pronghorn over the total duration of the TIMR Program in the form of direct mortality;

5) the Yuma Proving Ground opinion, in which we anticipated take of four pronghorn in the form of direct mortality or injury and harm;

6) the WSFR opinion in which we anticipated take of 26 Sonoran pronghorn, including 20 pen-raised and 6 wild animals, over 5 years, and

7) the U.S. Marine Corps Air Station-Yuma opinion, in which we anticipated take of one Sonoran pronghorn every 10 years in the form of direct mortality or injury and one pronghorn every 7 years in the form of harassment.

With the exception of capture-related deaths (which were addressed in 10(a)(1)(A) recovery permits and the WSFR opinion), we are unaware of any confirmed incidental take in the form of direct mortality or injury resulting from the Federal actions described here (although a pronghorn may have been strafed near one of the targets on BMGR-East). That said, we are aware of numerous instances of harassment of Sonoran pronghorn. A study currently being conducted on the effects of human activity will provide details on the origin, amount, and degree of this harassment. Additionally, action agencies, as part of their proposed actions, have committed to implementing or providing funding to implement a variety of recovery projects recommended by the Sonoran Pronghorn Recovery Team. For example, these significant
commitments have helped the Team to construct pronghorn waters and forage enhancement plots, build a captive breeding pen at Kofa NWR, collar and monitor pronghorn.

Summary of Activities Affecting Sonoran Pronghorn in the Action Area

The Cabeza population is isolated from other populations by highways and interstates, and access to the greenbelts of the Gila River and Río Sonoyta, which likely were important sources of water and forage during drought periods, has been severed. Since 2002, due to improved drought status and implementation of emergency recovery actions, the Cabeza population increased to 202 in 2014. At 202, however, the wild sub-population is still as risk due to, among other factors, human-caused impacts and drought.

Although major obstacles to recovery remain, since 2002, numerous crucial recovery actions have been implemented in the U.S. endangered range of the species, including pronghorn waters and forage enhancements plot. These projects help to offset the effects of drought and barriers that prevent movement of pronghorn to greenbelts such as the Gila River and Río Sonoyta. Semi-captive breeding facilities on CPNWR and Kofa NWR help provide pronghorn to augment the existing endangered population and establish and augment additional U.S. nonessential experimental (10(j)) populations. Additionally, vehicle barriers on the international border on CPNWR and OPCNM are facilitating recovery of pronghorn by reducing the amount of CBV vehicle traffic in pronghorn habitat.

The current range of the endangered pronghorn in the U.S. is almost entirely comprised of lands under Federal jurisdiction; thus, authorized activities that currently affect the pronghorn in the action area are almost all Federal actions. Action agencies have worked with us to include significant conservation measures that reduce and offset adverse effects to the pronghorn and its habitat. The current opinions that anticipate incidental take are listed above.

We believe the aggregate effects of limitations or barriers to movement of pronghorn and continuing stressors, including habitat degradation and disturbance within the pronghorn’s (endangered) current range resulting from a myriad of human activities, exacerbated by periodic dry seasons or years, are responsible for the precarious status of the Sonoran pronghorn. However, collaborative, multi-agency and multi-party efforts to develop forage enhancement plots and waters, reduce human disturbance of pronghorn and their habitat, combined with the success of the semi-captive breeding facilities at CPNWR and Kofa NWR and recently established 10(j) populations, provide hope that recovery of the Sonoran pronghorn in the U.S. is achievable. Key to achieving recovery in Arizona will be a reduction in human disturbance to pronghorn and their habitat caused by CBV and corresponding enforcement activities.

EFFECTS OF THE ACTION – SONORAN PRONGHORN

Effects of the action refer to the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated and interdependent with
that action that will be added to the environmental baseline. Interrelated actions are those that are part of a larger action and depend on the proposed action for their justification. Interdependent actions are those that have no independent utility apart from the action under consideration. Indirect effects are those that are caused by the proposed action and, are later in time, but are still reasonably certain to occur.

Only effects of project component #2 (proposed additions within OPCNM) are addressed below. Because the increased number (65) of low water crossings to be maintained and repaired is addressed under this project component, our effects analysis of the overall TIMR program on Sonoran Pronghorn remains the same as in the Biological Opinion on TIMR (#02EAAZOO-2012-F-0170, dated November 6, 2012). However, the Incidental Take Statement is updated below due to changes in the number of low water crossings proposed in the Sonoran pronghorn range. The number of roads to be maintained within the range of the endangered Sonoran pronghorn increased from about 100 miles (in the 2012 TIMR Biological Opinion) to about 110 miles under the current action; however, this estimated increase in the number of miles does not change our effects analysis or Incidental Take Statement.

Currently, Sonoran pronghorn occasionally occur on the TON; however, these individuals are part of the 10(j) population which is treated as a species proposed to be listed. Therefore consultation is not required for project effects to Sonoran pronghorn on the TON. That said, some BMPs for Sonoran pronghorn included in the TIMR biological opinion also apply to the TON, such as Sonoran pronghorn BMP #2.

Effects of Project Component #2 (proposed additions within OPCNM):

The Sonoran pronghorn is expected to be affected both directly and indirectly by the proposed action. Improvements to Pozo Nuevo and Bates Well Roads will result in the loss of a small amount of pronghorn habitat in the immediate vicinity of the 44 (possibly up to 50) low water crossings proposed for improvement. Additionally, short-term, direct adverse effects include disturbance of Sonoran pronghorn from noise and visual stimuli associated improvement activities and additional maintenance and repair activities associated with the increased number of low water crossings (15 low water crossings were to be maintained under the 2012 TIMR

3 From USFWS 2011 (Final rule for the establishment of a nonessential experimental population of Sonoran Pronghorn in southwestern Arizona): When nonessential experimental populations (NEP) are located outside a NWR or National Park Service unit, for the purposes of section 7 we treat the population as proposed for listing and only two provisions of section 7 apply—section 7(a)(1) and section 7(a)(4). In these instances, NEPs provide additional flexibility because Federal agencies are not required to consult with us under section 7(a)(2). Section 7(a)(4) requires Federal agencies to confer (rather than consult) with the USFWS on actions that are likely to jeopardize the continued existence of a species proposed to be listed. The results of a conference are in the form of conservation recommendations that are optional as the agencies carry out, fund, or authorize activities. Because the nonessential experimental population is, by definition, not essential to the continued existence of the species then the effects of proposed actions on the NEP will generally not rise to the level of jeopardizing the continued existence of the species. As a result, a formal conference will likely never be required for Sonoran pronghorn established within the nonessential experimental population area. Nonetheless, some agencies voluntarily confer with the Service on actions that may affect a proposed species.

24
Mr. Paul Enriquez

Biological Opinion; however, a total of 65 low water crossings will be maintained and repaired under the current action). There is also some potential for increased risk of collision with vehicles due to increased vehicle use during road improvement activities and increased ongoing maintenance of low water crossings. Long-term, indirect adverse effects to Sonoran pronghorn may include the introduction of nonnative species through project activities. Further, the road improvement projects should result in long-term, beneficial effects to pronghorn habitat by reducing erosion and improving water flow. Improvement and maintenance of low water crossings should also reduce off road impacts resulting from drivers attempting to avoid hydrated soils.

See the 2012 TIMR Biological Opinion for background on the effects of human disturbance on Sonoran pronghorn. In addition to the studies mentioned in that opinion, two more recent studies have assessed the effects of human activities on Sonoran pronghorn. As discussed in more detail in the Status of the Species, in a short-term observational study, OPCNM (2013) found that pronghorn disturbance responses took place every 6 hours 15 minutes on OPCNM. Preliminary information from an ongoing study on the effects of human activities on Sonoran pronghorn indicates that pronghorn exhibit a spectrum of responses, from standing vigilant to running from a stimulus (e.g. vehicles) (email from Stephanie Doerries, University of Arizona, May 7, 2014). Additionally, since the 2012 Biological Opinion, a pronghorn was struck and killed on Highway 85; another pronghorn was possibly struck by a vehicle along a high speed dirt road, however, the cause of death was never confirmed.

We anticipate that improvements to 50 low water crossings will result in a small number of recognized additional impacts to Sonoran pronghorn habitat, compared to that previously analyzed under TIMR. Additionally, work associated with improvements and maintenance of the crossings and improvements to Pozo Nuevo Road may result in somewhat increased risk of disturbance to and vehicle collision with Sonoran pronghorn, as compared to that analyzed in the 2012 TIMR Biological Opinion. The presence of repair crews and equipment, and their associated noise, could cause pronghorn to move away from an area temporarily or otherwise modify their behavior. Road improvements may take several months each year for several years. Therefore, while potential disturbance from maintenance activities will be intermittent over many years, potential disturbance from road improvements will be intermittent over several years. During times of significant drought, which occur about every 7 years within the Sonoran pronghorn range, we anticipate the effects of potential disturbance from TIMR activities will be more severe because Sonoran pronghorn are under much more physiological stress during times of drought than during periods of normal rainfall. Road improvements may result in increased vehicle travel speeds on Pozo Nuevo and Bates Well roads, which would increase the risk of collision with Sonoran pronghorn. However, 25 mile per hour speed limits, enforced by the National Park Service, should help deter potential speed violations.

See the 2012 Biological Opinion for a full analysis of the direct and indirect effects of habitat loss and degradation; disturbance to Sonoran pronghorn; potential for Sonoran pronghorn injury or mortality due to vehicle collisions; and effects of BMPs and conservation measures; this full
analysis remains unchanged. However, since the issuance of that opinion, the status of the species has improved. The endangered Arizona population (i.e., the Cabeza population) has increased from 85 to 202. While the population has still not met the recovery criteria in the 2015 Draft Recovery Plan for Sonoran Pronghorn (USFWS 2015), never-the-less, the population is increasing due to a combination of favorable range conditions and intensive management efforts (e.g., captive breeding, wildlife waters, forage enhancement plots). The increased population size of Sonoran pronghorn increases the chance of interaction with project activities resulting in a higher chance of disturbance to pronghorn. However, as discussed in the 2012 Biological Opinion, management actions such as wildlife waters, help buffer against some of the adverse physiological effects of disturbance.

Effects of Conservation Measures and Best Management Practices

No changes.

Changes in Pronghorn Status with the Proposed Action

The U.S. Sonoran pronghorn population increased from about 21 in 2002 to about 202 in 2014, and pronghorn use of OPCNM has increased. As the population increases, it is more likely that a pronghorn will be adversely affected by TIMR activities, particularly during times when they are stressed by lack of forage and water. Proposed project activities that elicit pronghorn response (such as fleeing behavior) or that lead to reduced use of preferred habitat could contribute to decreased physical condition of individual animals, which could result in increased mortality, particularly during times of drought. Five populations of Sonoran pronghorn exist throughout their range, including two in Mexico and three in Arizona. The smallest populations occur primarily within federally protected lands (in Sonora and Arizona). The largest population occurs primarily outside of protected lands in Mexico and consequently, is at greatest risk (i.e., authorities have much less of an ability to control activities that may harm pronghorn outside of federally-protected lands). The survival of all of these populations is critical to the survival of this species. However, because the largest population occurs outside of a protected area, ensuring the survival of the four populations within federally-protected areas, including the three in Arizona, is even more imperative.

Of these four populations, the three in Arizona, which comprise 23% of the total number of estimated wild pronghorn, are the only ones over which we have management authority. Additionally, critical recovery projects, including the captive breeding pen, forage enhancement plots, and pronghorn waters, are all located in Arizona (with the exception of a few wildlife waters at Pinacate that have not had documented use by pronghorn to this date). Therefore, although the majority (77%) of Sonoran pronghorn occur outside of the U.S. and will not be affected by the proposed action, because of the importance of the U.S. populations, particularly the endangered population (which comprises about 16% of the total number of wild pronghorn), it is critical that project impacts be minimized and offset to the greatest degree possible. Accordingly, as part of its proposed action, CBP will continue to implement or fund
Mr. Paul Enriquez

the implementation of BMPs and conservation measures that will avoid, minimize and offset the impacts of the proposed project and will help to ensure that these impacts do not significantly affect the reproduction, numbers, and distribution of Sonoran pronghorn in the wild in Arizona.

Implementing priority recovery actions for pronghorn, such as constructing and maintaining wildlife waters or forage enhancement plots, will help improve pronghorn fitness, which should help them better withstand the effects of drought and human disturbance.

CUMULATIVE EFFECTS – SONORAN PRONGHORN

No changes.

CONCLUSION – SONORAN PRONGHORN

No changes.

INCIDENTAL TAKE STATEMENT – SONORAN PRONGHORN

Section 9 of the Act and Federal regulation pursuant to section 4(d) of the Act prohibit the take of endangered and threatened species, respectively, without special exemption. “Take” is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. “Harm” is defined to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering (50 CFR 17.3). “Harass” is defined as intentional or negligent actions that create the likelihood of injury to listed species to such an extent as to significantly disrupt normal behavior patterns which include, but are not limited to, breeding, feeding or sheltering (50 CFR 17.3). “Incidental take” is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the Act provided that such taking is in compliance with the terms and conditions of this Incidental Take Statement.

The measures described below are non-discretionary, and must be undertaken by CBP so that they become binding conditions of any grant or permit issued to the any applicant, contractor, or permittee, as appropriate, for the exemption in section 7(o)(2) to apply. CBP has a continuing duty to regulate the activity covered by this incidental take statement. If CBP (1) fails to assume and implement the terms and conditions or (2) fails to require any applicant, contractor, or permittee to adhere to the terms and conditions of the incidental take statement through enforceable terms that are added to the contract, permit, or grant document, the protective coverage of section 7(o)(2) may lapse. In order to monitor the impact of incidental
Mr. Paul Enriquez

take, CBP must report the progress of the action and its impact on the species to the FWS as specified in the incidental take statement. [50 CFR '402.14(i)(3)].

AMOUNT OR EXTENT OF TAKE

Incidental take of the Sonoran pronghorn is reasonably certain to occur from the continued implementation of the TIMR Program. We anticipate incidental take of Sonoran pronghorn as a result of this proposed action in the form of harassment due to the effects of human disturbance associated with the project, and direct mortality or injury as a result of a collision with a CBP (or contract personnel) vehicle in the project area.

Specifically, incidental take of one Sonoran pronghorn every 7 years, from the time the TIMR Program is initiated for the duration of the TIMR Program, in the form of harassment is anticipated from the following activity:

- Disturbance of pronghorn due maintenance and repair activities in the form of vehicles, heavy equipment, and personnel which causes increased energetic stress and curtailment of access to crucial habitat components.

Additionally, incidental take of one pronghorn over the duration of the TIMR Program is also anticipated in the form of direct mortality from the following activity:

- CBP or contract personnel vehicle use in the action area that may result in a collision with, and injury or mortality of, a Sonoran pronghorn over the life of the TIMR Program.

We anticipate that incidental take in the form of harassment will be difficult to detect because the effects of harassment generally cannot be detected outside of a controlled research environment. For example, a doe that flees from a vehicle may temporarily abandon her fawn that is then depredated. However, detecting this death would be nearly impossible. Therefore, reporting requirements will allow us to assess the effects of TIMR activities. Incidental take will have been exceeded, triggering a requirement for reinitiation (50 CFR 402.16[c]) if:

1) During the life of the proposed action, more than one pronghorn is killed or injured due to a collision with a CBP or contract personnel’s vehicle, or

2) Based on the annual reporting and discussions with CBP on status of TIMR:

 a. The proposed action results in the loss or degradation of Sonoran pronghorn habitat within the action area beyond the area immediately adjacent to the existing footprint of tactical infrastructure described and covered in this BO. The Project Description indicates that TIMR activities will occur within or immediately adjacent to tactical infrastructure (2012 TIMR Biological
Mr. Paul Enriquez

Assessment, pages 4-20). These effects have been analyzed in this BO and the 2012 TIMR Biological Opinion. However, such actions occurring outside the area immediately adjacent to the existing footprint of the tactical infrastructure have not been evaluated, would likely result in take in the form of harassment, and would trigger the need to reinitiate this consultation; or

b. TIMR activities within suitable habitat within the range of the endangered Sonoran pronghorn that 1) exceed 150 miles of roads (110 miles are currently anticipated) and 70 low water points (59 [44 + 15] are currently anticipated) within the action area, 2) occur more than four times per year for each road segment or infrastructure facility, or 3) occur between March 15 and July 31 (Sonoran pronghorn fawning season). The Project Description indicates the level and timing of TIMR Program activities (2012 TIMR Biological Assessment, 4-22, A-10, C-16). The above numbers add a buffer of 40 road miles and 11 low water points to the proposed extent and number of project activities to allow some flexibility, and this extent of effects has been analyzed in this BO and the 2012 TIMR Biological Opinion. The effects of actions that exceed the number or timing described above represent potential effects and take of an extent that has not been analyzed and would thus trigger reinitiation of this consultation.

In summary, we anticipate incidental take of one Sonoran pronghorn every 7 years in the form of harassment and one Sonoran pronghorn over the duration of the program in the form of direct mortality as the result of implementation of the TIMR program.

EFFECT OF THE TAKE

In this biological opinion, the FWS determines that this level of anticipated take is not likely to result in jeopardy to the species. If there is a significant decline in the numbers of free-ranging pronghorn, the effects of this level of take may need to be reconsidered per the Reinitiation Statement below.

REASONABLE AND PRUDENT MEASURES AND TERMS AND CONDITIONS

A comprehensive suite of BMPs and conservation measures has been incorporated into the proposed action for the TIMR Program. These measures generally and specifically require CBP to reduce effects to the Sonoran pronghorn and its habitat. No additional reasonable and prudent measures are necessary to minimize incidental take.

If mortality or injury of Sonoran pronghorn is detected, the instructions provided below under “Disposition of Dead or Injured Listed Species” will be followed. In addition, CBP must report
Mr. Paul Enriquez

activities implemented under the TIMR Program, including the outcome of any monitoring, as well as any potential take of this species, in its annual report to FWS.

Review requirement: Because FWS has determined that no Reasonable and Prudent Measures or Terms and Condition are required beyond the measures outlined in the Proposed Action, it is imperative that CBP implement the BMPs and conservation measures described above and in the 2012 Biological Opinion, including the required monitoring and reporting. If, during the course of the proposed action, the level of incidental take is exceeded, such incidental take would represent new information requiring review of the proposed action, potentially through reinitiation of section 7 consultation as described below in the Reinitiation Notice. CBP must immediately provide and explanation of the causes of the taking and review with the AESO the need for possible inclusion of reasonable and prudent measures.

CONSERVATION RECOMMENDATIONS – SONORAN PRONGHORN

No changes.

STATUS OF THE SPECIES – NORTHERN MEXICAN GARTERSNAKE

Description, Legal Status, and Recovery Planning

The northern Mexican gartersnake, which reaches up to 44 inches total length, ranges in color from olive to olive-brown or olive-gray with three lighter-colored stripes that run the length of the body, the middle of which darkens towards the tail. It may occur with other native gartersnake species and can be difficult for people without specific expertise to identify because of its similarity of appearance to other native gartersnake species.

The Federal Register notice listing the northern Mexican gartersnake as threatened under the Act was published on July 8, 2014 (USFWS 2014). Please refer to this rule for more in-depth information on the ecology and threats to the species, including references. Critical habitat was proposed on July 10, 2013 (USFWS 2013) and has not yet been designated. We expect to publish a modified re-proposal for critical habitat and an accompanying Notice of Availability announcing the draft Environmental Assessment and draft Economic Analysis in 2016. Details on critical habitat are provided below. The final listing and proposed critical habitat rules are incorporated herein by reference. A recovery outline for the species is currently being developed.

Life History and Habitat

Sexual maturity in northern Mexican gartersnakes occurs at two years of age in males and at two to three years of age in females (Rosen and Schwalbe 1988). Northern Mexican gartersnakes are viviparous (bringing forth living young rather than eggs). Mating has been documented in April and May followed by the live birth of between 7 and 38 newborns in July.
Throughout its rangewide distribution, the northern Mexican gartersnake occurs at elevations from 130 to 8,497 ft (Rossman et al. 1996) and is considered a “terrestrial-aquatic generalist” by Drummond and Marcias-Garcia (1983). The northern Mexican gartersnake is often found in riparian habitat, but has also been found hiding under cover in grassland habitat up to a mile away from any surface water (Cogan 2015). The subspecies has historically been associated with three general habitat types: 1) source-area wetlands (e.g., Cienegas or stock tanks); 2) large-river riparian woodlands and forests; and 3) streamside gallery forests (Hendrickson and Minckley 1984, Rosen and Schwalbe 1988). Emmons and Nowak (2013) found this subspecies most commonly in protected backwaters, braided side channels and beaver ponds, isolated pools near the river mainstem, and edges of dense emergent vegetation that offered cover and foraging opportunities. In the northern-most part of its range, the northern Mexican gartersnake appears to be most active during July and August, followed by June and September.

The northern Mexican gartersnake is an active predator and is thought to heavily depend upon a native prey base (Rosen and Schwalbe 1988). Northern Mexican gartersnakes forage along vegetated streambanks, searching for prey in water and on land, using different strategies (Alfaro 2002). Primarily, its diet consists of amphibians and fishes, such as adult and larval (tadpoles) native leopard frogs, as well as juvenile and adult native fish (Rosen and Schwalbe 1988), but earthworms, leeches, lizards, and small mammals are also taken. In situations where native prey species are rare or absent, this snake’s diet may include nonnative species, including larval and juvenile bullfrogs, western mosquitofish (Holycross et al. 2006, Emmons and Nowak 2013), or other nonnative fishes. In northern Mexican gartersnake populations where the prey base is skewed heavily towards harmful nonnative species, recruitment of gartersnakes is often diminished or nearly absent.

Natural predators of the northern Mexican gartersnake may include birds of prey, other snakes, wading birds, mergansers, belted kingfishers, raccoons, skunks, and coyotes (Rosen and Schwalbe 1988, Brennan et al. 2009). Historically, large, highly predatory native fish species such as Colorado pikeminnow may have preyed upon northern Mexican gartersnakes where they co-occurred. Native chubs in their largest size class may also prey on neonatal gartersnakes, but has not been confirmed in the literature or through field observation.

Distribution and Abundance

The northern Mexican gartersnake historically occurred in every county and nearly every subbasin within Arizona, from several perennial or intermittent creeks, streams, and rivers as well as lentic wetlands such as Cienegas, ponds, or stock tanks (Rosen and Schwalbe 1988, Rosen et al. 2001; Holycross et al. 2006). In New Mexico, the gartersnake had a limited distribution that consisted of scattered locations throughout the Upper Gila River watershed in Grant and western Hidalgo Counties (Price 1980, Fitzgerald 1986, Degenhardt et al. 1996,
Mr. Paul Enriquez

Holycross et al. 2006). Within Mexico, northern Mexican gartersnakes historically occurred within the Sierra Madre Occidental and the Mexican Plateau, comprising approximately 85 percent of the total rangewide distribution of the subspecies (Rossman et al. 1996).

The only viable northern Mexican gartersnake populations in the United States where the subspecies remains reliably detected are all in Arizona: 1) The Page Springs and Bubbling Ponds State Fish Hatcheries along Oak Creek; 2) lower Tonto Creek; 3) the upper Santa Cruz River in the San Rafael Valley; 4) the Bill Williams River; and, 5) the middle/upper Verde River. In New Mexico and elsewhere in Arizona, the northern Mexican gartersnake may occur in extremely low population densities within its historical distribution; limited survey effort is inconclusive to determine extirpation of this highly secretive species. The status of the northern Mexican gartersnake on tribal lands, such as those owned by the White Mountain or San Carlos Apache Tribes, is poorly understood. Less is known about the current distribution of the northern Mexican gartersnake in Mexico due to limited surveys and limited access to information on survey efforts and field data from Mexico.

We have concluded that in as many as 23 of 33 known localities in the United States (70 percent), the northern Mexican gartersnake population is likely not viable and may exist at low population densities that could be threatened with extirpation or may already be extirpated. Only five populations of northern Mexican gartersnakes in the United States are considered likely viable where the species remains reliably detected. See Table 3 for a summary of the current population status for the northern Mexican gartersnakes in the U.S.

Threats

Harmful nonnative species are a significant concern in almost every northern Mexican gartersnake locality in the United States and the most significant reason for their decline. We consider harmful nonnative species to include, but not be limited to, fish in the families Centrarchidae and Ictaluridae, American bullfrogs (Lithobates catesbeiana), and any species of crayfish. Harmful nonnative species can contribute to starvation of gartersnake populations through competitive mechanisms, and may reduce or eliminate recruitment of young gartersnakes through predation. Other threats include alteration of rivers and streams from dams, diversions, flood-control projects, and groundwater pumping that change flow regimes, reduce or eliminate habitat, and favor harmful nonnative species; and effects from climate change and drought (U.S. Fish and Wildlife Service 2014).

Additionally, road construction, use, and maintenance could cause injury or death to individuals of this species. The section below (including the citations) describing how roads could affect the northern Mexican gartersnake is excerpted from U.S. Fish and Wildlife Service (2014).

“Roads can pose unique threats to herpetofauna, and specifically to species like the northern Mexican gartersnake, its prey base, and the habitat where it occurs. Roads fragment occupied habitat and can result in diminished genetic variability
Critical Habitat

Critical habitat for the northern Mexican gartersnake has been proposed in 14 units in portions of Arizona and New Mexico totaling 421,423 acres (Figure 7). See Table 4 for land ownership and size (in acres) for proposed critical habitat units for the northern Mexican gartersnake in the U.S. Within these areas, the primary constituent elements (PCEs) of the physical and biological features essential to northern Mexican gartersnake conservation are:

1. Aquatic or riparian habitat that includes:
Mr. Paul Enriquez

a. Perennial or spatially intermittent streams of low to moderate gradient that possess appropriate amounts of in-channel pools, off-channel pools, or backwater habitat, and that possess a natural, unregulated flow regime that allows for periodic flooding or, if flows are modified or regulated, a flow regime that allows for adequate river functions, such as flows capable of processing sediment loads; or

b. Lentic wetlands such as livestock tanks, springs, and Cienegas; and

c. Shoreline habitat with adequate organic and inorganic structural complexity to allow for thermoregulation, gestation, shelter, protection from predators, and foraging opportunities (e.g., boulders, rocks, organic debris such as downed trees or logs, debris jams, small mammal burrows, or leaf litter); and

d. Aquatic habitat with characteristics that support a native amphibian prey base, such as salinities less than 5 parts per thousand, pH greater than or equal to 5.6, and pollutants absent or minimally present at levels that do not affect survival of any age class of the gartersnake or the maintenance of prey populations.

2. Adequate terrestrial space (600 feet lateral extent to either side of bankfull stage) adjacent to designated stream systems with sufficient structural characteristics to support life-history functions such as gestation, immigration, emigration, and brumation.

3. A prey base consisting of viable populations of native amphibian and native fish species.

4. An absence of nonnative fish species of the families Centrarchidae and Ictaluridae, bullfrogs, and/or crayfish (*O. virilis, P. clarki*, etc.), or occurrence of these nonnative species at low enough levels such that recruitment of northern Mexican gartersnakes and maintenance of viable native fish or soft-rayed, nonnative fish populations (prey) is still occurring.

Conservation

Although a recovery plan for the northern Mexican gartersnake has not been developed, a number of conservation actions for the snake are ongoing. These include management actions to improve habitat and prey communities, as well as researching the efficacy of gartersnake translocations and captive propagation, head-starting, and release in meeting recovery objectives.

ENVIRONMENTAL BASELINE - NORTHERN MEXICAN GARTERSNAKE

Regulations implementing the Act (50 CFR § 402.02) define the environmental baseline as the past and present impacts of all Federal, state, or private actions in the action area; the anticipated impacts of all proposed Federal actions in the action area that have undergone formal or early section 7 consultation; and the impact of state and private actions which are contemporaneous with the consultation process. The environmental baseline defines the
Mr. Paul Enriquez

current status of the species and its habitat in the action area to provide a platform from which to assess the effects of the action now under consultation. The action area for the proposed action remains nearly the same as described in the 2012 biological opinion on TIMR and includes the area depicted in Figures 2a and 2b and the current range of the endangered pronghorn within the U.S. (Figure 5 – the endangered population range is depicted as the “Cabeza Prieta Range” in the figure).

Status of the Northern Mexican Gartersnake in the Action Area

Distribution, Abundance, and Life History

Life history for the snake in the action area is the same as that described in the Status of the Species. Distribution and abundance of the species in the action area are described below by subbasin (Santa Cruz River Subbasin, San Pedro River Subbasin, and Rio Yaqui Subbasin). Areas proposed for designation as critical habitat for the northern Mexican gartersnake are considered occupied by the species based on reliable or verified observation or museum records. However, the species may be present outside of these areas but within the project’s action area, where adequate prey communities exist.

Santa Cruz River Subbasin (Arizona)

Upper Santa Cruz River/San Rafael Valley Subbasin— Several recent and historical records document the northern Mexican gartersnake (neonates and adults) from tanks and springs within the San Rafael Valley, as well as the upper Santa Cruz River, confirming that the northern Mexican gartersnake is using various wetland habitats in the San Rafael Valley, and that reproduction is occurring. Recruitment rates within the population appear to be low and more study is required to confirm. In 2012, the capture rate was one snake every 378.75 trap hours (Lashway 2012). Green sunfish and mosquitofish dominated fish sampling results in 2014 (Timmons 2014). Native fish, bullfrogs, and nonnative fish inhabit several wetland areas in the San Rafael Valley, including the upper Santa Cruz River (Rosen et al. 2001). Sonoran tiger salamanders (*Ambystoma mavortium stebbinsi*) also contribute to the prey base of northern Mexican gartersnakes in this area. Photo-documentation from the years 1999, 2001, and 2005 from several photo points along the upper Santa Cruz River depicted in Stingelin et al. (2006, Figure 3.1) reflect a trend of less water and more vegetation along the upper Santa Cruz River in recent years.

The foraging ecology of northern Mexican gartersnakes and past records suggest individuals move throughout the San Rafael Valley as they seek to explore regional wetland habitats for prey. The upper Santa Cruz River likely serves as a source for these individuals. We consider the upper Santa Cruz River, as well as tanks, springs, and wetlands with physically suitable northern Mexican gartersnake habitat, within the greater San Rafael Valley to be occupied by the northern Mexican gartersnake based on historical and recent records, as well as our

4 The only change is that the range of the endangered Sonoran pronghorn population has been updated since 2012.
understanding of the subspecies’ foraging ecology. This population is considered likely viable.

Redrock Canyon/Cott Drainage—There is a single photo voucher from Redrock Canyon, found while conducting fish surveys (L. Jones 2008a, pers. comm.) surveys in 2008. Redrock Canyon and Cott Drainage (Redrock headwaters) have never been formally surveyed for northern Mexican gartersnakes according to our files. Perennial water sources are located throughout Redrock Canyon in the form of streams, springs, tanks, and cienegas (U.S. Bureau of Reclamation 2008). Redrock Canyon supports four species of native fish, and Chiricahua leopard frogs and Sonora tiger salamanders have been reported (U.S. Bureau of Reclamation 2008). Gila topminnow may have been a historically important prey species for neonatal northern Mexican gartersnakes in the Redrock and Cott drainages; Stefferud and Stefferud (2007, 2008a, 2009, 2011, 2012, 2013) provide the most recent survey data for Gila topminnow in this area, and other native fish as observed. Other native fish species that have historically been reported from Redrock Canyon include longfin dace, speckled dace, desert sucker, and Gila chub (Stefferud and Stefferud 2008b). Redrock Canyon has also been occupied historically by several species of nonnative, predatory fish (the origin of which was traced to illegal releases into local stock tanks) and bullfrogs, but the most recent observations suggest only bullfrogs remain conspicuous throughout the subbasin (U.S. Bureau of Reclamation 2008). Recent records confirm the northern Mexican gartersnake remains extant in Redrock Canyon (and Cott Drainage), likely as a low density population which may have individuals immigrating from Sonoita Creek to the west or from the San Rafael Valley to the south which are both connected via Redrock Canyon.

Sonoita Creek—Three records of northern Mexican gartersnakes from 1954 to 2013 document the northern Mexican gartersnake in Sonoita Creek (Rosen and Schwalbe 1988, Appendix I; Holycross et al. 2006, Appendix A; Bookwalter 2013, pers. comm.). Turner (2007) found no northern Mexican gartersnakes in a 204 person-search-hour, 5,472 trap-hour survey effort in the Sonoita Creek State Natural Area. Crayfish, bullfrogs, and nonnative fish were observed by Turner (2007) which likely emigrate from Patagonia Lake from which Sonoita Creek feeds. The length of time since the last records for northern Mexican gartersnakes as well as the persistent influence of harmful nonnative species supported by Patagonia Lake suggest the subspecies likely occurs at a very low density in Sonoita Creek.

Scotia Canyon—There are numerous records of the northern Mexican gartersnake from the Peterson Ranch Pond site in Scotia Canyon in the Huachuca Mountains from 1981 to 2009 (Rosen and Schwalbe 1988; Holm and Lowe 1995; Rosen et al. 2001; Holycross et al. 2006; Frederick 2008b pers. comm.; J. Servoss 2009, pers. obs.). Data generated from comparative trapping and survey efforts from 1980-1982, 1993, and 2008 suggest a marked decline in this population over the last 30 years. In 2008, a multi-agency, multi-year effort was initiated within a five mi (8 km) radius of Scotia Canyon, including the Peterson Ranch Ponds and vicinity, to eradicate bullfrogs and reestablish Chiricahua leopard frogs (Frederick 2008, pers. comm.; 2008b, pers. comm.). This effort included many surveys of herpetofauna (reptiles and amphibians) to identify the presence of bullfrogs for eradication and monitor the status of
Mr. Paul Enriquez

reintroduced Chiricahua leopard frogs. With the reintroduction of Chiricahua leopard frogs to the Peterson Ranch Ponds in 2009 and their subsequent reproduction in 2010, we expect the northern Mexican gartersnake population will persist, and possibly improve, due to improved availability of prey and reduced predation by harmful nonnative species.

Parker Canyon—Historical records for the northern Mexican gartersnake in Parker Canyon were from Parker Canyon Lake in 1967 (Holycross et al. 2006) and 1986 (Rosen and Schwalbe 1988) and from Parker Canyon in 1968 and 1979 (Holycross et al. 2006). We are not aware of any dedicated northern Mexican gartersnake survey effort in Parker Canyon. The only survey known for Parker Canyon Lake was the Rosen and Schwalbe (1988) effort in 1986 that consisted of 3 person-search hours. Parker Canyon Lake is managed as a put-and-take fishery for rainbow trout and channel catfish and also supports a self-sustaining warm water fishery including harmful predatory species such as largemouth bass, bluegill, redear sunfish, green sunfish, black bullhead, and northern pike (USFWS 2011b). These nonnative species may spill into the canyon proper below the dam or move up into pools above the lake where they contribute to the extant nonnative fish population. Parker Canyon below Parker Canyon Lake dam is best described as a spatially intermittent stream with several pools. There is approximately one river mi (1.6 km) of permanent water below the dam, and then the channel is ephemeral for approximately 4.5 river mi (7.2 km) to another perennial reach approximately 0.25 river mi (0.4 km) in length. It then, once again, becomes ephemeral until it joins the upper Santa Cruz River in the San Rafael Valley. The perennial reach below the Parker Canyon dam contains bullfrogs, crayfish, and nonnative, predatory fish species. Lower Parker Canyon also maintained longfin dace as of 2003 (Stefferud and Stefferud 2004). Individual northern Mexican gartersnakes may migrate into Parker Canyon from populations that occur in Scotia Canyon or the San Rafael Valley which suggests the subspecies could be extant in Parker Canyon, likely as a low density population.

Lower Santa Cruz River—Numerous historical records dating to the 1890s document the northern Mexican gartersnake from the lower Santa Cruz River (downstream of the International Border) and (possibly) several tributaries in the Tucson area (Rillito River, Sabino Canyon, Tanque Verde Creek, Pantano Wash) labeled as “Tucson” (Rosen and Schwalbe 1988; Holycross et al. 2006). Significant reaches, and in some cases the entire length, of these streams in the Tucson area no longer have reliable surface flow and are largely ephemeral. The Santa Cruz River headwaters are located in the San Rafael Valley where the river flows south into Mexico, bends to the west, and then flows due north, back into the United States just east of Nogales, Arizona. There are no obvious barriers to northern Mexican gartersnake movement along its course from the San Rafael Valley to the International Border and downstream of there. Rosen and Schwalbe (1988) performed northern Mexican gartersnake surveys of the lower Santa Cruz on three different days spanning the years of 1985 and 1986; no northern Mexican gartersnakes were found, but bullfrogs were noted as “super abundant.” Abbate et al. (2007) spent 90 person-search hours and approximately 935 trap-hours surveying for northern Mexican gartersnakes along the lower Santa Cruz River from the Trico-Marana Road Bridge downstream to the Arizona Army National Guard Training facility, but no northern Mexican
gartersnakes were detected.

Prior to the mid-1800s, the lower Santa Cruz was characterized as having a narrow, meandering channel within an active floodplain with cienegas present along its course (Lacher 1996), likely providing excellent habitat for northern Mexican gartersnakes along its entire course. Currently, the lower Santa Cruz River upstream of (south of) Tucson only maintains perennial (effluent dependent) flow for approximately 14 river miles (22.5 km), from the Nogales International Wastewater Treatment Plant downstream to the Chavez Siding Road crossing, as a result of discharges from the plant at a rate of 23 cubic feet per second (cfs), supporting an aquatic vertebrate community that consists of longfin dace, mosquitofish, and bullfrogs (AGFD 2011). Research suggests that treated effluent from the plant contributes to hydrologic “clogging” (reduced hydraulic conductivity of the streambed) in this reach from the creation of a schmutzdecke (a nearly impermeable, anaerobic layer of organic material) that reduces aquifer recharge (Lacher 1996; Treese et al. 2009). Ultimately, such hydrologic clogging adversely affects the recruitment and maintenance of riparian plant species that are dependent on proper functioning of the hyporheic zone (zone where mixing of shallow groundwater and surface water occurs) and does not allow for the development of habitat for prey species. We consider the northern Mexican gartersnake as likely extirpated in the lower Santa Cruz River, downstream of the International Border.

Buenos Aires National Wildlife Refuge—Historical records from 1970 and 2000, document the persistence of the northern Mexican gartersnake at the Arivaca Cienega on the Buenos Aires National Wildlife Refuge (BANWR). A June 13, 1985, survey failed to detect the subspecies there, but noted that bullfrogs were “extremely abundant” at this location (Rosen and Schwalbe 1988). A significant survey effort consisting of trapping and visual searches occurred at the Arivaca Cienega in both 1993 and 2000 (the last surveys that we know of in the area) which confirmed bullfrogs remained abundant (Rosen et al. 2001). The presence of dense cover probably helps any remaining northern Mexican gartersnakes to avoid predation. Arivaca Cienega is found within the eastern-most portion of the BANWR and, in terms of northern Mexican gartersnake movement, Arivaca Cienega is connected, via Arivaca Creek and nearby associated drainages, to the larger, more contiguous block of BANWR lands and associated wetlands in the Altar Valley to the west. In recent years, there has been a concerted management effort on the BANWR to recover the Chiricahua leopard frog in an array of tanks (known as the “central tanks” which include Carpenter, Rock, State, Triangle, New Round Hill, Banado, Choffo, Barrel Cactus, Sufrido, Hito, Morley, McKay, and Chongo Tanks) and their associated drainages, all of which have been designated as critical habitat for the Chiricahua leopard frog. As a result, it is likely that any northern Mexican gartersnakes that successfully immigrate into the central tanks area of the BANWR have an increased chance of persistence because of improved available habitat and a stable prey base in an area that is likely free of nonnative predators. However, Arivaca Lake, associated with Arivaca Creek and Arivaca Cienega, is a naturally reproducing warm water fishery consisting harmful nonnative species including largemouth bass, channel catfish, bluegill, and redear sunfish (USFWS 2011b). When the lake spills, these species may influence other aquatic habitats, on- or off-Refuge in
the area. Slightly off-refuge to the west, a single record for a northern Mexican gartersnake was reported by an Arizona Game and Fish Department amphibian biologist from 2001 in a stock tank in Los Encinos Wash in the Pozo Verde Mountains (Tonn 2013, pers. comm.) indicates the subspecies may occur in low densities, outside of the Refuge boundary. Based on historical and recent records, and the abundance of available habitat in the vicinity of the most recent record, we consider the northern Mexican gartersnake to be extant as a low density population on the BANWR, which may remain depressed as a result of negative interactions with a regional harmful nonnative species community.

San Pedro River Subbasin (Arizona)

Bear Creek—Three records appear to be incidental observations as we are not aware of any formal surveys for northern Mexican gartersnakes that have occurred along Bear Creek. Stefferud and Stefferud (2004) documented a native aquatic community based on their 2003 surveys, specifically noting longfin dace as abundant. They suggested this drainage as a place where native fish recovery projects are desirable based on the abundance of suitable habitat and absence of nonnative species. In 2013, a brief visit to Bear Canyon by a Service employee (J. Servoss, pers. obs.) confirmed the presence of longfin dace. However, crayfish were also seen in large numbers in some pools, but bullfrogs were not observed in the drainage. Bear Creek is somewhat isolated from major perennial sources of nonnative species, which may indicate why a largely native community persists. Based on 1) historical records; 2) the absence of any substantial, targeted survey effort; 3) the presence of a native fish community; and 4) the abundance of physically suitable habitat, we consider Bear Creek to be occupied by northern Mexican gartersnakes, possibly as a low density population that remains threatened by crayfish.

Brown Canyon (Barchas Ranch; Huachuca Mtns)—Both House pond and Wild Duck Pond provide suitable habitat for northern Mexican gartersnakes. It is uncertain where northern Mexican gartersnakes may be immigrating from; the next closest populations are known from the San Pedro River to the east, the Babocomari River to the north, O’Donnell Canyon/Turkey Creek to the west, and Scotia and Bear Canyons to the south. However, none of those localities are within an obvious dispersal distance. It’s possible the species is using an unidentified water body in the area from which to colonize new habitat, perhaps a private pond. The Brown Canyon Ranch has been an active site for Chiricahua leopard frog recovery which provides an obvious prey source and an attraction for northern Mexican gartersnakes. However, these ponds are vulnerable to repeated invasion from dispersing bullfrogs which have been documented in the past. In 2014, southern leopard frogs (nonnative; *L. sphenosepha*) were detected in the main House Pond. Actions were subsequently taken to remove the nonnative leopard frogs. The ponds are no longer vulnerable to drying due to supplied well water and a new liner, and are actively monitored and managed for Chiricahua leopard frogs which should provide added resiliency to the gartersnake’s continued occupation there, provided recruitment occurs. The 2014 record verifies northern Mexican gartersnakes remain extant in Brown Canyon but the sparse amount records over time from this closely observed locale suggest the population exists as a low density population.
Fort Huachuca— Aquatic herpetofauna surveys occurred on- and off-Fort from 1995-1998 which documented a single northern Mexican gartersnake adjacent to, but off the Fort, in Brown Canyon (Sredl et al. 2000). We are not aware of any species-specific surveys that have occurred on the Fort since that time. There are several wetland habitats on Fort Huachuca but bullfrogs occur in many of them. Several possible source populations for northern Mexican gartersnakes occur within possible dispersal distance of Fort Huachuca, including Sonoita-Elgin grasslands to the northeast, the Babocomari River to the north, the San Pedro River to the east, Brown Canyon to the east, and Scotia Canyon over a ridgeline to the southwest. Leopard frogs are not currently known to occur on the Fort but toads and bullfrogs in larval and sub-adult age classes may offer prey. Northern Mexican gartersnakes may persist on Fort Huachuca as a low density population supported by occasional immigration from area source populations.

San Pedro River— All known records for northern Mexican gartersnakes along the San Pedro River in the Arizona have occurred upstream of the I-10 crossing, largely as a direct result of minimal survey efforts downstream of I-10. Rosen et al. (2001) surveyed the upper San Pedro River in 1996, 1998, and 2000 at the Arizona State Highway 90 crossing, in 1998 at Lewis Springs, and 1996 at Curtis Flat, and documented crayfish, bullfrogs, nonnative, predatory fish, as well as two species of native fish, all occurring at various densities along their survey routes. However, they did not detect any northern Mexican gartersnakes. Kesner and Marsh (2010, Table 3) also found both native fish, as well as nonnative, predatory fish, in the upper San Pedro River, although native fish or nonnative, soft-rayed fish outnumbered harmful nonnative fish species significantly. Jakle (1992) and Minckley (1987) also reported nonnative, predatory species such as channel catfish, flathead catfish, and smallmouth basin the San Pedro River. Stefferud et al. (2009) report that at least 15 species of nonnative fish have been introduced into the San Pedro River which has had profoundly negative impacts on native fish populations. These survey efforts included approximately 12 cumulative person-search hours at Highway 90, five person-search hours at Lewis Springs, and three person-search hours at Curtis Flat (Rosen et al. 2001). Inman et al. (1998) reported crayfish from the San Pedro River.

The lower San Pedro River (north of I-10) was surveyed for northern Mexican gartersnakes from 1996–2000. Rosen et al. (2001) surveyed four locations along the lower San Pedro River: at Cascabel in 1996 (three person-search hours), at the San Manuel crossing in 1999 (45 minutes), at the Dudleyville crossing in 2000 (four person-search hours), and in the Bingham Cienega area, adjacent to and within the lower San Pedro River, in 1999 (20 minutes) and 2000 (three person-search hours). One bullfrog was seen at Cascabel and another at Bingham Cienega; one crayfish and one channel catfish were seen at the Dudleyville crossing (Rosen et al. 2001). Otherwise, robust populations of lowland leopard frogs and longfin dace were seen at nearly all survey locations (Rosen et al. 2001) which document a largely native prey species community for northern Mexican gartersnakes. Lowland leopard frogs and their tadpoles were also confirmed in a 2012 survey effort; also noted were beaver ponds and dense streamside vegetation along with perennial flow (Hall 2013). Lowland leopard frogs, long-finned dace and desert suckers are considered common in numerous tributaries to the middle and lower San

40
Mr. Paul Enriquez

Pedro River as well as in its perennial reaches downstream of Interstate 10 (Cascabel Working Group 2010). Kesner and Marsh (2010) found native fish generally dominate over nonnative, predatory fish in the lower San Pedro River. In total, approximately 11 person-search hours have been invested in surveying for gartersnakes along the entire lower San Pedro River, a large and structurally complex system, since 1996. The northern Mexican gartersnake is likely extant in low density populations along the San Pedro River from the International Border to its confluence with the Gila River.

Babocomari River and Cienega—In the past, the Babocomari River and Cienega was considered by Rosen and Schwalbe (1988) as a possible regional stronghold for northern Mexican gartersnakes, based on personal communications with past investigators (Rosen et al. 2001). Several surveys, of varying effort, of both the cienega and the river conducted in 2000 failed to detect the northern Mexican gartersnake (Rosen et al. 2001). The cienega was surveyed intensively in 2000, consisting of visual searches and trapping, which documented bullfrogs and nonnative, predatory fish as abundant and crayfish as common. Surveys from the mid-1980s did not detect bullfrogs at the cienega, but did detect harmful nonnative fish. This suggests that bullfrogs colonized the area during the late 1980s or later, either naturally or through artificial introduction. Despite the influence of harmful nonnative predators in the Babocomari system, the resident northern Mexican gartersnake population may be influenced by migrants from the San Pedro River to the east, the Appleton-Whittel Research Ranch to the south, or the Cienega Creek headwaters to the north.

Canelo Hills-Sonoita Grasslands Area—The Canelo Hills-Sonoita grasslands area encompasses several streams, cienegas, and wetlands owned or managed by the Appleton-Whittell Research Ranch, the Nature Conservancy (Canelo Hills Cienega Preserve), and the Coronado National Forest. Most of the records came from sampling the area in 1985-86 that pertained to Rosen and Schwalbe (1988). Survey effort in 1996 and 2000 for northern Mexican gartersnakes from this region is documented in Rosen et al. (2001) and suggests the population may have already been in decline. Information on prey and predator communities is found in several reports. In 2000, Rosen et al. (2001) documented Chiricahua leopard frogs, crayfish, and harmful nonnative fish in O’Donnell Creek and Stefferud and Stefferud (2004) reported three species of native fish there. Also in 2000, bullfrogs were documented in Findley Tank (Rosen et al. 2001). Chiricahua and lowland leopard frogs were documented from Post Canyon in 2000 (Stefferus 2004). The next major survey gartersnake effort for the Appleton-Whittel Research Ranch is documented in d’Orgeix (2011) who conducted a three-year field study (2007–2009) at Findley Tank, Southwest Spring (immediately above Findley Tank), Post Canyon, O’Donnell Creek, and at two nearby tanks (Telles and Pronghorn) using visual searches, coverboard arrays, and trapping techniques. Northern Mexican gartersnakes were found at all sites with the exception of Telles and Pronghorn tanks (d’Orgeix 2011). In 2012 (d’Orgeix et al. 2013) and 2014 (Roger Cogan, 2014b, pers. comm.), northern Mexican gartersnakes were observed exploiting a Mexican spadefoot breeding colony both during the day and night, at an ephemeral depression in the lower reach of O’Donnell Canyon. Northern Mexican gartersnake are likely extant throughout this greater area as low density populations,
Mr. Paul Enriquez

exploiting seasonally available habitat and foraging opportunities, immigrating and emigrating from site to site throughout this grassland.

Rio Yaqui Subbasin (Arizona)

San Bernardino National Wildlife Refuge—Numerous historical records for the northern Mexican gartersnake at the San Bernardino National Wildlife Refuge (SBNWR) is evidence that it formerly maintained a robust population there (Rosen and Schwalbe 1988, pp. 23, Appendix I; Rosen et al. 2001, pp. 6-11; Holycross et al. 2006, Appendix A). Major sampling events occurred on the SBNWR occurred from 1985-1989 and 1992-1999, with the last known record occurring in 2005 (USFWS 2012, p. 109). USFWS (2012, Table G2b), an annual report compiled by the SBNWR, lists the northern Mexican gartersnake as a resident of the refuge. Approximately nine days (person-search hours not reported) were spent surveying the SBNWR in 1985 and 1986 (Rosen and Schwalbe 1988, Appendix I) resulting the capture of 10 large adults. Gartersnakes in general were studied at the SBNWR from 1985–1986 and 1992–1999 in a survey effort that totaled 58,560 trap-hours, resulting in the detection of 148 northern Mexican gartersnakes, collectively between all years (Rosen et al. 2001, p. 6). Although vast amounts of physically suitable northern Mexican gartersnake habitat exists within the SBNWR, bullfrog populations have remained dense from the 1980s through current times (Rosen and Schwalbe 1988, Appendix I; 1995, p. 452; 1996, pp. 1–3; 1997, p. 1; 2002b, pp. 223–227; 2002c, pp. 31, 70; Rosen et al. 1995, p. 254; 1996b, pp. 8–9; 2001, Appendix I; USFWS 2012, p. 125). However, five species of native fish persist on the refuge and are likely important prey for northern Mexican gartersnakes. There is also the possibility that northern Mexican gartersnakes may immigrate from Mexico, immediately adjacent to the SBNWR. We consider the northern Mexican gartersnake as extant on the San Bernardino National Wildlife Refuge, likely as a very low density population.

Status of Critical Habitat in the Action Area

The action area for this project physically overlaps 3 proposed critical habitat units: 1) BANWR Unit; 2) Upper Santa Cruz River Subbasin Unit; and 3) San Pedro River Subbasin Unit (see Table 4 for land ownership and size of these units, and Figure 7 for a map of these units).5 See U.S. Fish and Wildlife Service 2013 for a description of each unit.

Past and Ongoing Federal Actions in the Action Area

Only one biological opinion has been issued to date on an action that may affect the gartersnake in the action area (see summary below). This formal consultation can be viewed on our website at http://www.fws.gov/arizonaes/Biological.htm.

5 Note that the action area polygon depicted in Figure 2a encompasses more than the 3 proposed critical habitat units, but not all areas within the polygon will be affected by the proposed project.
Mr. Paul Enriquez

1. Rosemont Copper Mine, Pima County, Arizona, consultation number 22410-2009-F-0389R1, issued April 22, 2016. Incidental take of an unspecified amount (a surrogate measure of take was used) of snakes was anticipated in the form of harm.

EFFECTS OF THE ACTION – NORTHERN MEXICAN GARTERSNAKE

Effects of the action refer to the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated and interdependent with that action that will be added to the environmental baseline. Interrelated actions are those that are part of a larger action and depend on the proposed action for their justification. Interdependent actions are those that have no independent utility apart from the action under consideration. Indirect effects are those that are caused by the proposed action and, are later in time, but are still reasonably certain to occur.

There are no interrelated or interdependent actions that are part of the TIMR Program and that are dependent upon the TIMR Program for justification or have no independent utility apart from the Program. Ongoing and planned CBP activities in southern Arizona to secure the international border have independent utility from the TIMR Program and would continue, although in many cases less efficiently, regardless of implementation of the TIMR Program. Ongoing maintenance activities that are not considered in this BO, including operation of existing maintenance facilities and equipment used for those activities, also has independent utility from the TIMR Program and are not dependent upon it for justification. Thus, this BO only considers the direct, indirect, and cumulative impacts of TIMR Program activities in the description of the proposed action.

Effects of Project Component #1 (additional listed species and critical habitat):

Effects to Northern Mexican Gartersnakes

The northern Mexican gartersnake is expected to be affected both directly and indirectly by the proposed action, implementation of TIMR. A total of 130 miles of existing, non-waived roads within northern Mexican gartersnake proposed critical habitat are proposed to be maintained under the TIMR program within the Buenos Aires NWR, the Upper Santa Cruz River Subbasin, and San Pedro River Subbasin Critical Habitat Units. Over 75 percent of these roads to be maintained under TIMR are within the Buenos Aires NWR Unit. Maintenance and repair activities will be conducted within and immediately adjacent to the footprint of existing tactical infrastructure and BMPs will be implemented to minimize the potential for adverse effects to the species.

Mortality and Injury of Northern Mexican Gartersnakes
Direct injury or mortality could occur if northern Mexican gartersnakes are in areas with roads being maintained or repaired. Northern Mexican gartersnake are generally active from March through October in southern Arizona, although they may be active any day of the year when the daily low temperature is above freezing. The species may be active in upland areas (typically within about 600 feet of ephemeral or perennial water sources, but up to at least one mile from a given water body) or in and along drainages and streams. Northern Mexican gartersnakes are likely to be killed on roadways used by maintenance or repair vehicles where such vehicles are traveling through or near occupied habitat, particularly during the time of the year when gartersnakes are most active. Death due to being struck by vehicles on roads is an extremely common and well-known source of mortality among snakes and has been documented for this species as well, as described in the Status of the Species. Speed limits of 20 mph within gartersnake proposed critical habitat should help reduce the risk of vehicle strikes. Additionally, maintenance and repair activities will be infrequent (1 to 4 times a year) and short in duration (lasting only a few days along any road segment), thereby limiting the exposure of snakes to the risk of vehicle strikes with maintenance vehicles. However, road maintenance and repair may result in smoother road surfaces and therefore higher travel speeds (of the public or agency personnel) on maintained roads, leading to increased snake injury or mortality risk from vehicles.

Northern Mexican gartersnakes may also be killed or injured during other standard maintenance activities, such as when silt fences or trenches/holes are used in project implementation. BMPs to help reduce potential mortality associated with these activities are incorporated into the project design. For example, small mesh size on silt fencing will be used to avoid snake entanglement and minimally-spaced escape ramps will be placed within any temporary trenches necessary for project implementation to avoid prolonged entrapment and the risk of injury or death of snakes from exposure.

Habitat Loss and Degradation

Minor and temporary alteration of northern Mexican gartersnake habitat will likely occur during some maintenance and repair activities, particularly where roads intersect aquatic habitat. That said, because maintenance of roads, culverts, and low water points will occur within or immediately adjacent to existing tactical infrastructure, little direct loss of habitat is anticipated. Furthermore, to avoid direct habitat impacts, riparian vegetation within 100 feet of aquatic habitats will not be cleared (Wildlife BMP #3 and Vegetation BMP #13); vegetation control will not occur if a threatened or endangered species, primary constituent element (PCE), or other indicators of suitable habitat occur within the project area without further consultation with FWS (General BMP #3); and surface water from aquatic or marsh habitats for maintenance and repair projects will not be used if that site supports aquatic federally-listed species or if it contains nonnative invasive species or disease vectors based on the best available information provided by FWS (General BMP #8).
Potential indirect effects to the northern Mexican gartersnake include increased sedimentation of aquatic habitat and introduction of nonnative invasive plant species. Maintenance and repair of access roads, low water crossings, and culverts near currently or future occupied northern Mexican gartersnake habitat may result in erosion and sedimentation into those habitats, or improve access for the public or others who may interact adversely with gartersnakes, introduce harmful nonnative predators, start fires, or otherwise degrade habitats (NPS 2012, Watson 2005). Adverse interactions refers to the act of humans directly injuring or killing snakes out of a sense of fear or anxiety (ophidiophobia), or for no apparent purpose (see discussion in the final listing rule; USFWS 2014).

In cases where TIMR road density is highest within occupied habitat, northern Mexican gartersnakes could be indirectly affected by increased road mortality of prey species such as salamanders, frogs, and particularly toads. The monsoon marks a period of amphibian reproduction and movement across regional landscapes; most notably explosive breeding in terrestrial anurans like toads. Where roads occur near or adjacent to breeding habitat, conspicuously high numbers of metamorphosed, juvenile, and adult toads are lost to vehicle strikes (J. Servoss, personal observation). This level of mortality associated with road use does not eliminate toads as part of the prey base for northern Mexican gartersnakes but does reduce their density on the landscape, thus reducing foraging success of resident gartersnakes. Prey species may also be affected indirectly by the proposed project through the spread of disease (such as Chytrid fungus) and damage to their habitat.

Nonnative plants often thrive in disturbed areas (Tellman 2002); hence, TIMR activities could encourage the spread and establishment of these plants. Many nonnative plants, such as Lehmann’s lovegrass, carry fire better and often burn hotter than the native plants (Bock and Bock 2002, Esque and Schwalbe 2002). As a result, the proposed action has the potential to increase fire frequency and intensity via spread of nonnative plants. Fire can result in temporary watershed degradation and increased sedimentation and ash flow into northern Mexican gartersnake habitats. Sediments can fill in prey (e.g., frog) habitats (Wallace 2003) and ash flow can create toxic conditions in streams (Spencer and Hauer 1991). However, we believe that impacts to northern Mexican gartersnakes from invasive species and fire as a result of the TIMR Program are unlikely, due to the implementation of BMPs and conservation measures discussed below.

The potential for indirect effects to habitat is much reduced by implementing the numerous BMPs incorporated into the proposed action. To reduce direct mortality of amphibian prey items by maintenance vehicles, speed limits of 20 mph within gartersnake proposed critical habitat and prohibition on work during heavy rains will be implemented (Wildlife BMP #4). To prevent the spread of amphibian diseases (that can affect prey of northern Mexican gartersnakes) among drainages via water or mud on maintenance vehicles and equipment, all maintenance work within Chiricahua leopard frog critical habitat or any potentially occupied habitat, shall conform to amphibian disease prevention protocols (Chiricahua Leopard Frog BMP #4); CBP will not use surface water from aquatic or marsh habitats for maintenance and
Mr. Paul Enriquez

repair projects, if that site supports aquatic federally-listed species or if it contains nonnative invasive species or disease vectors based on the best available information provided by FWS (General BMP #8); and coordination will occur with the CBP environmental subject matter expert (SME) to determine if maintenance activities occur in a highly sensitive area or an area that poses an unacceptable risk of transmitting diseases and invasive species and follow the CBP cleaning protocol for all equipment used, as needed (General BMP #6).

Other BMPs that minimize potential effects to northern Mexican gartersnake and prey habitat include avoiding the spread of nonnative invasive species (Vegetation BMPs #2 and 10 and General BMP #6), and conducting periodic inspection and maintenance to minimize erosion and other adverse conditions (Vegetation BMP #12). Clearing of riparian vegetation will not occur within 100 feet of aquatic habitats to provide a buffer area to protect the habitat from sedimentation (Wildlife BMP #3). To minimize impacts from habitat degradation due to sedimentation and effects on water quality and quantity, a site-specific SWPPP and a spill protection plan will be prepared and regulatory approval will be sought as required by regulations, for maintenance and repair activities that could result in sedimentation and that occur within 0.3 miles of suitable habitat (Chiricahua Leopard Frog BMP #3). Furthermore, no in-water work will occur within streams or other waterbodies with known occurrences of listed fish or designated critical habitat without further consultation with the FWS (Northern Mexican gartersnake BMP #1 and Fishes BMP #1).

General BMPs to protect water resources, as listed in the description of the proposed action, will also be implemented (General BMPs #7-9, Water Resources BMPs #1-25, Geology and Soil Resources BMPs #1-4, Chiricahua Leopard Frog BMPs #5 and 7). By implementing BMPs to avoid sedimentation, the potential for adverse indirect effects to northern Mexican gartersnake habitat should be minimized.

TIMR activities should help reduce some impacts to northern Mexican gartersnake habitat. For example, maintaining roads should reduce off-road vehicle incursions (or drive arounds) (and subsequent habitat damage) caused by poor road conditions and maintaining water crossings and culverts should help retain more natural water flow conditions.

Effects to Northern Mexican Gartersnake Proposed Critical Habitat

In our analysis of the effects of the action on critical habitat, we consider whether or not a proposed action will result in the destruction or adverse modification of critical habitat. Destruction or adverse modification means a direct or indirect alteration that appreciably diminishes the value of critical habitat for the conservation of a listed species. Such alterations may include, but are not limited to, those that alter the physical or biological features essential to the conservation of a species or that preclude or significantly delay development of such features.
Based upon the project description for the TIMR Program, implementation of the proposed action may result in adverse effects to critical habitat. Below, we describe the primary constituent elements (PCEs) related to northern Mexican gartersnake critical habitat and the potential effects from implementation of the proposed action. PCEs are elements of physical or biological features that provide for a species’ life-history processes and are essential to the conservation of the species.

A total of 130 miles of non-waived roads within northern Mexican gartersnake proposed critical habitat are proposed to be maintained under the TIMR program specifically occur within the Buenos Aires NWR, the Upper Santa Cruz River Subbasin, and San Pedro River Subbasin Critical Habitat Units. Over 75 percent of these roads to be maintained under TIMR are within the Buenos Aires NWR Unit. No area of impact to proposed critical habitat was provided by CBP; however, assuming roads to be maintained average 12 feet in width, about 189 acres [12 feet x 130 miles] within northern Mexican gartersnake proposed critical habitat will be directly affected by the TIMR project.

1. Aquatic or riparian habitat that includes:
 a. Perennial or spatially intermittent streams of low to moderate gradient that possess appropriate amounts of in-channel pools, off-channel pools, or backwater habitat, and that possess a natural, unregulated flow regime that allows for periodic flooding or, if flows are modified or regulated, a flow regime that allows for adequate river functions, such as flows capable of processing sediment loads; or

 \textit{Effect}: Activities implemented under TIMR are expected to retain this PCE for the northern Mexican gartersnake. BMPs require that maintenance be designed and implemented so that the hydrology of streams, ponds, and other habitat is not altered. CBP will not use surface water from aquatic or marsh habitats for maintenance and repair projects, if that site supports aquatic federally-listed species or if it contains nonnative invasive species or disease vectors based on the best available information provided by FWS. Furthermore, no in-water work will occur within streams or other waterbodies with known occurrences of northern Mexican gartersnakes or critical habitat without further consultation with the FWS.

 b. Lentic wetlands such as livestock tanks, springs, and Cienegas; and

 \textit{Effect}: Same as above.

 c. Shoreline habitat with adequate organic and inorganic structural complexity to allow for thermoregulation, gestation, shelter, protection from predators, and foraging opportunities (e.g., boulders, rocks, organic debris such as downed trees or logs, debris jams, small mammal burrows, or leaf litter); and
Mr. Paul Enriquez

Effect: Although some activities implemented under TIMR may result in small reductions in organic debris as a result of road maintenance, these impacts are not likely to significantly modify this PCE because they are expected to occur infrequently and affect a negligible area. BMPs should help minimize impacts to shoreline habitat. For example, clearing of riparian vegetation will not occur within 100 feet of aquatic habitats to provide a buffer area to protect the habitat from sedimentation. Vegetation control outside the immediate footprint of the tactical infrastructure within suitable habitat and within the range or designated critical habitat of threatened and endangered species will be limited. If a threatened or endangered species, PCE, or other indicators of suitable habitat occur within the project area, then further consultation with FWS will be required.

d. Aquatic habitat with characteristics that support a native amphibian prey base, such as salinities less than 5 parts per thousand, pH greater than or equal to 5.6, and pollutants absent or minimally present at levels that do not affect survival of any age class of the gartersnake or the maintenance of prey populations.

Effect: Maintenance activities conducted within and near proposed northern Mexican gartersnake critical habitat could temporarily increase turbidity of surface water within and downstream of the maintenance area. However, impacts on water quality should be localized and temporary, and BMPs will be implemented to reduce sedimentation and runoff from roads and other infrastructure. With the exception of these potential effects to water quality, activities implemented under the proposed action are expected to retain this PCE for the northern Mexican gartersnake as explained under 1.a. and 1.b.

2. Adequate terrestrial space (600 feet lateral extent to either side of bankfull stage) adjacent to designated stream systems with sufficient structural characteristics to support life-history functions such as gestation, immigration, emigration, and brumation.

Effect: Activities implemented under TIMR are not expected to significantly modify this PCE. Vegetation control actions may result in reduced vegetative habitat immediately adjacent to the footprint of existing tactical infrastructure. However, vegetation control outside the immediate footprint of the tactical infrastructure within suitable habitat and within the range or designated critical habitat of threatened and endangered species will be limited. If a threatened or endangered species, PCE, or other indicators of suitable habitat occur within the project area, then further consultation with FWS will be required. Additionally, riparian vegetation within 100 feet of critical habitat will not be cleared.

3. A prey base consisting of viable populations of native amphibian and native fish species.

Effect: Effects to northern Mexican gartersnake prey base are expected primarily through direct mortality of prey from maintenance vehicles and indirectly through increased vehicle speed and
Mr. Paul Enriquez

use of maintained and/or improved roads via the public and agency personnel. There is potential for prey to be killed on roadways used by maintenance or repair vehicles where such vehicles are traveling through or near habitats that support native amphibians. BMPs, however, will help reduce vehicle strikes with prey items, including speed limits of 20 mph within gartersnake proposed critical habitat and prohibition on work during heavy rains. Additionally, prey may also be affected indirectly by the proposed project such as through spread of disease and alterations in habitat. That said, a number of BMPs designed to protect listed fish and amphibians will help also help reduce mortality of northern Mexican gartersnake prey. For example, no in-water work will occur within streams or other waterbodies with known occurrences of listed fish or designated critical habitat without further consultation with the FWS and measures will be taken to prevent the spread of amphibian diseases among drainages. While some prey mortality is expected as a result of TIMR activities, the level of mortality is not expected to significantly modify this PCE.

4. An absence of nonnative fish species of the families Centrarchidae and Ictaluridae, bullfrogs, and/or crayfish (*O. virilis*, *P. clarki*, etc.), or occurrence of these nonnative species at low enough levels such that recruitment of northern Mexican gartersnakes and maintenance of viable native fish or soft-rayed, nonnative fish populations (prey) is still occurring.

Effect: There is very little potential for the proposed action to introduce or transfer nonnative fish, bullfrogs, and/or crayfish into proposed critical habitat, and no in-water work will occur within streams or other waterbodies with known occurrences of northern Mexican gartersnakes or critical habitat without further consultation with the FWS. CBP will not use surface water from aquatic or marsh habitats for maintenance and repair projects, if that site supports aquatic federally-listed species or if it contains nonnative invasive species or disease vectors based on the best available information provided by FWS. Additionally, conservation measures CBP is implementing to ensure that the proposed action does not spread amphibian diseases among drainages via water or mud on maintenance vehicles and equipment will also prevent the spread of nonnative predators.

Summary

TIMR activities may adversely affect northern Mexican gartersnake proposed critical habitat in a number of ways. For example, water quality may be affected maintenance activities conducted within and near proposed northern Mexican gartersnake critical habitat could alter the quality of surface water within and downstream of the maintenance area. Impacts on water quality should be localized and temporary, and BMPs will be implemented to reduce sedimentation and runoff from roads and other infrastructure and minimize other potential indirect effects on this species. TIMR Program activities within critical habitat will occur within and immediately adjacent to the footprint of existing tactical infrastructure, and BMPs designed to avoid impacts to this species and its habitat will be implemented. For example, no
in-water work will occur within streams or other waterbodies with known occurrences or designated critical habitat without further consultation with the FWS (Northern Mexican Gartersnake BMP 1). Riparian vegetation within 100 feet of aquatic habitats will not be cleared (Wildlife BMP #3 and Vegetation BMP #13), and vegetation control will not occur if a threatened or endangered species, primary constituent element (PCE), or other indicators of suitable habitat occur within the project area without further consultation with FWS (General BMP #3). There is a risk that maintenance vehicles may kill northern Mexican gartersnake prey; however, BMPs are also in place to reduce this risk. Therefore, while northern Mexican gartersnake proposed critical habitat may be adversely affected, BMPs are in place that will considerably reduce impacts to PCEs and ensure PCEs are retained without significant modification. Furthermore, TIMR activities should help reduce some impacts to northern Mexican gartersnake proposed critical habitat. For example, maintaining roads should reduce off-road vehicle incursions (or drive arounds) (and subsequent habitat damage) caused by poor road conditions and maintaining water crossings and culverts should help retain more natural water flow conditions.

Effects of Project Component #2 (proposed additions within OPCNM):

The proposed additions within OPCNM will have no effect on northern Mexican gartersnakes because the species does not occur within or near OPCNM.

Effects of Project Component #3 (expansion of TIMR to TON):

The proposed expansion of TIMR to the TON will have no effect on northern Mexican gartersnakes because the species does not occur within the TON as far as we currently know.

CUMULATIVE EFFECTS – NORTHERN MEXICAN GARTERSNAKE

Cumulative effects include the effects of future State, tribal, local or private actions that are reasonably certain to occur in the action area considered in this biological opinion. Future Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the Act. Federal agencies manage much of the northern Mexican gartersnake proposed critical habitat in the action area, particularly the Coronado National Forest and Buenos Aires NWR. Thus, most of the actions that are reasonably expected to occur in the project area that may adversely affect the northern Mexican gartersnake would be subject to future section 7 consultations. However, some occupied habitat in the action area occurs on private or state lands.

Unregulated activities on non-Federal lands, such as trespass livestock, inappropriate use of off-highway vehicles, and illegal introduction of nonnative aquatic species are cumulative effects and can adversely affect the species through a variety of avenues. Illegal introductions of nonnative fishes and other aquatic invasive species are routinely made by the public.
Cumulative effects to native aquatic animals include ongoing activities in the watersheds in which the species occurs such as livestock grazing and associated activities outside of Federal allotments, irrigated agriculture, groundwater pumping, stream diversion, bank stabilization, channelization, and recreation without a Federal nexus. Some of these activities, such as irrigated agriculture, are declining and are not expected to contribute substantially to cumulative long-term adverse effects to native aquatic animals. Other activities, such as recreation, are increasing. Increasing recreational, residential, or commercial use of the non-Federal lands adjacent to occupied habitat on Federal lands could result in increased cumulative adverse effects such as increased water use, increased pollution, and modification of streamside habitat.

CBV activity may also impact northern Mexican gartersnakes and their habitat. CBV activity in the border region has resulted in route proliferation, off-highway vehicle activity, increased human presence in backcountry areas, discarded trash, abandoned vehicles, cutting of firewood, illegal campfires, and increased chance of wildfire; all of which can degrade northern Mexican gartersnake habitat. Although it has not been documented, CBVs could also intentionally kill snakes.

CONCLUSION – NORTHERN MEXICAN GARTERSNAKE

The conclusions of this biological opinion are based on full implementation of the project as described in the Description of the Proposed Action section of this document, including any BMPs and conservation measures that are incorporated into the project design. After reviewing the current status of the northern Mexican gartersnake and its proposed critical habitat, the environmental baseline for the action area, the effects of the proposed TIMR Project, and the cumulative effects, it is our biological opinion that the action, as proposed, is not likely to jeopardize the continued existence of the northern Mexican gartersnake nor destroy or adversely modify its proposed critical habitat. Our conclusion is based on our discussion in this document found in the “Effects of the Action” section above, and the following:

1. The affected northern Mexican gartersnake populations in southern Arizona (14 populations) represent a relatively small portion of the range of the species’ rangewide distribution in the United States and Mexico (this subspecies has a range that extends significantly into Mexico), thus the project is not expected to significantly affect the distribution, numbers, and reproduction of northern Mexican gartersnakes. We estimate that approximately 10-15 percent of occupied habitat for the northern Mexican gartersnake occurs in the United States (Arizona and New Mexico) (with an even smaller percent in the southern Arizona action area) with the remainder occurring in Mexico. Although the action area encompasses all (14) known extant populations in southern Arizona, importantly, the effects to each of these populations will be minimal. While individuals are anticipated to be impacted by the proposed project, the impacts are not likely to result in population level effects.

2. Only a small portion of proposed critical habitat will be directly affected by the project.
About 189 acres within proposed critical habitat in three units may be affected by TIMR activities; this represents about 0.04 percent of all proposed critical habitat (a total of 421,423 acres is proposed as critical habitat for the northern Mexican gartersnake). According to CBP, about 75 percent of the roads with northern Mexican gartersnake proposed critical habitat to be maintained under TIMR (about 97 miles or about 142 acres) occur in the Buenos Aires NWR Unit (this unit totals 117,313 acres in size). Therefore, these roads represent a very small percent (about 0.12 percent) of the overall Buenos Aires NWR unit, the unit expected to be most impacted by TIMR. According to our GIS calculations, about 0.5 mile of roads (or less than one acre assuming 12-feet wide roads) will be maintained in the San Pedro River Subbasin unit (this unit totals 6,973 acres). Again, this road represents a very small percent (about 0.01 percent) of the overall San Pedro River Subbasin. The remaining estimated 46 acres of roads to be maintained occur in the Upper Santa Cruz River Subbasin unit (this unit totals 77,387 acres) and represent a small portion (about 0.06 percent) of the overall unit.

3. TIMR Program activities will primarily occur within the existing footprint of the tactical infrastructure and, as a result, minimal habitat degradation will occur.

4. BMPs will help avoid and minimize many potential adverse effects to the northern Mexican gartersnake and its proposed critical habitat.

5. CBP will provide project implementation information in an annual report to the FWS indicating that the activities completed under the proposed action were implemented as proposed.

INCIDENTAL TAKE STATEMENT – Northern Mexican Gartersnake

Section 9 of the Act and Federal regulations pursuant to section 4(d) of the Act prohibit the take of endangered and threatened species, respectively, without special exemption. “Take” is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. “Harm” is further defined (50 CFR 17.3) to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering. “Harass” is defined in the regulations as “an intentional or negligent act or omission which creates the likelihood of injury to wildlife by annoying it to such an extent as to significantly disrupt normal behavioral patterns which include, but are not limited to, breeding, feeding, or sheltering (50 CFR 17.3). “Incidental take” is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the Act provided that such taking is in compliance with the terms and conditions of this Incidental Take Statement.

The measures described below are non-discretionary, and must be undertaken by the CBP so that they become binding conditions of any grant or permit issued to the applicant, as appropriate, for the exemption in section 7(o)(2) to apply. CBP has a continuing duty to
Mr. Paul Enriquez

regulate the activity covered by this incidental take statement. If CBP (1) fails to assume and implement the terms and conditions or (2) fails to require any applicant, contractor, or permittee to adhere to the terms and conditions of the incidental take statement through enforceable terms that are added to the permit or grant document, the protective coverage of section 7(o)(2) may lapse. In order to monitor the impact of incidental take, CBP must report the progress of the action and its impact on the species to the FWS as specified in the incidental take statement. [50 CFR 402.14(i)(3)].

Amount or Extent of Take - Northern Mexican Gartersnake

The FWS anticipates northern Mexican gartersnakes will be taken as a result of this proposed action. The incidental take is expected to be in the form of 1) direct injury or mortality from vehicle strikes from maintenance vehicles and subsequent road use, and 2) harm due to adverse effects to prey species. The FWS anticipates incidental take of the northern Mexican gartersnakes will be difficult to detect because these snakes are difficult to find, particularly if they are dead or injured, and the northern Mexican gartersnake is difficult to see due to its size, cryptic coloring, and complex habitat. However, because we anticipate effects occurring mostly on roads, the extent of take of this species can be extrapolated using the number of dead-on-road (DOR) northern Mexican gartersnakes detected by CBP. Because these snakes are so difficult to detect, especially young age classes on uneven dirt roads, we anticipate that for every DOR snake detected, several more have been injured or killed. We consider that take will have been exceeded if more than three northern Mexican gartersnakes per decade are reported via photo documentation to the FWS.

Effect of the Take – Northern Mexican Gartersnake

In this biological opinion, we determine that these levels of anticipated take are not likely to result in jeopardy to the species nor result in destruction or adverse modification of its proposed critical habitat for the reasons stated in the Conclusions section.

REASONABLE AND PRUDENT MEASURES AND TERMS AND CONDITIONS – NORTHERN MEXICAN GARTERSNAKE

The following reasonable and prudent measure is necessary and appropriate to minimize take of the northern Mexican gartersnake:

1. CBP shall document and report all potential northern Mexican gartersnake detections (live or dead) to the FWS.

TERMS AND CONDITIONS - NORTHERN MEXICAN GARTERSNAKE

In order to be exempt from the prohibitions of section 9 of the Act, CBP and any of its contractors or agents shall comply with the following terms and conditions, which implement
the reasonable and prudent measure described above. This term and condition is non-discretionary.

The following terms and conditions implement reasonable and prudent measure #1:

1.1 CBP shall train agents and contractors on general snake identification of northern Mexican gartersnakes. The training will include information on how to identify snakes in the family Colubridae and how to properly photo document them.

1.2 During the course of project implementation, CBP shall photo-document, from close range, any live or dead colubrid snake with a linear striped pattern using the photo documentation protocol provided in Term and Condition 1.1. CBP shall submit the photo documentation, with corresponding approximate locality data, and other relevant information to AESO in the required annual TIMR report.

Review requirement: The reasonable and prudent measures, with their implementing terms and conditions, are designed to minimize the impact of incidental take that might otherwise result from the proposed action. If, during the course of the action, the level of incidental take is exceeded, such incidental take would represent new information requiring review of the reasonable and prudent measures provided. CBP must immediately provide an explanation of the causes of the taking and review with the AESO the need for possible modification of the reasonable and prudent measures.

CONSERVATION RECOMMENDATIONS – NORTHERN MEXICAN GARTERSNAKE

Section 7(a)(1) of the Act directs Federal agencies to utilize their authorities to further the purposes of the Act by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations are discretionary agency activities to minimize or avoid adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information.

We recommend that the CBP support recovery of the northern Mexican gartersnake through implementing recovery actions that are relatively easily implemented through the normal course of field duties, seeking funding to support recovery implementation, and ensuring one or more CBP representatives attend the annual meeting of the Gartersnake Conservation Working Group.

In order for the FWS to be kept informed of actions minimizing or avoiding adverse effects or benefiting listed species or their habitats, the FWS requests notification of the implementation of any conservation recommendations.
Mr. Paul Enriquez

Disposition of Dead or Injured Listed Species

Upon locating a dead, injured, or sick listed species, initial notification must be made to the FWS's Law Enforcement Office, 4901 Paseo del Norte NE, Suite D, Albuquerque, New Mexico 87113; 505-248-7889) within three working days of its finding. Written notification must be made within five calendar days and include the date, time, and location of the animal, a photograph if possible, and any other pertinent information. The notification shall be sent to the Law Enforcement Office with a copy to this office. Care must be taken in handling sick or injured animals to ensure effective treatment and care and in handling dead specimens to preserve the biological material in the best possible state.

REINITIATION NOTICE

This concludes formal consultation and conference on the actions outlined in your request. As provided in 50 CFR 402.16, reinitiation of formal consultation is required where discretionary Federal agency involvement or control over the action has been retained (or is authorized by law) and if: (1) the amount or extent of incidental take is exceeded; (2) new information reveals effects of the agency action that may affect listed species or critical habitat in a manner or to an extent not considered in this opinion; (3) the agency action is subsequently modified in a manner that causes an effect to the listed species or critical habitat not considered in this opinion; or (4) a new species is listed or critical habitat designated that may be affected by the action. In instances where the amount or extent of incidental take is exceeded, any operations causing such take must cease pending reinitiation.

With regard to proposed critical habitat for the northern Mexican gartersnake, you may ask us to confirm the conference opinion as a biological opinion issued through formal consultation if the proposed critical habitat is designated. The request must be in writing. If we review the proposed action and find there have been no significant changes in the action as planned or in the information used during the conference, we will confirm the conference opinion as the biological opinion for the project and no further section 7 consultation will be necessary.

Certain project activities may also affect species protected under the Migratory Bird Treaty Act (MBTA) of 1918, as amended (16 U.S.C. sec. 703-712) and/or bald and golden eagles protected under the Bald and Golden Eagle Protection Act (Eagle Act). The MBTA prohibits the taking, killing, possession, transportation, and importation of migratory birds, their eggs, parts, and nests, except when authorized by the FWS. The Eagle Act prohibits anyone, without a FWS permit, from taking (including disturbing) eagles, and including their parts, nests, or eggs. If you think migratory birds and/or eagles will be affected by this project, we recommend seeking our Technical Assistance to identify available conservation measures that you may be able to incorporate into your project.
Mr. Paul Enriquez

For more information regarding the MBTA and Eagle Act, please visit the following websites. More information on the MBTA and available permits can be retrieved from http://www.fws.gov/migratorybirds and http://www.fws.gov/migratorybirds/mbpermits.html. For information on protections for bald eagles, please refer to the FWS's National Bald Eagle Management Guidelines (72 FR 31156) and regulatory definition of the term "disturb" (72 FR 31132) published in the Federal Register on June 5, 2007 (http://www.fws.gov/southwest/es/arizona/BaldEagle.htm), as well at the Conservation Assessment and Strategy for the Bald Eagle in Arizona (SWBEMC.org).

In keeping with our trust responsibilities to American Indian Tribes, we encourage you to continue to coordinate with the Bureau of Indian Affairs in the implementation of this consultation and, by copy of this biological opinion, are notifying the Tohono O’odham Nation of its completion. We also encourage you to coordinate the review of this project with the Arizona Game and Fish Department.

We appreciate CBP’s efforts to identify and minimize effects to listed species from this project. Please refer to the consultation number, 02EAAZOO-2012-F-0170-R001 in future correspondence concerning this project. Should you require further assistance or if you have any questions, please contact Erin Fernandez (520) 670-6150 (x238) or Jean Calhoun (x223) of our Tucson Suboffice.

Sincerely,

Steven L. Spangle
Field Supervisor

cc (hard copy):
Steve Spangle, Field Supervisor, Fish and Wildlife Service, Phoenix, AZ (2)
Jean Calhoun, Assistant Field Supervisor, Fish and Wildlife Service, Tucson, AZ

cc (electronic copy):
Sid Slone, Refuge Manager, Cabeza Prieta National Wildlife Refuge, Ajo, AZ
Sally Flatland, Refuge Manager, Buenos Aires National Wildlife Refuge, Sasabe, AZ
Bill Radke, Refuge Manager, San Bernardino and Leslie Canyon National Wildlife Refuges, Douglas, AZ
Brent Range, Superintendent, Organ Pipe Cactus National Monument, Ajo, AZ
Ed Kender, Field Manager, Lower Sonoran Field Office, Bureau of Land Management,
Mr. Paul Enriquez

Phoenix, AZ
Melissa Warren, Field Manager, Tucson Field Office, Bureau of Land Management, Tucson, AZ
John MacDonald, Field Manager, Yuma Field Office, Bureau of Land Management, Yuma, AZ
Kerwin Dewberry, Forest Supervisor, Coronado National Forest, Tucson, AZ
Charles Buchanan, Director, 56th Range Management Office, Luke Air Force Base, Gila Bend, AZ
Lt Col Andrew Diviney, Operations Officer, Marine Corp Air Station, Yuma, AZ
Lane Baker, Superintendant, Coronado National Memorial, Hereford, AZ
Edward D. Manuel, Chairperson, Tohono O’Odham Nation, Sells, AZ
Chief, Habitat Branch, Arizona Game and Fish Department, Phoenix, AZ, pep@azgfd.gov
Raul Vega, Regional Supervisor, Arizona Game and Fish Department, Tucson, AZ
Pat Barber, Regional Supervisor, Arizona Game and Fish Department, Yuma, AZ
Mr. Paul Enriquez

LITERATURE CITED

Sonoran Pronghorn

Northern Mexican Gartersnake

Cogan, R. 2015. E-mail correspondence from Roger Cogan, Conservation Coordinator at Appleton-Whittell Research Ranch, National Audubon Society (April 7, 2015; 1117 hrs).

Fitzgerald, L. A. 1986. A preliminary status survey of *Thamnophis rufipunctatus* and *Thamnophis eques* in New Mexico. Unpubl. report to New Mexico Department of Game and Fish, Albuquerque, New Mexico.

Watson, M.L. 2005. Habitat fragmentation and the effects of roads on wildlife and habitats: Background and literature Review. New Mexico Department of Game and Fish. 18 pp.
TABLES AND FIGURES

Table 1. Threatened and endangered bird species suitable habitat and nesting season for the Arizona TIMR project.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Suitable Habitat</th>
<th>Nesting Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masked bobwhite quail</td>
<td>Savannah grassland within Buenos Aires NWR</td>
<td>Jul 1-Nov 30</td>
</tr>
<tr>
<td>Mexican spotted owl</td>
<td>Closed-canopy forests [riparian, mixed conifer, pine-oak, and pinyon juniper woodland] and steep, narrow, entrenched, rocky canyons and cliffs within designated critical habitat</td>
<td>Mar 1-Jun 30</td>
</tr>
<tr>
<td>Southwestern willow flycatcher</td>
<td>Dense riparian habitat along streams, rivers, lakesides, and other wetland</td>
<td>Mar 15-Sep 15</td>
</tr>
<tr>
<td>Yellow-billed cuckoo</td>
<td>Riparian woodlands, Madrean evergreen woodlands, mesquite woodlands, or semi-desert grassland interspersed with Madrean evergreen woodland. Wide to narrow riparian reaches in drainages from low to high gradient. Permanent, intermittent, and ephemeral drainages. Hydro- to xeroriparian habitat. Drainages with continuous or patchy habitat, narrow stringers of trees or scattered trees. Habitat is generally willow-, mesquite-, or oak-dominated, but other</td>
<td>May 15-Sep 30</td>
</tr>
<tr>
<td>Yuma clapper rail</td>
<td>Freshwater marshes generally dominated by cattail [Typha spp.] and bulrush [Scirpus ssp.] with a mix of riparian trees and shrubs</td>
<td>Mar 15-Jul 15</td>
</tr>
</tbody>
</table>
Table 2. Wild and captive Sonoran pronghorn estimates after adoption of standard field surveys and sightability model for wild population estimations. Numbers in parentheses are 95% confidence intervals.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>-</td>
<td>-</td>
<td>179 (147-234)^b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1994</td>
<td>-</td>
<td>-</td>
<td>282 (205-489)^b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1996</td>
<td>-</td>
<td>-</td>
<td>130 (114-154)^b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1998</td>
<td>-</td>
<td>-</td>
<td>142 (125-167)^b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2000</td>
<td>34 (27-48)^c</td>
<td>311 (261-397)^c</td>
<td>99 (69-392)^i</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2002</td>
<td>25 (21-33)^c</td>
<td>260 (216-335) ^c</td>
<td>21 (18-33)^b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2004</td>
<td>59 (32-171)^c</td>
<td>624 (454-2079)^c</td>
<td>58 (40-175)^i</td>
<td>7^d</td>
<td>-</td>
</tr>
<tr>
<td>2005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15^a</td>
<td>-</td>
</tr>
<tr>
<td>2006</td>
<td>67 (54-195)^c</td>
<td>567 (445-1530)^c</td>
<td>68 (52-117)^b</td>
<td>25^d</td>
<td>-</td>
</tr>
<tr>
<td>2007</td>
<td>50 (36-162)^c</td>
<td>354 (327-852)^c</td>
<td>-</td>
<td>37^d</td>
<td>-</td>
</tr>
<tr>
<td>2008</td>
<td>-</td>
<td>-</td>
<td>68^e</td>
<td>51^a</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>101 (57-321)^f</td>
<td>381 (268-1158)^f</td>
<td>-</td>
<td>73^a</td>
<td>-</td>
</tr>
<tr>
<td>2010</td>
<td>-</td>
<td>-</td>
<td>76 (58-210)^i</td>
<td>70^c</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>52 (32-183)^f</td>
<td>189 (168-435)^f</td>
<td>-</td>
<td>75^g</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>-</td>
<td>-</td>
<td>159 (111-432)^h</td>
<td>98^i</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>No survey^j</td>
<td>434 (376-1105)^j</td>
<td>-</td>
<td>9^j</td>
<td>117^k</td>
</tr>
<tr>
<td>2014</td>
<td>122 (79-464)^i</td>
<td>202 (171-334)^h</td>
<td>30^l</td>
<td>119^l</td>
<td>-</td>
</tr>
<tr>
<td>2015</td>
<td>117 (98-224)^k</td>
<td>862 (759-2129)^l</td>
<td>-</td>
<td>130^m</td>
<td>-</td>
</tr>
<tr>
<td>2016</td>
<td>-</td>
<td>-</td>
<td>70 at Kofa^n</td>
<td>26 at Saucedan</td>
<td>-</td>
</tr>
</tbody>
</table>

^a including Cabeza Prieta NWR pen 2004-present; and Kofa NWR pen 2011-present; ^bBright and Hervert (2011); ^cBright et al. (2011); ^dU.S. Fish and Wildlife Service (2010b); ^eSonoran Pronghorn Recovery Team (2010); ^fJ. Bright, AGFD, personal communication, 2016; ^gSonoran Pronghorn Recovery Team (2011); ^hJ. Bright, AGFD,
Mr. Paul Enriquez

Table 3. Current population status of the northern Mexican gartersnake in the United States.

<table>
<thead>
<tr>
<th>Row</th>
<th>Location</th>
<th>Last Record</th>
<th>Suitable Physical Habitat Present</th>
<th>Native Prey Species Present</th>
<th>Harmful Nonnative Species Present</th>
<th>Predicted Population Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gila River (NM, AZ)</td>
<td>2013</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
</tr>
<tr>
<td>2</td>
<td>Spring Canyon (NM)</td>
<td>1937</td>
<td>Yes</td>
<td>Possible</td>
<td>Likely</td>
<td>Likely extirpated</td>
</tr>
<tr>
<td>3</td>
<td>Mule Creek (NM)</td>
<td>1983</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
</tr>
<tr>
<td>4</td>
<td>Mimbres River (NM)</td>
<td>Likely early 1900s</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely extirpated</td>
</tr>
<tr>
<td>5</td>
<td>Lower Colorado River (AZ)</td>
<td>2015</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely extirpated</td>
</tr>
<tr>
<td>6</td>
<td>Bill Williams River (AZ)</td>
<td>2012</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely viable</td>
</tr>
<tr>
<td>7</td>
<td>Big Sandy River (AZ)</td>
<td>2015</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely</td>
<td>Likely low density</td>
</tr>
<tr>
<td>8</td>
<td>Santa Maria River (AZ)</td>
<td>2015</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely</td>
<td>Likely low density</td>
</tr>
<tr>
<td>9</td>
<td>Agua Fria River (AZ)</td>
<td>1986</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
</tr>
<tr>
<td>10</td>
<td>Little Ash Creek (AZ)</td>
<td>1992</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
</tr>
<tr>
<td>11</td>
<td>Lower Salt River (AZ)</td>
<td>1964</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely extirpated</td>
</tr>
<tr>
<td>12</td>
<td>Black River (AZ)</td>
<td>1982</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
</tr>
<tr>
<td>13</td>
<td>Big Bonito Creek (AZ)</td>
<td>1986</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
</tr>
<tr>
<td>14</td>
<td>Tonto Creek (AZ)</td>
<td>2005</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely viable</td>
</tr>
<tr>
<td>15</td>
<td>Upper/Middle Verde River (AZ)</td>
<td>2012</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely viable</td>
</tr>
<tr>
<td>16</td>
<td>Oak Creek (AZ)</td>
<td>Page Springs and Bubbling Ponds State Fish Hatcheries</td>
<td>2015</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>Spring Creek (AZ)</td>
<td>2014</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Year</td>
<td>Status</td>
<td>Survey Effort</td>
<td>Density Note</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------</td>
<td>--------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Sycamore Creek (Yavapai/Coconino Co., AZ)</td>
<td>1954</td>
<td>Yes</td>
<td>Possible</td>
<td>Likely extirpated</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Upper Santa Cruz River/San Rafael Valley (AZ)</td>
<td>2015</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely viable</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Redrock Canyon/Cott Drainage (AZ)</td>
<td>2008</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Sonoita Creek (AZ)</td>
<td>2013</td>
<td>Yes</td>
<td>Possible</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Scotia Canyon (AZ)</td>
<td>2009</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Parker Canyon (AZ)</td>
<td>1986</td>
<td>Yes</td>
<td>Possible</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Las Cienegas National Conservation Area and Cienega Creek Natural Preserve (AZ)</td>
<td>2015</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Lower Santa Cruz River (AZ)</td>
<td>1956</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely extirpated</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Buenos Aires National Wildlife Refuge (AZ)</td>
<td>2000</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Brown Canyon (AZ)</td>
<td>2014</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Fort Huachuca (AZ)</td>
<td>1994</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Bear Creek (AZ)</td>
<td>1987</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>San Pedro River (AZ)</td>
<td>1996</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Babocomari River and Cienega (AZ)</td>
<td>1986</td>
<td>Yes</td>
<td>Possible</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Canelo Hills-Sonoita Grasslands Area (AZ)</td>
<td>2014</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>San Bernardino National Wildlife Refuge (AZ)</td>
<td>2005</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely low density</td>
<td></td>
</tr>
</tbody>
</table>

Notes: “Possible” means there were no conclusive data found. “Likely extirpated” means the last record for an area pre-dated 1980, and existing threats suggest the species is likely extirpated. “Likely low density” means there is a post-1980 record for the species, it is not reliably found with minimal to moderate survey effort, and threats exist which suggest the population may be low density or could be extirpated, but there is insufficient evidence to support extirpation. “Likely viable” means that the species is reliably found with minimal to moderate survey effort, and the population is generally considered to be somewhat resilient.

Last updated: 2-2016
Table 4. Land ownership for proposed critical habitat units for the northern Mexican gartersnake in the U.S. [Area estimates reflect all land within critical habitat unit boundaries. County-owned lands are considered as private lands.]

<table>
<thead>
<tr>
<th>Unit</th>
<th>Subunit</th>
<th>Land Ownership by Type</th>
<th>Size of Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Federal</td>
<td>State</td>
</tr>
<tr>
<td>Upper Gila River</td>
<td></td>
<td>10,845 ac (4,389 ha)</td>
<td>467 ac (189 ha)</td>
</tr>
<tr>
<td>Unit Total</td>
<td></td>
<td>10,845 ac (4,389 ha)</td>
<td>467 ac (189 ha)</td>
</tr>
<tr>
<td>Mule Creek</td>
<td></td>
<td>1,327 ac (537 ha)</td>
<td>1,253 ac (507 ha)</td>
</tr>
<tr>
<td>Unit Total</td>
<td></td>
<td>1,327 ac (537 ha)</td>
<td>1,253 ac (507 ha)</td>
</tr>
<tr>
<td>Bill Williams River</td>
<td></td>
<td>3,820 ac (1,546 ha)</td>
<td>516 ac (209 ha)</td>
</tr>
<tr>
<td>Unit Total</td>
<td></td>
<td>3,820 ac (1,546 ha)</td>
<td>516 ac (209 ha)</td>
</tr>
<tr>
<td>Agua Fria River Subbasin</td>
<td></td>
<td>3,313 ac (1,341 ha)</td>
<td>918 ac (372 ha)</td>
</tr>
<tr>
<td>Agua Fria River Mainstem</td>
<td></td>
<td>3,313 ac (1,341 ha)</td>
<td>918 ac (372 ha)</td>
</tr>
<tr>
<td>Little Ash Creek</td>
<td></td>
<td>877 ac (355 ha)</td>
<td>80 ac (32 ha)</td>
</tr>
<tr>
<td>Unit Total</td>
<td></td>
<td>4,010 ac (1,696 ha)</td>
<td>918 ac (372 ha)</td>
</tr>
<tr>
<td>Upper Salt River Subbasin</td>
<td></td>
<td>2,632 ac (1,065 ha)</td>
<td>13,760 ac (5,569 ha)</td>
</tr>
<tr>
<td>Black River</td>
<td></td>
<td>2,632 ac (1,065 ha)</td>
<td>13,760 ac (5,569 ha)</td>
</tr>
<tr>
<td>Big Bonito Creek</td>
<td></td>
<td>5,826 ac (2358 ha)</td>
<td>5,826 ac (2358 ha)</td>
</tr>
<tr>
<td>Unit Total</td>
<td></td>
<td>2,632 ac</td>
<td>19,586</td>
</tr>
<tr>
<td>Subbasin</td>
<td>Area</td>
<td>ac</td>
<td>Total</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>Tonto Creek</td>
<td>7,766 ac</td>
<td>1,170 ac</td>
<td>8,936 ac</td>
</tr>
<tr>
<td>Unit Total</td>
<td>7,766 ac</td>
<td>1,170 ac</td>
<td>8,936 ac</td>
</tr>
<tr>
<td>Verde River Subbasin</td>
<td>13,903 ac</td>
<td>1,209 ac</td>
<td>20,526 ac</td>
</tr>
<tr>
<td>Upper Verde River</td>
<td>1,873 ac</td>
<td>274 ac</td>
<td>3,386 ac</td>
</tr>
<tr>
<td>Oak Creek</td>
<td>2,572 ac</td>
<td>188 ac</td>
<td>3,131 ac</td>
</tr>
<tr>
<td>Unit Total</td>
<td>18,348 ac</td>
<td>1,671 ac</td>
<td>29,191 ac</td>
</tr>
<tr>
<td>Upper Santa Cruz River Subbasin</td>
<td>77,387 ac</td>
<td>3,969 ac</td>
<td>113,895 ac</td>
</tr>
<tr>
<td>Unit Total</td>
<td>77,387 ac</td>
<td>3,969 ac</td>
<td>113,895 ac</td>
</tr>
<tr>
<td>Redrock Canyon</td>
<td>1,423 ac</td>
<td>549 ac</td>
<td>1,972 ac</td>
</tr>
<tr>
<td>Unit Total</td>
<td>1,423 ac</td>
<td>549 ac</td>
<td>1,972 ac</td>
</tr>
<tr>
<td>Buenos Aires National Wildlife Refuge</td>
<td>117,313 ac</td>
<td>117,313 ac</td>
<td>117,313 ac</td>
</tr>
<tr>
<td>Unit Total</td>
<td>117,313 ac</td>
<td>117,313 ac</td>
<td>117,313 ac</td>
</tr>
<tr>
<td>Cienega Creek</td>
<td>24 ac</td>
<td>1,078 ac</td>
<td>11 ac</td>
</tr>
<tr>
<td>Cienega Creek</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subbasin

<table>
<thead>
<tr>
<th>Subbasin</th>
<th>Area (10 ha)</th>
<th>Area (436 ha)</th>
<th>Area (4 ha)</th>
<th>Area (450 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las Cienegas National Conservation Area</td>
<td>39,913 ac (16,152 ha)</td>
<td>5,105 ac (2,066 ha)</td>
<td>1 ac (<1 ha)</td>
<td>45,020 ac (18,219 ha)</td>
</tr>
<tr>
<td>Cienega Creek Natural Preserve</td>
<td></td>
<td></td>
<td>4,260 ac (1,724 ha)</td>
<td>4,260 ac (1,724 ha)</td>
</tr>
</tbody>
</table>

Unit Total

<table>
<thead>
<tr>
<th>Unit Total</th>
<th>Area (16,162 ha)</th>
<th>Area (2,502 ha)</th>
<th>Area (1,728 ha)</th>
<th>Area (20,393 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Pedro River Subbasin</td>
<td>39,937 ac (16,162 ha)</td>
<td>6,183 ac (2,502 ha)</td>
<td>4,272 ac (1,728 ha)</td>
<td>50,393 ac (20,393 ha)</td>
</tr>
<tr>
<td>San Pedro River</td>
<td>6,973 ac (2,822 ha)</td>
<td>1,163 ac (470 ha)</td>
<td>14,456 ac (5,850 ha)</td>
<td>22,669 ac (9,174 ha)</td>
</tr>
<tr>
<td>Bear Canyon Creek</td>
<td>639 ac (259 ha)</td>
<td>383 ac (155 ha)</td>
<td></td>
<td>1,022 ac (414 ha)</td>
</tr>
<tr>
<td>San Pedro River</td>
<td>7,612 ac (3,081 ha)</td>
<td>1,163 ac (470 ha)</td>
<td>14,839 ac (6,005 ha)</td>
<td>23,690 ac (9,587 ha)</td>
</tr>
<tr>
<td>Babocomari River/Cienega</td>
<td>625 ac (253 ha)</td>
<td>56 ac (23 ha)</td>
<td>2,773 ac (1,122 ha)</td>
<td>3,454 ac (1,398 ha)</td>
</tr>
<tr>
<td>Post Canyon</td>
<td>431 ac (175 ha)</td>
<td></td>
<td>363 ac (147 ha)</td>
<td>795 ac (322 ha)</td>
</tr>
<tr>
<td>O’Donnell Canyon</td>
<td>124 ac (50 ha)</td>
<td></td>
<td>274 ac (111 ha)</td>
<td>398 ac (161 ha)</td>
</tr>
<tr>
<td>Turkey Creek</td>
<td>888 ac (359 ha)</td>
<td>2 ac (1 ha)</td>
<td>788 ac (319 ha)</td>
<td>1,678 ac (679 ha)</td>
</tr>
<tr>
<td>Appleton-Whittell Research Ranch</td>
<td>5,283 ac (2,138 ha)</td>
<td></td>
<td>2,515 ac (1,018 ha)</td>
<td>7,798 ac (3,156 ha)</td>
</tr>
<tr>
<td>Canelo Hills Cienega Preserve</td>
<td></td>
<td></td>
<td>213 ac (86 ha)</td>
<td>213 ac (86 ha)</td>
</tr>
</tbody>
</table>

Unit Total

<table>
<thead>
<tr>
<th>Unit Total</th>
<th>Area (3,081 ha)</th>
<th>Area (1,122 ha)</th>
<th>Area (679 ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Pedro River</td>
<td>7,351 ac (3,081 ha)</td>
<td>58 ac (23 ha)</td>
<td>6,926 ac (2,773 ha)</td>
</tr>
<tr>
<td>Babocomari River/Cienega</td>
<td></td>
<td></td>
<td>14,334 ac (3,454 ha)</td>
</tr>
<tr>
<td></td>
<td>(2,975 ha)</td>
<td>(24 ha)</td>
<td>(2,803 ha)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>San Bernardino National Wildlife Refuge</td>
<td>2,387 ac (966 ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>302,338 ac (122,352 ha)</td>
<td>14,966 ac (6,057 ha)</td>
<td>19,855 ac (8,035 ha)</td>
</tr>
</tbody>
</table>

Note: Numbers may not sum due to rounding.
Figure 1. TIMR Project Area, Arizona (map provided by CBP).
Figure 2a. Action area for TIMR in Central and Eastern Arizona (map provided by CBP).
Figure 2b. Action area for TIMR in Western Arizona (map provided by CBP). Note, this map does not include proposed critical habitat for the acuña cactus.
Figure 3. Project Area for TIMR Project Additions on Organ Pipe Cactus National Monument, Arizona (map provided by CBP).
Figure 4. TIMR on the Tohono O’odham Nation, Arizona (map from CBP’s February 3, 2015 letter).
Figure 5. Historical and current ranges of Sonoran pronghorn in the United States and Mexico (the “Cabeza Prieta Range” is the range of the endangered Sonoran pronghorn population in the U.S.).
Figure 6. 10(j) Nonessential Experimental Population area for Sonoran pronghorn in southwestern Arizona, United States.
Figure 7. Northern Mexican gartersnake critical habitat map.
APPENDIX A. Concurrences

Yellow-billed Cuckoo and its proposed critical habitat

Environmental Baseline

The Western Distinct Population Segment (DPS) is listed as a threatened species (USFWS 2014b). In most of the range, western yellow-billed cuckoos primarily breeds in cottonwood-willow dominated riparian habitat along low-gradient rivers and streams, and in open riverine valleys that provide wide floodplain conditions. However, in the southwest, cuckoos can also breed in higher gradient and narrower drainages, and in ephemeral reaches of hydro- or xeroriparian habitat. Woodland habitat in drainages may be continuous or patchy with openings. Suitable habitat may also consist of narrow stringers of trees, or scattered trees. Trees in ephemeral drainages may include narrow to wide reaches of one or more of the following species: willow, cottonwood, mesquite, oak, sycamore, hackberry, alder, ash, walnut, acacia, elderberry, soapberry, tamarisk, juniper, and desert willow. Western yellow-billed cuckoos in Arizona also use drainages and hillsides of mesquite and oak woodlands some distance from riparian gallery forests, including the foothills and mountains of southern Arizona. Yellow-billed cuckoos occur throughout the action area in appropriate habitat from May through September.

Critical habitat for the yellow-billed cuckoo was proposed on August 15, 2014 (USFWS 2014a). Proposed critical habitat encompasses 546,335 acres across the western United States (see Figure A-1 for a map of proposed critical habitat units in Arizona). A revised proposed rule that may include additional proposed critical habitat is under development. Critical habitat Unit AZ-18 Upper San Pedro, Unit AZ-23 Arivaca Wash, and San Luis Wash, and Unit AZ-27 Black Draw are within the action area of the TIMR project. No critical habitat is proposed on the Tohono O’odham Nation. A total of 7 miles of non-waived roads within proposed yellow-billed cuckoo habitat are proposed to be maintained under the TIMR program.

The primary constituent elements of proposed yellow-billed cuckoo critical habitat include (we note that the following primary constituent elements in the proposed critical habitat rule are undergoing review and may be adjusted to better characterize Arizona habitat conditions in a future revised proposed rule):

1. Riparian woodlands (willow-cottonwood, mesquite thornforest, or a combination of these) in contiguous or nearly contiguous patches of at least 200 acres in extent and at least 325 feet wide, with at least one nesting grove (often willow dominated with average canopy closure of more than 70 percent), and a cooler, more humid environment than surrounding areas;
2. Adequate prey base, including a large insect fauna (e.g., cicadas, caterpillars, katydids, grasshoppers, large beetles, and dragonflies) and treefrogs in breeding areas and postbreeding dispersal areas; and

3. Dynamic riverine processes, especially including river system having hydrologic processes that promote regular habitat regeneration (sediment movement, seedling germination, plant vigor and growth), which leads to patches of old and new riparian vegetation.

Determination of Effects

We concur with your determination that the proposed action may affect, but is not likely to adversely affect yellow-billed cuckoos and their critical habitat for the following reasons:

• No TIMR activities will occur during the yellow-billed cuckoo migration/nesting season in suitable habitat, except in emergency circumstances where cuckoos are determined not to be present (based on results of weekly protocol surveys). Therefore, any potential direct effects due to disturbance from TIMR activities are discountable.
• Although the TIMR project may have minor impacts to yellow-billed cuckoo habitat, the amount of habitat potentially affected is a very small portion of available habitat. Therefore, any potential indirect effects due to impacts to cuckoo habitat are insignificant.
• The area of proposed yellow-billed critical habitat potentially affected by TIMR activities is relatively small (no area was provided by CBP; however, assuming roads to be maintained average 12 feet in width, about 10 acres [12 feet x 7 miles] within proposed yellow-billed critical habitat will be affected by the TIMR project). Within this area, although some minor impacts to yellow-billed critical habitat may occur, TIMR Program activities will have no measurable effect to the primary constituent elements of proposed critical habitat for the yellow-billed cuckoo. Therefore, direct and indirect effects to proposed yellow-billed critical habitat from TIMR project are insignificant.
• BMPs are in place that help ensure primary constituent elements of proposed critical habitat, as well as general yellow-billed cuckoo habitat, are not significantly impacted. For example, General BMP #3 in the 2012 Biological Opinion states “Vegetation control outside the immediate footprint of the tactical infrastructure within suitable habitat and within the range or designated critical habitat of threatened and endangered species will be limited. If a threatened or endangered species, primary constituent element, or other indicators of suitable habitat occur within the project area, then further consultation with FWS will be required.”
Mr. Paul Enriquez

Lesser long-nosed bat (*Leptonycteris curasoae yerbabuenae*)

Based on the information received regarding project component #s 2 (additions within OPCNM) and 3 (the expansion of TIMR to the TON), our concurrence with your determination that the proposed project may affect, but is not likely to adversely affect the lesser long-nosed bat previously provided for the TIMR project (in biological opinion #02EAAZOO-2012-F-0170, dated November 6, 2012) remains the same. The effects and conclusion of the proposed additions within OPCNM and expansion of TIMR to the TON remain the same as previously analyzed. This conclusion is based on full implementation of the proposed project, including all BMPs and conservation measures included in the 2012 Biological Opinion.

Jaguar (*Panthera onca*) and its Critical Habitat

Based on the information received regarding project component #s 1 (newly listed species and critical habitat) and 3 (the expansion of TIMR to the TON), our concurrence with your determination that the proposed project may affect, but is not likely to adversely affect the jaguar previously provided for the TIMR project (in biological opinion #02EAAZOO-2012-F-0170, dated November 6, 2012) remains the same. The effects and conclusion of the proposed expansion of TIMR to the TON remain the same as previously analyzed.

With regard to the effects of project component #s 1 (newly listed species and critical habitat) and 2 (the expansion of TIMR to the TON) on jaguar critical habitat, we provide our concurrence with your determination that the proposed TIMR project may affect, but is not likely to adversely affect jaguar critical habitat. Our analysis is below.

Environmental Baseline of Jaguar Critical Habitat

Critical habitat (as defined under the ESA) for the jaguar was designated in the United States on March 5, 2014 for approximately 309,263 ha (764,207 ac) in Pima, Santa Cruz, and Cochise counties, Arizona, and Hidalgo County, New Mexico in six critical habitat units (USFWS 2014c; Figure A-2): (1) Baboquivari Unit divided into subunits (1a) Baboquivari-Coyote Subunit, including the Northern Baboquivari, Saucito, Quinlan, and Coyote Mountains, and (1b) the Southern Baboquivari Subunit; (2) Atascosa Unit, including the Pajarito, Atascosa, and Tumacacori Mountains; (3) Patagonia Unit, including the Patagonia, Santa Rita, Empire, and Huachuca Mountains, and the Canelo and Grosvenor Hills; (4) Whetstone Unit, divided into subunits (4a) Whetstone Subunit, (4b) Whetstone-Santa Rita Subunit, and (4c) Whetstone-Huachuca Subunit; (5) Peloncillo Unit, including the Peloncillo Mountains both in Arizona and New Mexico; and (6) San Luis Unit, including the northern extent of the San Luis Mountains at the New Mexico-Mexico border. Critical habitat units 1 (Baboquivari Unit), 2 (Atascosa Unit), and 3 (Patagonia Unit) are within the action area of the TIMR project. No critical habitat is designated on the Tohono O’odham Nation. A total of 124 miles of non-waived roads within designated jaguar critical habitat are proposed to be maintained under the TIMR program.
Mr. Paul Enriquez

The primary constituent elements of critical habitat essential to the conservation of the jaguar within areas of expansive open spaces in the southwestern United States at least 100 km² (37 mi²) in size are those which:

1. Provide connectivity to Mexico;
2. Contain adequate levels of native prey species, including deer and javelina, as well as medium-sized prey such as coatis, skunks, raccoons, or jackrabbits;
3. Include surface water sources available within 20 km (12.4 mi) of each other;
4. Contain greater than 1 to 50 percent canopy cover within Madrean evergreen woodland, generally recognized by a mixture of oak, juniper, and pine trees on the landscape, or semidesert grassland vegetation communities, usually characterized by *Pleuraphis mutica* (tobosagrass) or *Bouteloua eriopoda* (black grama) along with other grasses;
5. Are characterized by intermediately, moderately, or highly rugged terrain;
6. Are below 2,000 m (6,562 ft) in elevation; and
7. Are characterized by minimal to no human population density, no major roads, or no stable nighttime lighting over any 1-square-km (0.4-square-mi) area (expressed as an HII of less than 20).

Determination of Effects on Jaguar Critical Habitat

We concur with your determination that the proposed action may affect, but is not likely to adversely affect jaguar critical habitat for the following reasons:

- The area of jaguar critical habitat potentially affected by TIMR activities is relatively small (no area was provided by CBP; however, assuming roads to be maintained average 12 feet in width, about 180 acres [12 feet x 124 miles] within jaguar critical habitat will be affected by the TIMR project). Within this area, although some minor impacts to general jaguar habitat may occur, TIMR Program activities will have no measurable effect to the primary constituent elements of jaguar critical habitat. Therefore, direct and indirect effects to jaguar critical habitat from TIMR project are insignificant.
- BMPs are in place that help ensure primary constituent elements are not significantly impacted. For example, General BMP #3 in the 2012 Biological Opinion states “Vegetation control outside the immediate footprint of the tactical infrastructure within
suitable habitat and within the range or designated critical habitat of threatened and endangered species will be limited. If a threatened or endangered species, primary constituent element, or other indicators of suitable habitat occur within the project area, then further consultation with FWS will be required.”

- It is likely that road maintenance may help reduce off-road incursion (or “drive arounds”) due to poor road conditions. Therefore, potential indirect effects to jaguar critical habitat from reduced incursion into jaguar critical habitat may be beneficial.
- No jaguar critical habitat occurs on the Tohono O’odham Nation; therefore, any potential direct or indirect effects to jaguar critical habitat from the TON TIMR project are discountable.

Acuña cactus (Echinomastus erectocentrus var. acunensis) and its Proposed Critical Habitat

Environmental Baseline

The acuña cactus is listed as an endangered species (USFWS 2012) and occurs in valleys and on small knolls and gravel ridges of up to 30 percent slope in the Palo Verde-Saguaro Association of the Arizona Upland subdivision of the Sonoran Desert scrub at 365 to 1,150 m (1,198 to 3,773 ft) in elevation. It currently occurs in Maricopa, western Pima, and Pinal counties.

Critical habitat for the acuña cactus was proposed on July 8, 2013 and encompasses 18,921 acres in Maricopa, western Pima, and Pinal counties (USFWS 2013) (Figure A-3). Critical habitat Unit 1 (“OPCNM”; on OPCNM) and Unit 2 (“Ajo”; on BLM lands) are within the action area. About 6 miles of non-waived roads within proposed acuña cactus are proposed to be maintained under the TIMR program.

The primary constituent elements of proposed acuña cactus critical habitat include:

(i) Native vegetation within the Paloverde-Cacti-Mixed Scrub Series of the Arizona Upland Subdivision of the Sonoran Desert-scrub at elevations between 365 to 1,150 m (1,198 to 3,773 ft). This vegetation must contain predominantly native plant species that:

a. Provide protection to the acuña cactus. Examples of such plants are creosote bush, ironwood, and palo verde;

b. Provide for pollinator habitat with a radius of 900 m (2,953 ft) around each individual, reproducing acuña cactus;

... continue

(iii) Soils overlying rhyolite, andesite, tuff, granite, granodiorite, diorite, or Cornelia quartz...
Determination of Effects

We concur with your determination that the proposed action may affect, but is not likely to adversely affect acuña cactus and its proposed critical habitat for the following reasons:

- Because all TIMR activities near acuña cactus will occur within the footprint of roads, direct effects to acuña cactus from being crushed by vehicles or pedestrians associated with TIMR are discountable.
- Although dust can impact acuña cactus (e.g., negatively affect plant photosynthesis, respiration, transpiration, water use efficiency, leaf conductance, growth rate, vigor, and gas exchange), BMPs are in place to control dust resulting from TIMR activities (Acuña Cactus BMP #1 and other dust control BMPs included in the 2012 Biological Assessment). Therefore, potential indirect effects to acuña cactus from dust are insignificant.
- Although invasive species can impact acuña cactus and its proposed critical habitat, BMPs are in place to ensure invasive species introduction is prevented (Vegetation BMP #5). Therefore potential indirect effects to acuña cactus and its proposed critical habitat from invasive species are discountable.
- It is likely that road maintenance may help reduce off-road incursion (or “drive arounds”) due to poor road conditions. Therefore, potential indirect effects to acuña cactus and its proposed critical from reduced incursion into acuña cactus proposed critical habitat may be beneficial.

LITERATURE CITED

Mr. Paul Enriquez

FIGURES

Figure A-1. Proposed critical habitat for the yellow-billed cuckoo in Arizona (note Unit A27 should be located in the southeastern corner of Arizona).
Figure A-2. Jaguar critical habitat in Arizona and New Mexico.
Figure A-3. Proposed acua cactus critical habitat in Arizona.
In Reply Refer To:
AESO/SE
02EAAZOO-2012-F-0170

November 6, 2012

Mr. Christopher J. Colacicco, Director
U.S. Customs and Border Protection
Border Patrol Facilities and Tactical Infrastructure
Program Management Office
1300 Pennsylvania Avenue NW
Washington, DC 20229

Dear Mr. Colacicco:

Thank you for your request for formal consultation with the U.S. Fish and Wildlife Service (FWS) pursuant to section 7 of the Endangered Species Act of 1973 (16 U.S.C. 1531-1544), as amended (ESA). Your request was received by us on April 02, 2012, and was supplemented with additional information, as requested in our letter of May 15, 2012, with a revised Biological Assessment (BA) dated July 2012. At issue are possible effects of the proposed Tactical Infrastructure Maintenance and Repair Program (TIMR) along the U.S./Mexico international border in Arizona.

The U.S. Customs and Border Protection (CBP) concluded that the proposed project “may affect, and is likely to adversely affect” the endangered Sonoran pronghorn (*Antilocapra americana sonoriensis*), the endangered Pima pineapple cactus (*Coryphantha scheeri* var. *robustispina*), the endangered Sonoran tiger salamander (*Ambystoma tigrinum stebbinsi*), and the threatened Chiricahua leopard frog (*Lithobates chiricahuensis*) and its designated critical habitat. These species and critical habitat are the subject of this Biological Opinion (BO).

CBP also concluded that the proposed action “may affect, but is not likely to adversely affect” the Caneo Hills ladies' tresses (*Spiranthes delitescens*), Cochise pincushion cactus (*Escobaria robbinsiorum*), Huachuca water umbel (*Lilaeopsis schaffneriana* var. *recurva*) and designated critical habitat, desert pupfish (*Cyprinodon macularius*), Gila chub (*Gila intermedia*) and designated critical habitat, Gila topminnow (*Poeciliopsis occidentalis occidentalis*), Quitobaquito pupfish (*Cyprinodon eremus*) and designated critical habitat, Sonoran chub (*Gila ditaenia*) and designated critical habitat, New Mexico ridge-nosed rattlesnake (*Crotalus willardi obscurus*), masked bobwhite
Mr. Christopher J. Colacicco

(Colinus virginianus ridgwayi), Mexican spotted owl (Strix occidentalis lucida) and designated critical habitat, southwestern willow flycatcher (Empidonax traillii extimus) and proposed critical habitat, Yuma clapper rail (Rallus longirostris yumanensis), jaguar (Panthera onca), lesser long-nosed bat (Leptonycteris yerbabuenae), and ocelot (Leopardus pardalis). We concur with your determination on these species and provide our rationale in Appendix A. CBP has determined that there would be no effect to all other listed species and their designated or proposed critical habitats that occur within the action area for the TIMR Program.

This BO is based on information provided in CBP’s BA addressing the proposed TIMR Program along the U.S./Mexico international border in Arizona, the draft Environmental Assessment (EA) addressing the proposed TIMR Program, telephone conversations and meetings between our staffs, and other sources of information found in the administrative record supporting this BO. Literature cited in this BO is not a complete bibliography of all literature available on the types of activities included in the TIMR Program or the species addressed in this consultation. A complete administrative record of this consultation is on file at this office.

CONSULTATION HISTORY

May 24, 2011: FWS and CBP met to discuss the proposed project.

August 12, 2011: CBP provided a preliminary draft EA and preliminary draft BA.

August 15, 2011: The Department of the Interior (DOI) formally requested location maps or geographical information system data for infrastructure discussed in the EA and BA; CBP declined to provide this information.

August 29, 2011: FWS provided comments to CBP on the preliminary draft EA and preliminary draft BA.

September 22, 2011: FWS received CBP’s response to comments on the preliminary draft EA.

September 23, 2011: CBP made a draft EA available for public review and comment.

October 19, 2011: FWS and CBP held a teleconference to discuss consultation on the proposed project.

October 21, 2011: FWS provided comments on the draft EA.

November 09, 2011 through March 15, 2012: FWS and CBP held various meetings and discussions related to this consultation, and both agencies reviewed and commented on various drafts of the BA for this project.

March 22, 2012: FWS provided comments to CBP on the final draft BA.

April 02, 2012: FWS received CBP’s request for initiation of formal consultation, along with a revised BA dated April 2012.
May 15, 2012: FWS submitted a 30-day letter to CBP requesting additional information needed to start formal consultation.

June 13, 2012: FWS received a detailed CBP response to the 30-day letter.

July 11, 2012: FWS received a revised BA dated July 2012.

August 31, 2012: FWS provided a draft BO to CBP for review and comment.

September 12 and 19, 2012: FWS received comments on the Draft BO from CBP.

BIOLOGICAL OPINION

DESCRIPTION OF THE PROPOSED ACTION

A complete description of the proposed action is found in your April 02, 2012 letter, the July 2012 BA, and the September 2011 public draft EA, and is incorporated herein by reference. The purpose of this project is to ensure that the physical integrity of the existing tactical infrastructure and associated supporting elements continue to perform as intended and assist the United States Border Patrol (USBP) in securing the U.S./Mexico international border in Arizona. The need for the proposed Tactical Infrastructure Maintenance and Repair Program (TIMR) is to ensure that the effective level of border security provided by the installed tactical infrastructure is not compromised by acts of sabotage, acts of nature, or a degradation of integrity due to a lack of maintenance and repair. CBP must ensure that tactical infrastructure functions as it is intended, which assists CBP with its mission requirements. Tactical infrastructure would be maintained to ensure USBP agent safety by preventing potential vehicular accidents by minimizing and eliminating hazardous driving conditions.

The Department of Homeland Security (DHS) and CBP propose to initiate a Selective Maintenance and Repair Program (TIMR Program) to maintain and repair certain tactical infrastructure along the U.S./Mexico international border in the State of Arizona. The scope of the TIMR Program includes reactive maintenance and repair activities (e.g., resolving damage from intentional sabotage or severe weather events) and preventative/scheduled maintenance and repair activities designed to ensure environmental sustainability (e.g., culvert replacement, drainage and grate cleaning, preventative measures to prevent soil erosion) over the functional life of the covered infrastructure. All maintenance and repair activities would be coordinated by the CBP Facilities Management and Engineering (FM&E) Sector Coordinator and managed by the Project Management Office’s Maintenance and Repair Supervisor.

The tactical infrastructure proposed to be maintained and repaired consists of fences and gates, roads and bridges/crossovers, drainage structures and grates, lighting and ancillary power systems, and communication and surveillance tower components (including, but not limited to Remote Video Surveillance System [RVSS] and Secure Border Initiative (SBInet) towers, which shall hereafter be
referred to as towers). Figure 1 depicts the general area where the existing tactical infrastructure components covered in this Biological Opinion (BO) are found. The tactical infrastructure occurs in both USBP sectors in Arizona: Tucson and Yuma. The Tucson Sector is entirely within Arizona, and a portion of the Yuma Sector is in Arizona (see Figure 1).

To accommodate changes in the location of border security threats, requests from landowners and land managers, and other changing situations, the location and amount of tactical infrastructure to be maintained and repaired under the proposed action, as described in this BO, could change over time. However, the best management practices (BMPs) and conservation measures (CMs) that are described in this document, and the associated thresholds that would result in further coordination with the FWS, were developed to apply to and address the potential impacts of all tactical infrastructure currently included in the program or that might be included in the future. If CBP proposes to add maintenance and repair of other existing tactical infrastructure within the suitable habitat for any species for which this BO determines the proposed action could result in adverse affects, then CBP will further discuss and coordinate such maintenance and repair with FWS prior to initiating those actions to determine if reinitiation of this consultation is warranted. An exception to this is related to the Pima pineapple cactus. CBP has agreed to a conservation measure for this species which would address any additional impacts from added infrastructure, removing the need for reinitiation related to the Pima pineapple cactus.

This BO addresses the maintenance and repair of existing tactical infrastructure along the U.S./Mexico international border in Arizona. However, the maintenance and repair of existing tactical infrastructure assets for which environmental compliance (National Environmental Policy Act compliance, not necessarily ESA compliance) has been completed are not included within the scope of the Program or this BO. In addition, tactical infrastructure assets that are covered by a waiver issued by the Secretary are also excluded from the scope of this BO. This BO also does not address maintenance and repair of any tactical infrastructure located on Tribal lands in southern Arizona. Compliance with section 7 of the ESA for construction or installation of new tactical infrastructure also is not addressed in this BO.

Project Location

With one exception, the tactical infrastructure addressed in this BO exists along or within 50 miles of the U.S./Mexico international border in Arizona, and most of the maintenance and repair activities associated with the Program would occur within 25 miles of the border. In addition, one road to be maintained under the Program is located 50 to 60 miles north of the border, near Three Points, Arizona, north of Highway 86 and south of the Roskruge Mountains. To accommodate changes in missions, requests from landowners and managers, and other changing situations, additional existing roads and other tactical infrastructure within the action area may be added to this program in the future and maintained and repaired as described in this consultation, including additional coordination with the FWS as appropriate.

1 Under the April 1, 2008, waiver, the Secretary, pursuant to his authority under Section 102(c) of the Illegal Immigration Reform and Immigrant Responsibility Act of 1996, as amended, exercised his authority to waive certain environmental and other laws in order to ensure the expeditious construction of tactical infrastructure along the U.S./Mexico international border.
Project Implementation

Tactical infrastructure plays an important role in the CBP border enforcement strategy. The FM&E Border Patrol Facilities Tactical Infrastructure (BPFTI) Program Management Office (PMO) team would be responsible for the program planning, design, and implementation of maintenance and repair of all tactical infrastructure assets under the TIMR Program. The BPFTI PMO employs interdisciplinary technical staff, including CBP, sector, and contracted personnel, to participate in developing, reviewing, and implementing sector work plans. The BPFTI PMO would be responsible for formulating standard design specifications, which would consider BMPs and CMs, including those that prevent or minimize effects to listed species (see Best Management Practices and Conservation Measures sections below). They would also assess the condition of the existing tactical infrastructure to determine the priority and type of maintenance and repair needed. Within the BPFTI PMO, highly trained, full-time maintenance and repair program managers (PMs) and interdisciplinary subject matter experts (SMEs), including environmental specialists, are assigned to each USBP sector. The sector BPFTI maintenance and repair PMs are responsible for scheduling maintenance and repair activities and ensuring appropriate BMP measures are incorporated into all aspects of maintenance and repair activities. The environmental specialists and other SMEs would provide technical expertise to determine the BMPs that need to be implemented for specific maintenance and repair activities, depending on the environmental conditions and presence of listed species and their habitat.

The TIMR Program consists of preliminary planning, work plan development, work plan authorization, and plan execution. The process for developing the maintenance and repair work plan involves the steps listed below (also see Figure 2a and 2b for the work plan flowchart), which specifically focus on including BMPs that are applicable to threatened and endangered species.

Preliminary Maintenance and Repair Planning

- Step 1. USBP Sector personnel (USBP agents and field maintenance staff) and sector BPFTI maintenance and repair PMs identify and recommend maintenance and repair needs. This includes work scopes negotiated with Federal land managers and formally documented in interagency agreements. The BPFTI PMO has identified the CBP-managed tactical infrastructure assets that currently require periodic maintenance and repair, and additional infrastructure that is necessary to support CBP’s missions will be identified in the future. The BPFTI PMO has also determined whether or not CBP has appropriate real estate instruments (e.g., easements, special use permits, and license agreements) and environmental clearances. Under the BPFTI Selective Maintenance and Repair Program, maintenance and repair would only be scheduled for tactical infrastructure assets with the appropriate approvals.

- Step 2. A team consisting of CBP BPFTI PMO and supporting contracted interdisciplinary SMEs, including the environmental SME, would participate in determining the appropriate BMPs and best technical approach for ensuring desired specifications. CBP is continuously developing and refining maintenance and repair techniques based on new technologies and their effectiveness. As a starting point, CBP has adopted manufacturer recommendations, regulatory guidelines, and requirements from land management agencies. Section 7
consultation falls under this step and the BMPs developed to minimize or avoid effects to listed species are an integral element of the program.

Work Plan Development

- **Step 3a.** The USBP sector BPFTI maintenance and repair PMs would develop a work plan of maintenance and repair activities for specified time intervals (e.g., quarterly, semi-annually, or some other time interval in accordance with the terms and condition of contracts and availability of funding). In coordination with USBP sector leadership, the maintenance and repair PMs would identify and prioritize maintenance and repair activities needed to remedy tactical infrastructure functional deficiencies. At the same time, the USBP sector BPFTI maintenance and repair PMs would define the maintenance and repair work scope and methods, incorporating all applicable BMPs, as provided by the environmental SME in Step 3b.

- **Step 3b.** The sector environmental SMEs would determine if species-specific BMPs need to be included in the work plan (see Figure 2b). The sector environmental SME would first determine if the activities fall within the range of a listed species. If any threatened or endangered species potentially occur in the geographic location of the maintenance and repair activities included in the work plan, the environmental SME would then determine if the activities are within the thresholds of BMPs specific for each listed species. If the activities are within those thresholds, the sector environmental SME would provide the applicable BMPs to the BPFTI maintenance and repair PMs for inclusion in the maintenance and repair work plan. If the environmental SME determines that any activity in the work plan is outside of the thresholds of the BMPs, and thus not covered by this BO and associated consultation, CBP would consult on the planned activities as required by section 7 of the ESA. General BMPs would be included for all maintenance and repair activities in the work plan, regardless of location or time period of activities.

To determine which listed species must be considered for each activity, whether the BMP thresholds apply, and which species-specific BMPs must be implemented for each activity, the environmental SME would evaluate all available sources of data, including prior survey data, aerial photographs, site visits, previously developed environmental documentation, and information from contracted biologists. The environmental SMEs would determine if a survey conducted by a qualified biologist is required prior to maintenance and repair activities to determine if threatened or endangered species habitat is present or if required by a BMP. If necessary, the environmental SMEs would coordinate further with the FWS on an as-needed basis to clarify any compliance requirements, and would request updated information on the status and location of listed species within the action area annually or as needed. The environmental SMEs would ensure and endorse that all BMPs are incorporated into the work plan for maintenance and repair activities, where necessary.

- **Step 3c.** The USBP sector BPFTI maintenance and repair PMs would coordinate with appropriate landowners regarding the development of work plans and the scheduling of maintenance and repair activities. The environmental SMEs would coordinate with land
management agencies to ensure that all applicable agency-specific BMPs contained in Memoranda of Understanding or other agreements developed with those agencies to describe how maintenance will be conducted have been incorporated into the work plan.

Work Plan Authorizations

- **Step 4.** The USBP sector BPFTI maintenance and repair PMs would develop cost estimates for the proposed maintenance and repair work plans based on scope, work method, and applicable BMPs. Once the work plan costs have been finalized and vetted within the USBP sector level, the work plan would be submitted to the CBP chain-of-command for approval. The environmental SME’s concurrence with the appropriate BMP measures will be required before the work plan is reviewed by the CBP chain-of-command. The required funding is only then provided once the work plan is approved by the BPFTI PMO.

Work Plan Execution

- **Step 5.** Work Plan activities would be performed by fully trained and qualified sector personnel (both CBP in-house and contractors) who have been trained by CBP on BMP importance and implementation. Where necessary according to species-specific BMPs and CMs, CBP would hire a qualified biologist to monitor maintenance and repair activities, to ensure that (listed) species or their habitat are not present.

- **Step 6.** A CBP BPFTI maintenance and repair team member (i.e., Sector PM, environmental SME, or Contracting Officer) or their representatives would inspect the completed work and ensure it was completed to the prescribed design specifications and that the standards and the required BMPs and CMs were followed.

- **Step 7.** CBP BPFTI maintenance and repair team members, including CBP, sector, and contractor personnel, would provide suggestions for future work plans based on the execution and outcomes of tactical infrastructure maintenance and repair and would support the interdisciplinary technical team in developing improved maintenance and repair solutions in the future.

Appropriate environmental training is a prerequisite for personnel actively engaged in the CBP BPFTI Selective Maintenance and Repair Program. CBP has developed a series of on-the-job training sessions to ensure that all team members are fully aware of their job responsibilities to ensure the appropriate BMPs are properly implemented. These personnel would receive additional environmental training on an as-needed basis, appropriate to their role in tactical infrastructure maintenance and repair. This approach fully incorporates CBP’s efforts to integrate their environmental compliance policies and practices.

CBP will provide an annual report to FWS within three months of the end of the calendar year for all TIMR activities that took place within the range of listed species. The report will include the CMs and BMPs that were implemented, any federally-listed species observed at or near project sites, any monitoring of endangered species for which the BO determines there will be an adverse effect, and any take as outlined within the incidental take statements below. CBP and the FWS Arizona
Ecological Services Office will meet annually either in person or via teleconference to discuss this report.

Implementation Based on Land Ownership

The TIMR Program addresses tactical infrastructure that occurs within or crosses multiple privately owned land parcels; and public lands managed by the Department of the Interior (U.S. Bureau of Land Management, National Park Service, FWS), U.S. Department of Agriculture (i.e., U.S. Forest Service [USFS]), and U.S. Department of Defense. CBP will develop a comprehensive protocol for coordinating the necessary maintenance and repair activities within the different types of landownership.

CBP-owned Tactical Infrastructure: CBP would undertake necessary maintenance and repair activities in accordance with the planning process discussed previously to ensure the continuity of the intended functionality of the existing tactical infrastructure and to protect invested resources as responsible stewards of Federal resources entrusted to CBP.

Tactical Infrastructure Assets on Lands Managed by Other Federal Agencies: CBP will establish mutually agreed-upon processes for performing maintenance and repair activities on tactical infrastructure on lands managed by the agencies listed above. CBP is committed to work through the appropriate permit-granting authority established within these agencies to ensure that CBP proposed maintenance and repair activities would be accomplished in a manner that is mutually beneficial to all agencies. As an example of this commitment, CBP is developing a Memorandum of Understanding with the National Park Service that will describe how maintenance and repair of roads and other tactical infrastructure on Organ Pipe Cactus National Monument (OPCNM) will be conducted. Similar agreements will be developed with other land management agencies as required.

This BO does not address activities within San Bernardino National Wildlife Refuge (NWR), as CBP currently has no requirements to maintain tactical infrastructure within or around that refuge or adjacent private property, including areas where threatened, endangered, or proposed species occur. If, in the future, CBP needs to maintain roads or other infrastructure on that refuge that has not already been waived or has otherwise addressed ESA issues, CBP will develop a maintenance agreement with the refuge and consult as required by the ESA.

Tactical Infrastructure Assets on Private Lands: CBP would conduct maintenance and repair activities on privately held properties under voluntary cooperation from private landowners. No maintenance and repair would occur without a consent agreement in place between CBP and cooperating landowners.

Tactical Infrastructure Assets on Tribal Lands: This BO does not address any maintenance or repair activities to be conducted by CBP on Tribal lands. CBP will formally seek consultations with the representatives of federally-recognized Native American tribes to undertake the necessary maintenance and repair of tactical infrastructure assets on Tribal land. At that time, CBP also will complete any consultation activities required by the ESA related to Tribal lands.
Project Components

CBP proposes to conduct the following forms of tactical infrastructure maintenance and repair for existing tactical infrastructure, including fences and gates, roads and bridges/crossovers, drainage structures and grates, designated open observation zones, lighting and ancillary power systems, and communication and surveillance tower components. All maintenance and repair activities would be coordinated by the CBP FM&E Sector Coordinator in close coordination with the sector and managed by the Project Management Office’s Maintenance and Repair Supervisor. The maintenance and repair activities are necessary to repair damages caused by natural disasters, normal deterioration due to wear and tear, and intentional destruction or sabotage. Maintenance and repair standards to be followed during this work are provided in Appendix C of the EA that addresses the Program and are incorporated herein by reference. Tactical infrastructure covered by the Secretary’s waiver or prior National Environmental Policy Act (NEPA) and/or ESA analyses (e.g., staging areas, boat ramps) are not part of the Program addressed in this BO and are not discussed.

The following sections include current estimates of the amount of existing tactical infrastructure in southern Arizona and the portion of that infrastructure to be included in the Program. To accommodate changes in the location of border security threats, requests from landowners and land managers, and other changing situations, the location and amount of tactical infrastructure to be maintained and repaired within the action area could change over time. However, the nature of the maintenance and repair activities and the BMPs will continue to apply as outlined in this consultation, including additional coordination with FWS as indicated above. CBP and their contractors will obtain water needed for maintenance and repair activities from existing permitted CBP wells, municipal water supplies, or private sources. The water requirements for maintenance and repair activities to be conducted by each USBP station will be minimal and will not result in the need for any new appropriations of water.

Almost all maintenance and repairs would be conducted from existing roads and other disturbed areas. Heavy equipment would occasionally need to be driven off of existing roads and other disturbances outside of existing footprints would be required very infrequently to repair or replace drainage and erosion-control structures and to conduct other repairs. These disturbances would usually occur within 20 feet of roads or other infrastructure, but might need to occur farther away for some repairs. Measures to address the impacts of any disturbance that might occur outside of the existing footprint of the infrastructure are outlined in this BO.

Fences and Gates

As part of the TIMR Program, fences and gates would be inspected on a routine basis to ensure gate mechanisms operate correctly and fence components are in good working condition. Maintenance and repair of fences and gates would occur as required. As part of preventative maintenance and repair of access roads, inspection, maintenance, and repair would occur approximately every 3 months and reactive maintenance and repair would occur following intentional sabotage or weather events.
Maintenance and repair of existing fences and gates consists of welding metal fence components, replacing damaged or structurally compromised components, reinforcing or bracing foundations, repairing burrowing activities under fences and gates, repairing weather-related damages, and removing vegetation and accumulated debris. The TIMR Program would also include repairing or replacing gate-operating equipment (e.g., locks, opening/closing devices, motors, and power supplies). There are approximately 250 miles of fence on nontribal lands in Arizona. The fencing consists of primary border fencing and a variety of perimeter security fencing for protecting sensitive infrastructure. Approximately 5 percent of the total is analyzed as part of the TIMR Program.

Some earth moving could be necessary for fence and gate maintenance. To replace damaged or structurally compromised portions of fences and gates, heavy equipment might be needed for filling, compacting, and trenching. On-road haul trucks and cranes, or other such equipment could be required to replace heavy fence and gate parts. All necessary erosion-control BMPs would be adopted to ensure stabilization of the project areas.

Access Roads and Integrated Bridges/Crossovers

During maintenance and repair of access roads, integrated bridges/crossovers would be inspected, maintained, and repaired, as required. Drainage management structures would be inspected regularly during the rainy season and preventative maintenance and repair would occur to ensure operability. After weather events, reactive maintenance and repair would occur to ensure the structures are clear of debris and blockages.

Maintenance and repair of access roads and bridges would consist of filling in potholes, regrading road surfaces, implementing improved water drainage measures, applying soil stabilization agents, controlling vegetation and debris, and adding lost road surface material to reestablish intended surface elevation needed for adequate drainage.

CBP currently uses approximately 1,100 miles of road within the region of analysis. This represents an estimated 17.5 percent of all local roads within the area, although the exact number of miles of roads used within Arizona could change over time to accommodate CBP needs. Approximately 500 miles (8 percent) of local roadways within 25 miles of the U.S./Mexico international border in Arizona are covered under this BO. These roads have not been subject to previous NEPA analysis or waived from analysis. The remaining 600 miles of roads used by CBP are not covered under the BO because CBP does not have rights to maintain them, they are covered under previous NEPA analysis and/or section 7 consultations, or they have been waived from analysis. Major changes to roadway networks and major upgrades to existing roadways (i.e., paving of previously unpaved roads or widening of existing roads) would require separate consultation under section 7 of the ESA.

Maintenance of the existing roads will be in accordance with proven maintenance and repair standards. All of the standards CBP is adopting are developed based on comprehensive engineering analysis, proven BMPs adopted by other Federal agencies, and mitigation measures derived from extensive consultation with both regulatory and resource agencies. These maintenance and repair standards are provided in Appendix C of the EA, and are incorporated herein by reference.
Earth moving could be necessary for access road and integrated bridge/crossover maintenance. Heavy equipment would be needed for activities such as grading, filling, and compacting. The majority of proposed maintenance and repair is planned for graded earth roads (see Appendix C of the EA for pictures and additional details on these road types). Because of their lack of formal construction design, these two roadway types are subject to the greatest deterioration if left unmaintained. When subjected to heavier traffic, rutting occurs, which in turn is exacerbated by runoff that further erodes roads. Unmanaged storm water flow also causes erosion to occur, washing out complete sections of road and, in many instances, making roads impassable.

Grading with the use of commercial grading equipment would be used to restore an adequate surface to graded earth roads (see Appendix C of the EA for pictures and additional details on these road types). USBP sector personnel and contract support personnel well-versed in grading techniques would be employed for such activity. A poorly regraded surface quite often results in rapid deterioration of the surface. The restored road would be slightly crowned and absent of windrows in the gutter line to avoid ponding and channeling within the road during rain events. Any associated roadside drainage would be maintained to ensure that runoff is relieved from the road surface quickly and effectively without creating further erosion issues. The addition of material to these roads would be kept to the minimum needed to achieve the proposed objective. All necessary erosion-control BMPs would be adopted to ensure stabilization of the project areas.

Drainage Management Structures

Maintenance and repair of drainage management structures would consist of cleaning blocked culverts and grates of trash and general debris and repairing or replacing nonfunctional or damaged drainage management structures when necessary. Adding, resizing, replacing, or repairing culverts or flow structures would occur, as necessary, to maintain proper functionality; and riprap, gabions, and other erosion-control structures would be repaired, resized, or added to reduce erosion and improve water flow. In addition, maintenance and repair of low-water crossings would occur when necessary to maintain proper functionality. All debris and trash removed from culverts and grates would be hauled away to an appropriate disposal facility. An estimated 250 such structures associated with the tactical infrastructure are to be maintained and repaired in Arizona. Approximately 20 percent of those culverts, grates, and other structures are analyzed as part of the Program; additional structures might be included under this Program in the future as CBP identifies additional roads and other tactical infrastructure that they must maintain; coordination to address the effects of these additional structures is outlined in this BO.

Low-water crossings consist of riprap at the edges and articulated matting or some similar hardened material in the middle. The function of the riprap is to protect the articulated matting from being washed away and enhance the stability and longevity of the materials. Maintenance and repair requirements would consist of restoring damaged or displaced riprap. Articulated matting would be restored, replaced, or strengthened to maintain its functionality. Built-up debris could also be removed to create a sustainable, efficient low-water crossing.

Heavy equipment such as on-road haul trucks and cranes would be required for replacing culverts, low-water crossings, and riprap for the maintenance and repair of drainage structures. For in-water
work, all necessary BMPs would be adopted to ensure stabilization of the project areas. No in-water work will occur in streams or other water bodies within designated critical habitat or other occupied habitat of listed fish and aquatic plant species. Monitoring and other measures and BMPs, as outlined in this BO, will be implemented for actions within the Program that occur in drainages, including drainages upstream from stock tanks and other waters, within the range of listed aquatic and riparian species.

Vegetation Control

Trimming and other vegetation control in suitable habitat of threatened or endangered bird species will be limited to the minimum necessary to maintain drivable access roads and to maintain the functionality of other tactical infrastructure. Control of vegetation would be achieved by trimming, mowing, and applying selective herbicides. Vegetation control within the footprint of the tactical infrastructure would not be scheduled during the migratory bird nesting seasons to the extent feasible. CBP would conduct surveys for nesting migratory birds and nests if maintenance occurred during the nesting season. If CBP determines that vegetation clearing must be conducted within suitable habitat of threatened or endangered species, they will further consult with the FWS.

Vegetation encroaching upon roads and bridges would be maintained to ensure visibility and to sustain safe driving conditions for USBP agents during travel. In areas deemed too difficult to mow, such as under guardrails, within riprap, and immediately adjacent to bodies of water within the proposed setbacks, herbicides would be used if appropriate. Appropriate BMPs would be followed for all herbicide use. Herbicides safe for aquatic use would be used within aquatic systems. Application of terrestrial and aquatic herbicide would be made with products approved by the U.S. Environmental Protection Agency (USEPA) and the relevant Federal land management agency, where appropriate. Certified USBP sector or contract support personnel would use all herbicides in accordance with label requirements. Herbicide use would be part of an integrated approach that uses minimal quantities of herbicide. Heavy equipment needed would include mowers, trimmers, and equipment necessary for mechanical grubbing. BMPs would be used to stabilize the work areas and avoid impacts on biological resources.

Lighting and Ancillary Power Systems

Preventative maintenance and repair of lighting systems would occur approximately every 2 to 3 years and all lights would be replaced. Maintenance and repair of ancillary power systems would occur according to manufacturer specifications. Maintenance and repair would consist of the replacement of burned-out light bulbs, restoring/replacement of damaged power lines or onsite power-generating systems (e.g., generators, fuel cells, wind turbine generators, and photovoltaic arrays), repair and replacement of associated electrical components, and, where necessary, vegetation clearing and debris removal. Heavy equipment potentially needed to maintain lighting and ancillary power systems includes lifts, track-hoes, backhoes, and flatbed trucks. Approximately 12 percent of the estimated 550 lighting and ancillary power systems are analyzed as part of the TIMR Program.
Communication and Surveillance Towers

Maintenance and repair of communication and surveillance tower components would occur on an as-needed basis following regular inspections. Communication and surveillance tower components are mounted on a combination of monopoles, water towers, radio towers, telephone poles, and buildings. The physical structures of the communication and surveillance tower components would be repaired and maintained (e.g., painting and welding to maintain existing metal towers), as necessary. Heavy equipment potentially needed to maintain lighting and ancillary power systems includes lifts, track-hoes, backhoes, and flatbed trucks. Maintenance and repair of secondary power-generation systems would consist of the replacement of burned-out light bulbs, restoration or replacement of damaged power lines, repair and replacement of associated electrical components, and, where necessary, vegetation control and debris removal. Between 50 and 60 of the towers used by CBP (or approximately 75 percent) are analyzed as part of the TIMR Program.

Each of the towers has a small footprint; none exceeds 10,000 square feet. Access roads to the tower are included in the road mileage discussed previously.

Equipment Storage

The maintenance and repair of the existing tactical infrastructure, as previously described, requires the use of various types of equipment and support vehicles. Such equipment could include graders, backhoes, tractor mowers, dump trucks, flatbed trucks, and pick-up trucks. When assigned to an activity, the equipment will be stored within the existing footprint of the maintenance and repair location or at a staging area previously designated for such purposes by CBP. The analysis of staging areas occurred in previous environmental evaluations or was exempt under the Secretary’s waiver. BMPs would be used to avoid impacts on wildlife and threatened and endangered species once equipment is moved.

In summary, the proposed action under the TIMR Program includes the following extent of tactical infrastructure: 12.5 miles of fence; 500 miles of roads; 50 culverts; approximately 60 lighting and ancillary power systems; and 50 – 60 towers (communication and surveillance).

Best Management Practices

Best Management Practices (BMPs) will be implemented for all Program activities. These measures will be implemented by CBP as part of the proposed action and are listed below. As described in the “Project Implementation” section of the “Description of the Proposed Action”, CBP will use an established planning and work development process to identify the BMPs that must be implemented for each project. To identify species-specific BMPs that must be implemented, environmental SMEs will identify which species potentially occur in the geographic location of each maintenance and repair activity using information such as that shown in Appendix C of the BA and Figures 4 – 10 of this BO. They will then consider other available sources of information, such as prior survey data, aerial photographs, site visits, and previously developed environmental documentation, to evaluate whether suitable habitat for threatened and endangered species could occur at each project location. The environmental SME will also determine if a survey conducted by a qualified biologist is required.
prior to maintenance and repair activities to determine if habitat is present or if it is required by a BMP. If necessary, the environmental SMEs will further coordinate with the FWS to clarify any compliance requirements.

Land Use

1. CBP will notify all land managers at least 5 days in advance of any scheduled maintenance and repair activities on their lands.

Geology and Soil Resources

1. Silt fencing and floating silt curtains should be installed and maintained to prevent movement of soil and sediment and to minimize turbidity increases in water.

2. Implement routine road maintenance practices to avoid making windrows with the soils once grading activities are complete and use any excess soils on site to raise and shape the road surface.

3. Only apply soil-binding agents during the late summer/early fall months to avoid impacts on federally-listed species. Do not apply soil-binding agents in or near (within 100 feet) surface waters (e.g., wetlands, perennial streams, intermittent streams, washes). Only apply soil-binding agents to areas that lack any vegetation.

4. Obtain materials such as gravel, topsoil, or fill from existing developed or previously used sources that are compatible with the project area and are from legally permitted sites. Do not use materials from undisturbed areas adjacent to the project area.

Vegetation

1. Herbicide and pesticide applications must be made under the supervision of a licensed applicator. A log of the chemical used, amount used, and specific location must be maintained.

2. If mechanical methods are used to remove invasive plants, the entire plant should be removed and placed in a disposal area. If herbicides are used, the plants will be left in place. All chemical applications on federally-managed land must be used in coordination with the Federal land manager. Training to identify non-native invasive plants will be provided for CBP personnel or contractors, as necessary.

3. If the tactical infrastructure maintenance and repair activities will take place on a Federal agency’s land, the appropriate agency’s herbicide policy must be followed for vegetation control. Contractors applying herbicides must verify that the appropriate agency’s policy is being followed, if it exists. This information should be requested from the contracting officer’s technical representative (COTR).

4. New guidance from the USEPA on herbicide application in riparian areas is imminent. Check with COTR on the status of these regulations prior to applying herbicide in such areas.
5. Coordinate with the CBP environmental SME to determine if the maintenance activities occur in a highly sensitive area or an area that poses an unacceptable risk of transmitting diseases and invasive species. If it is determined that maintenance activities occur in such an area, follow the CBP cleaning protocol for all equipment used.

6. A fire prevention and suppression plan will be developed and implemented for all maintenance and repair activities that require welding or otherwise have a risk of starting a wildfire.

7. Identify fill material, sandbags, hay bales, and mulch brought in from outside the project area by its source location. Use sources that are sterile or weed-free.

8. Clearly demarcate the perimeter of all new areas to be disturbed using flagging or temporary construction fencing. Do not allow any disturbance outside that perimeter. Riparian vegetation should be protected during maintenance activities.

9. Avoid the removal of mature trees providing shade or bank stabilization within the riparian area of any waterway during maintenance or repair activities.

10. If vegetation must be removed, use hand tools, mowing, trimming, or other removal methods that allow root systems to remain intact to prevent disturbance that encourages establishment of invasive plant species. In addition, all soils that are disturbed outside the project footprint within endangered species habitat will be restored to pre-activity levels. This BMP does not apply to any non-native, invasive vegetation control that may occur as part of the TIMR Program.

11. Vegetation targeted for retention will be flagged for avoidance to reduce the likelihood of being treated.

12. Periodic inspections of tactical infrastructure by the CBP SME will be conducted to evaluate and document conditions, including erosion, and to ensure that prescriptions are followed and performed in the appropriate community types. As necessary, maintenance will be scheduled to minimize erosion and correct other adverse conditions.

13. Clearing of riparian vegetation will not occur within 100 feet of aquatic habitats to provide a buffer area to protect the habitat from sedimentation.

Wildlife

1. If hollow bollards are necessary, cover hollow bollards (i.e., those that will be filled with a reinforcing material such as concrete) to prevent wildlife from entrapment. Deploy covers (and ensure they remain fully functioning) when the posts or hollow bollards arrive on the site and are unloaded, until they are filled with reinforcing material.

2. Ensure temporary light poles and other pole-like structures used for maintenance activities have anti-perch devices to discourage roosting by birds.

3. Clearing of riparian vegetation will not occur within 100 feet of aquatic habitats to provide a buffer area to protect the habitat from sedimentation.
4. Minimize animal collisions during maintenance and repair activities by not exceeding speed limits of 35 miles per hour (mph) on major unpaved roads (i.e., graded with ditches on both sides) and 25 mph on all other unpaved roads. During periods of decreased visibility (e.g., night, poor weather, curves), do not exceed speeds of 25 mph.

5. Do not permit pets owned or under the care of the contractor or sector personnel inside the project boundaries, adjacent native habitats, or other associated work areas.

6. To prevent entrapment of wildlife species, ensure excavated, steep-walled holes or trenches are either completely covered by plywood or metal caps at the close of each work day or provided with one or more escape ramps (at no greater than 1,000-foot intervals and sloped less than 45 degrees) constructed of earth fill or wooden planks.

7. Each morning before the start of maintenance activities and before such holes or trenches are filled, ensure they are thoroughly inspected for trapped animals. Ensure that any animals discovered are allowed to escape voluntarily (by escape ramps or temporary structures), without harassment, before maintenance activities resume; or are removed from the trench or hole by a qualified person and allowed to escape unimpeded.

Threatened and Endangered Species and Other Protected Species

General BMPs

1. Coordinate with COTR or environmental SME to determine which threatened and endangered species could occur in the vicinity of maintenance activities. In areas where there are no threatened and endangered or other species concerns, the personnel performing the maintenance activity are responsible for monitoring the implementation of general maintenance and repair BMPs to avoid impacts on the environment.

2. To protect individuals of listed species within the project area, suspend work in the immediate vicinity of the individual until it moves out of harm’s way on its own, or enlist a qualified specialist (individuals or agency personnel with a permit to handle the species) to relocate the animal to a nearby safe location in accordance with accepted species-handling protocols.

3. Vegetation control outside the immediate footprint of the tactical infrastructure within suitable habitat and within the range or designated critical habitat of threatened and endangered species will be limited. If a threatened or endangered species, primary constituent element (PCE), or other indicators of suitable habitat occur within the project area, then further consultation with FWS will be required.

4. Develop and implement a training program to inform TIMR maintenance personnel of the listed species that occur within the TIMR Program area, penalties for violation of State or Federal laws, implementation of included CMs/BMPs, and reporting requirements.

5. Check visible space underneath all vehicles and heavy equipment for listed species and other wildlife prior to moving vehicles and equipment at the beginning of each workday and after vehicles have idled for more than 15 minutes.
6. Coordinate with the CBP environmental SME to determine if the maintenance activities occur in a highly sensitive area or an area that poses an unacceptable risk of transmitting diseases and invasive species. If it is determined that maintenance activities occur in such an area, follow the CBP cleaning protocol for all equipment.

7. Equipment staging areas shall be located at previously used staging areas or at least 0.3 miles away from known, occupied sites of listed aquatic species.

8. CBP will not use surface water from aquatic or marsh habitats for maintenance and repair projects, if that site supports aquatic federally-listed species or if it contains non-native invasive species or disease vectors based on the best available information provided by FWS.

9. CBP will not use surface water from untreated sources, including water used for irrigation purposes, for maintenance and repair projects located within one mile of aquatic habitat for federally-listed aquatic species. Groundwater or surface water from a treated municipal source will be used when within one mile of such habitats.

Migratory Bird BMPs

1. Initial mechanical and chemical vegetation clearing and subsequent mechanical vegetation control should be timed to avoid the migration, breeding, and nesting timeframe of migratory birds (February 1 through September 1). Herbicide retreatments could occur throughout the year. When initial mechanical and chemical vegetation control must be implemented during February 1 through September 1, a survey for nesting migratory birds will be conducted immediately prior to the start of activities. If an active nest is found, a buffer zone (300 ft. [91 m.]) will be established around the nest and no activities will occur within that zone until nestlings have fledged and abandoned the nesting area.

2. A survey for migratory birds will also be conducted prior to all other maintenance and repair activities to be implemented during the nesting period in areas where migratory birds might be nesting.

3. If maintenance is scheduled during the migratory bird-nesting season, take steps to prevent migratory birds from establishing nests in the potential impact area. These steps could include covering equipment and structures and use of various excluders (e.g., noise). If appropriate, birds can be harassed to prevent them from nesting on the site. Once a nest is established, they cannot be harassed until all young have fledged and left the nest site. If nesting birds are found during the supplemental survey, defer intrusive maintenance activities until the birds have left the nest. Confirmation that all young have fledged should be made by qualified personnel.

Species-Specific BMPs

Fishes: Desert pupfish, Gila chub, Gila topminnow, and Sonoran chub.

1. No in-water work will occur within streams or other waterbodies with known occurrences or designated critical habitat without further consultation with the FWS.
2. Cleaning or modification of culverts and other work within drainages that could cause sedimentation or otherwise affect water quality or quantity will not occur within, or within 0.25 miles upstream of, critical habitat or other suitable habitat (such as stock tanks) without further consultation with the FWS.

3. Use of herbicides will not occur in streams or other waterbodies with known occurrences within the range or designated critical habitat unless approved by the FWS.

1. No ground disturbance will occur outside the existing footprint of tactical infrastructure in suitable habitat or designated critical habitat of Canelo Hills ladies’tresses, Huachuca water umbel, and Cochise pincushion cactus, and areas within 0.25 miles upstream of suitable habitat or critical habitat of Canelo Hills ladies’tresses and Huachuca water umbel, without further consultation with the FWS.

2. Use of herbicides will not occur within areas of suitable habitat within the range or designated critical habitat of threatened or endangered plant species (see Table 1 and Appendix B [of the BA]) unless approved by the FWS.

3. Cleaning or modification of culverts and other work in drainages that could cause sedimentation or otherwise affect water quality or quantity will not occur within, or within 0.5 miles upstream of, areas where Canelo Hills ladies’ tresses or Huachuca water umbel occur without further consultation with the FWS.

Chiricahua Leopard Frog

1. During the active season of the species (May through September) within designated critical habitat and within dispersal range of the species (1, 3, or 5 miles depending on persistence of water in the aquatic system) from designated critical habitat, a qualified biologist will monitor ground-disturbing maintenance activities and use of heavy equipment immediately prior to and during maintenance activities. Monitoring will occur prior to and during activities located within one mile overland of critical habitat or other locations where this species might occur, 3 miles of that habitat along ephemeral drainages in that habitat, and 5 miles of that habitat along perennial streams in that habitat. If a Chiricahua leopard frog is found in the project area and is in danger of being harmed (e.g. in the path of vehicles or foot traffic), work will cease in the area of the frog until either the qualified biological monitor can safely move the individual to a nearby location in accordance with FWS Endangered Species Permit requirements, or it moves away on its own.

2. In-water work within critical habitat of the species will occur during the active season (May through September) so that frogs can escape to the best of their ability. (This BMP may conflict with Sonoran tiger salamander BMP #2. In areas where there is overlap between Sonoran tiger salamander and Chiricahua leopard frog ranges, CBP will base TIMR Program activity implementation on the species most likely to occur in the area and on the potential for
effects to either species). In addition, maintenance will be designed and implemented so that
the hydrology of streams, ponds, and other habitat is not altered.

3. A site-specific storm water pollution prevention plan (SWPPP) and a spill protection plan will
be prepared and regulatory approval sought, as required by regulations, for maintenance and
repair activities that could result in sedimentation and that occur within 0.3 miles of suitable
habitat. This will include, but is not limited to, placing straw bale type sediment traps at the
inlet of ponds or stock tanks and upstream of drainages known to be occupied by the species
or within critical habitat of the species.

4. To prevent the spread of amphibian diseases among drainages via water or mud on
maintenance vehicles and equipment, all maintenance work within Chiricahua leopard frog
critical habitat shall conform to amphibian disease prevention protocols as described in the
Recovery Plan for the Chiricahua leopard frog. Equipment would either be disinfected
between uses at different sites or rinsed and air dried.

5. Any use or storage of chemicals or fuels will be kept 0.3 miles away from critical habitat and
other locations where this species occurs.

6. Routine road maintenance practices will be implemented to avoid prolonged establishment of
road and tire ruts within and adjacent to Chiricahua leopard frog critical habitat.

7. Use of herbicides will not occur within 0.3 miles of Chiricahua leopard frog critical habitat or
other suitable habitat within the range of this species, unless approved by the FWS.

8. Prior to any in-water work within critical habitat of this species, CBP will contact FWS
personnel at the Arizona Ecological Services Office to determine if frogs will be salvaged and
placed in holding facilities until work is complete. Capture, movement, and holding of frogs
would be accomplished by a permitted biologist at the expense of CBP under all appropriate
State and Federal permits, including permit conditions to ensure minimal harm or mortality.

Sonoran Tiger Salamander

1. A qualified biologist will monitor all ground-disturbing maintenance activities and use of
heavy equipment that occurs within 0.1 mile of Sonoran tiger salamander suitable habitat
(i.e., cattle ponds and tanks with standing water) within the range of this species, immediately
prior to and during the maintenance activity. This monitoring will occur for all maintenance
and repair activities to be conducted in vegetated or undisturbed areas. Burrows of fossorial
animals identified by the monitor will be left intact if possible. If a Sonoran tiger salamander
is observed, the monitor will photograph the dorsal side of the salamander if possible without
handling the salamander, record the geographic coordinates of its location, and report the
location to the Arizona Ecological Services Office of the FWS within 72 hours. If the
salamander is in danger of being harmed (e.g. in the path of vehicles or foot traffic), work will
cease in the area of the species until either the qualified biological monitor can safely move
the individual to a nearby location in accordance with the FWS Endangered Species Permit
requirements, or it moves away on its own.
2. In-water work within the range of this species will occur during period of low or no flow to minimize the chance of encountering a salamander (This BMP may conflict with Chiricahua leopard frog BMP #2. In areas where there is overlap between Sonoran tiger salamander and Chiricahua leopard frog ranges, CBP will base TIMR Program activity implementation on the species most likely to occur in the area and on the potential for effects to either species). In addition, maintenance will be designed and implemented so that the hydrology of streams, ponds, and other habitat is not altered.

3. A site-specific SWPPP will be prepared and regulatory approval sought, as required by regulations, for maintenance and repair activities that could result in sedimentation and that occur within 0.3 miles of suitable habitat within the range of this species. This will include, but is not limited to, placing straw bale type sediment traps at the inlet of ponds or stock tanks known to be occupied by the species.

4. Use of herbicides will not occur within 0.3 miles of Sonoran tiger salamander suitable habitat within the range of this species, unless approved by the FWS.

5. Maintenance vehicles and equipment will be operated at speeds of 25 mph or less within 0.3 miles of Sonoran tiger salamander suitable habitat within the range of this species during the breeding season (January through June).

6. All maintenance activities within 0.3 miles of Sonoran tiger salamander suitable habitat within the range of this species will be conducted during daylight hours.

7. To prevent the spread of amphibian diseases among drainages via water or mud on maintenance vehicles and equipment, all maintenance work within known, occupied Sonoran tiger salamander habitat shall conform to amphibian disease prevention protocols as described in the Recovery Plan for the Sonoran tiger salamander (see Appendix B). Equipment would either be disinfected between uses at different sites or rinsed and air dried.

New Mexico Ridge-nosed Rattlesnake

1. Maintenance vehicles will not exceed a speed of 15 to 20 mph during periods of elevated roaming and foraging activities from July through August within New Mexico ridge-nosed rattlesnake habitat (i.e., pine-oak woodlands at high elevations of 1,475 and 2,800 meters [5,600 to 9,000 feet]).

Birds: Masked bobwhite, Mexican spotted owl, Southwestern willow flycatcher, and Yuma clapper rail.

1. No maintenance and repair activities will be conducted within areas classified as protected activity centers of Mexican spotted owls during the nesting season.

2. Vegetation control in suitable habitat of threatened or endangered bird species (see Table 2 for a description of suitable habitat and nesting season for each species) will be limited to the minimum necessary to maintain drivable access roads and to maintain the functionality of other tactical infrastructure. This limited vegetation control will be conducted outside of the nesting season (see Table 2). This restriction does not apply to areas where protocol surveys
have been conducted and it has been determined that the area is not occupied and does not contain PCEs.

3. For all other maintenance activities to be conducted within suitable habitat of a threatened or endangered bird species during the nesting season (see Table 2), the following avoidance measures will apply. A qualified biologist will conduct a survey for threatened and endangered birds prior to initiating maintenance activities. If a threatened or endangered bird is present, a qualified biologist will survey for nests approximately once per week within 1,300 feet (Mexican spotted owl) or 500 feet (all other species) of the maintenance area for the duration of the activity. If an active nest is found, no maintenance will be conducted within 1,300 feet (Mexican spotted owl) or 300 feet (all other species) of the nest until the young have fledged.

Lesser Long-nosed Bat

1. Removal of columnar cacti (i.e., saguaro and organ pipe) and agave will be limited to the minimum necessary to maintain drivable access roads and to maintain the functionality of other tactical infrastructure. Prior to conducting any maintenance or repair activity outside of the existing disturbed footprint of tactical infrastructure within the range of this species, a qualified biologist will conduct a survey to identify and flag all columnar cactus (i.e., saguaro and organ pipe) and agave to be avoided.

2. No maintenance and repair activities will be conducted within 0.5 miles of any known lesser long-nosed bat roost from mid-April through mid-September. FWS will provide CBP with an updated list and maps of known lesser long-nosed bat roosts.

3. For maintenance and repair activities that will take place greater than 0.5 miles and less than 5 miles from any known lesser long-nosed bat roost, limit activities to daylight hours, from mid-April through mid-September only, to avoid effects on bats in bat roosts. If night lighting is unavoidable: (1) minimize the number of lights used; (2) place lights on poles such that they are pointed down toward the ground, with shields on lights to prevent light from going up into sky, or out laterally into landscape; and (3) selectively place lights so they are directed away from native vegetation.

Sonoran Pronghorn

1. Minimize the number of daily vehicle trips required for maintenance to reduce the likelihood of disturbing Sonoran pronghorn in the area or injuring an animal on the road. The use of vehicle convoys, multi-passenger vehicles, and other methods are appropriate. This can be adjusted if additional personnel and equipment will complete the work faster and thus reduce the time of the disturbance.

2. During maintenance activities, if a Sonoran pronghorn is observed by a maintenance crew upon arrival at the work site and within 1 mile of the work site, delay beginning use of heavy mobile equipment (road grader, dump trucks, etc) until the animal(s) move greater than one mile from the work site. When driving on roads, stop the vehicle if pronghorn are observed in front of or forward of the vehicle. As their distance from the road extends and it is
obvious that the pronghorn is (are) departing, proceed forward at reduced speed of 10 to 15 mph.

3. No Program activities will occur during the fawning season (March 15 to July 31) within suitable Sonoran pronghorn habitat (i.e., Sonoran desert scrub communities) within the range of this species. Some flexibility with these dates is possible, depending on forage conditions. If CBP determines that TIMR activities is needed in these areas during the fawning season, exceptions to working during the fawning season may be granted through coordination with the FWS and other the relevant Federal land managers, depending on forage conditions.

Water Resources

1. The environmental SME must be consulted to determine the need for site-specific SWPPPs, spill protection plans, and regulatory approvals. Site-specific SWPPPs and spill protection plans will be prepared and regulatory approval sought, if necessary, in cases of highly sensitive work sites and large scopes of work that pose a significant risk. Where a site-specific SWPPP is not necessary, the personnel performing the maintenance will comply with a generic SWPPP and spill protection plan that covers most routine maintenance and repair activities. Prior to arrival on the work site, key personnel will understand correct implementation of these BMPs and their responsibility to address deficiencies.

2. The environmental SME will determine and provide locations that have the potential for wetlands or other waters of the United States. If no current existing U.S. Army Corps of Engineers (USACE) jurisdictional determination is available, a delineation will be conducted and jurisdictional determination will be obtained from the USACE. Prior to conducting any activities that have the potential to affect wetlands and other waters of the United States, all Federal and state Clean Water Act (CWA) Section 404 individual or applicable nationwide permits and 401 and other applicable permits will be obtained.

3. Prepare and implement a SWPPP prior to applicable maintenance activities (greater than 1 acre of exposed dirt or as required by property owner or land manager). Implement BMPs described in the SWPPP to reduce erosion. Consider areas with highly erodible soils when planning the maintenance activities and incorporate measures such as waddles, aggregate materials, and wetting compounds in the erosion-control BMPs.

4. Coordinate with the environmental SME to determine which maintenance activities occur within the 100-year floodplain. Maintenance activities within the 100-year floodplain will be conducted in a manner consistent with Executive Order (EO) 11988 and other applicable regulations.

5. All maintenance contractors and personnel will review the applicable CBP-approved spill protection plan and implement it during maintenance and repair activities.

6. Coordinate with the environmental SME to ensure that CWA permits are in place for any changes to existing boat ramps.

7. Contact the environmental SME to coordinate with waterway permitting agencies when performing work below the ordinary high water mark.
8. Wastewater from pressure washing must be collected. A ground pit or sump can be used to collect the wastewater. Wastewater from pressure washing must not be discharged into any surface water.

9. If soaps or detergents are used, the wastewater and solids must be pumped/cleaned out and disposed of in an approved facility. If no soaps or detergents are used, the wastewater must first be filtered or screened to remove solids before being allowed to flow off site. Detergents and cleaning solutions must not be sprayed over or discharged into surface waters.

10. If the surrounding area has dense, herbaceous cover (primarily grasses) and there are no listed plant species or habitat for such, the wastewater (with or without detergent) can be discharged directly to the grassy area without collection or filtering, as long as it is well dispersed and all the wastewater can percolate into the grass and soil. If wastewater runs off the grassy area, it must be filtered.

11. Prevent runoff from entering drainages or storm drains by placing fabric filters, sand bag enclosures, or other capture devices around the work area. Empty or clean out the capture device at the end of each day and properly dispose of the wastes.

12. Avoid contaminating natural aquatic and wetland systems with runoff by limiting all equipment maintenance, staging, laydown, and dispensing hazardous liquids (e.g., fuel and oil) to designated upland areas.

13. Avoid contamination of ground and surface waters by collecting concrete wash water in open containers and frequently disposing of it on site by application as a binder to riprap areas. Avoid contamination of ground and surface waters by storing any water that has been contaminated (e.g., with maintenance materials, oils, equipment residue) in closed containers on site until removed for disposal. In upland areas, storage tanks must be on-ground containers.

14. Avoid contamination of ground and surface waters by ensuring that water tankers that convey untreated surface water do not discard unused water where it has the potential to enter any aquatic or wetland habitat.

15. Cease work during heavy rains and do not resume work until conditions are suitable for the movement of equipment and materials.

16. Uncured concrete should not be allowed to enter the water.

17. Work should be done from the top of the bank or a floating barge, when practicable. Heavy equipment use within the active flowing channel should be avoided.

18. Floating dock components containing foam must be encapsulated to prevent the introduction of foam particles into the water.

19. For all in-water work in streams, sediment barriers will be used to avoid downstream effects of turbidity and sedimentation.

20. Do not pressure wash more than the area to be painted or treated (e.g., for graffiti removal) each day.
21. If the purpose of cleaning is for graffiti removal, spot clean, steam clean, or scrape dirty areas rather than pressure washing entire sections of fence or levee wall.

22. Operate pressure-washing equipment according to manufacturer’s recommendations.

23. Except for emergency repairs required to protect human life, limit work within drainages to dry periods to reduce effects on downstream water quality.

24. Riprap should be placed on a layer of geotextile fabric to prevent underlying sediment from being washed out through the openings of the riprap.

25. Riprap should be keyed into the wash/streambed to ensure its stability and effectiveness.

Noise

1. All Occupational Safety and Health Administration requirements will be followed with respect to maintenance and repair noise impacts. Ensure all motorized equipment possess properly working mufflers and are kept properly tuned to reduce backfires. Ensure all motorized generators will be in baffle boxes (a sound-resistant box that is placed over or around a generator), have an attached muffler, or use other noise-abatement methods in accordance with industry standards. For activities involving heavy equipment, seasonal restrictions might be required to avoid impacts on threatened or endangered species in areas where (listed) species or their potential habitat occur. See species-specific BMPs.

Roadways and Traffic

1. Access maintenance sites using designated, existing roads. Do not allow any off-road vehicular travel outside those areas. Ensure all parking is in designated disturbed areas. For longer-term projects, mark designated travel corridors with easily observed removable or biodegradable markers.

2. All contractors and maintenance personnel will operate within the designed/approved maintenance corridor.

Hazardous Materials and Waste Management

1. Where hazardous and regulated materials are handled, workers should collect and store all fuels, waste oils, and solvents in clearly labeled closed tanks and drums within a secondary containment system that consists of an impervious floor and bermed sidewalls capable of containing the volume of the largest container stored therein.

2. All paints and cleaning materials should be approved by the appropriate land manager.

3. Use a ground cloth or an oversized tub for paint mixing and tool cleaning. Properly dispose of the wastes.

4. Enclose spray-painting operations with tarps or other means to minimize wind drift and to contain overspray.
5. Clean paintbrushes and tools covered with water-based paints in sinks plumbed to a sanitary sewer or in portable containers that can be dumped into sanitary sewer drains. Never clean such tools in a natural drainage or over a storm drain.

6. Brushes and tools covered with non-water-based paints, finishes, thinners, solvents, or other materials must be cleaned over a tub or container and the cleaning wastes disposed of or recycled at an approved facility. Never clean such tools in a natural drainage or over a storm drain.

7. Implement proper and routine maintenance of all vehicles and other maintenance equipment such that emissions are within the design standards of all maintenance equipment.

8. Use water-based paints instead of oil-based paints. Look for the words “Latex” or “Cleanup with water” on the label. Do not rinse into natural drainages (e.g., creeks, irrigation canals, wetlands) or storm drains.

9. Do not use paints more than 15 years old. They could contain toxic levels of lead.

10. Use ground or drop cloths underneath painting, scraping, sandblasting, and graffiti removal work. Properly dispose of the waste and scraps collected on the drop cloth.

11. Minimize site disturbance and avoid attracting predators by promptly removing waste materials, wrappers, and debris from the site. Any waste that must remain on site more than 12 hours should be properly stored in closed containers until disposal.

Conservation Measures

Conservation measures are defined by FWS as actions to benefit or promote the recovery of species that are included by a Federal agency as an integral part of the proposed action (U.S. Fish and Wildlife Service 1998a). Conservation measures are meant to offset potential adverse effects and take that may result from a proposed action, despite the implementation of BMPs. The following conservation measures (CMs) were developed through coordination with DOI agencies and land managers to offset potential impacts to Sonoran pronghorn, Pima pineapple cactus, Sonoran tiger salamander, and Chiricahua leopard frog.

1) In areas where maintenance and repair activities took place under the TIMR Program within 0.3 miles of the critical habitat for Chiricahua leopard frogs, CBP will conduct one additional monitoring visit (by a permitted biologist) following the first significant rainfall event after implementation of TIMR Program activities to determine the effectiveness of BMPs implemented and any incidental take that may have occurred as described in the Incidental Take Statement below. Results of this monitoring will be included in CBP’s annual report to FWS.

2) In general, implementation of the BMPs outlined in the BA and this BO should avoid or minimize any potential for take of Pima pineapple cacti or habitat. However, over the life of the project, should CBP need to work outside the existing footprint of the described tactical infrastructure and impact suitable habitat, CBP will compensate for loss of Pima pineapple
cactus habitat by purchasing 1 credit from a conservation bank approved by the FWS Arizona Ecological Services Office for each acre of suitable Pima pineapple cactus habitat lost. For purposes of this conservation measure, suitable habitat is defined as: transition zone between the semi-desert grasslands and Sonora desert scrub on alluvial bajadas (lower slopes of mountains characterized by loose alluvial sediments and poor soil development) and slopes of less than 10 percent grade at elevations between 701 to 1,402 meters (2,300 to 4,600 feet). CBP will include an estimate of acreage of Pima pineapple cactus habitat lost in its annual report to FWS and purchase credits in the conservation bank within 2 years of when the habitat loss occurred.

3) In areas where maintenance and repair activities took place under the TIMR Program within 0.3 miles of the known occupied habitat for Sonoran tiger salamander, CBP will conduct one additional monitoring visit (by a permitted biologist) following the first significant rainfall event after the implementation of TIMR Program activities to determine the effectiveness of BMPs implemented and any incidental take that may have occurred as described in the Incidental Take Statement below. Results of this monitoring will be included in CBP’s annual report to FWS.

4) CBP will provide funding in the total amount of $100,000 over the life of the project, which can be used by FWS to implement priority recovery actions for the Sonoran pronghorn as determined by the Sonoran Pronghorn Recovery Team (i.e. to construct or maintain wildlife waters or forage enhancement plots within the range of the Sonoran pronghorn). CBP will work with FWS to determine the most effective and efficient timeline and mechanism for utilizing this funding.

5) CBP will collaborate with land managers and applicable agencies to establish a mechanism for interagency cooperation regarding maintenance and repair of pronghorn recovery infrastructure such as fencing, water systems, drainage structures, forage enhancement plots, etc., when such activities occur in the area of ongoing CBP maintenance and repair activities, and which would not require significant additional resources on the part of CBP.

ACTION AREA

The “action area” means all areas to be affected directly or indirectly by the Federal action and not merely the immediate area involved in the action. The action area for this BO encompasses a 14- to 50-mile-wide corridor extending north of the U.S./Mexico international border in addition to the location of the road north of Three Points (see Figures 3a and 3b), plus the current range of the pronghorn within the U.S. (Figures 4 and 5). It includes the location of all tactical infrastructure covered by the TIMR Program and all areas that could be directly and indirectly affected by maintenance and repair activities. The existing tactical infrastructure crosses public lands and multiple privately owned land parcels. The action area does not include Tribal lands in Arizona.

Management of much of the action area is by Federal agencies. The BMGR (roughly 1.6 million acres) is managed by Luke Air Force Base and the Marine Corps Air Station (MCAS)-Yuma primarily for military training. OPCNM manages 329,000 acres in the southeastern corner of the
action area for scenic, ecological, natural, and cultural values. CPNWR lies along the border west of OPCNM and encompasses 860,000 acres. CPNWR is managed to protect, maintain, and restore the diversity of the Sonoran Desert. Most of the refuge and OPCNM are designated as wilderness. The BLM manages lands near Ajo for recreation, grazing, and other multiple uses in accordance with the Lower Gila Resource Management Plan. OPCNM and CPNWR are critically important for Sonoran pronghorn recovery because of their management for protection of natural resources. Lands on the BMGR are managed primarily for military training, and although important recovery is ongoing on these lands and the Department of Defense has generously contributed to the recovery program both on and off the BMGR, changing military priorities could, in the future, limit the value of the BMGR for Sonoran pronghorn recovery. In the eastern portion of the action area, Federal lands managed by the FWS (Buenos Aires National Wildlife Refuge), U.S. Forest Service (Coronado National Forest), National Park Service (Coronado National Memorial), and the Department of Defense (Fort Huachuca) make up the majority of the action area. However, there are also trust lands managed by the State Land Department and areas of private ownership.

Terrain, Vegetation Communities, and Climate in the Action Area

The western portion of the action area is characterized by broad alluvial valleys separated by block-faulted mountains and surface volcanics. The Yuma Desert on the western edge of the BMGR is part of a broad valley that includes the Colorado River. Major drainages and mountain ranges run northwest to southeast. Major drainages flow mostly northward to the Gila River, although southern portions of OPCNM and the southern slope of the Agua Dulce Mountains drain south to the Río Sonoyta.

Climate in this portion of the action area is characterized by extreme aridity, mild winters, and hot summers. Approximately 2.7 inches of precipitation fall annually at Yuma, with slightly more than half of this occurring in the winter months (Brown 1982). Annual precipitation increases from west to east across the BMGR; at Aguajita/Quitobaquito, precipitation is 10.5 inches annually. The vegetation community of the western portion of the BMGR has been classified as the lower Colorado River Valley subdivision of Sonoran Desert scrub (Brown 1982). It is the largest and most arid subdivision of Sonoran Desert scrub. The Arizona Upland subdivision of Sonoran Desert scrub is found in the Growler, Puerto Blanco, Ajo and Bates mountains, and surrounding bajadas.

In the eastern portion of the action area, lands are characterized by higher elevation areas including major mountain ranges such as the Baboquivari, Santa Rita, Huachuca, and Chiricahua mountains. Valleys surrounding these mountain ranges primarily support grasslands, and are also characterized by river systems such as the Santa Cruz River and the San Pedro River. Drainages within the valleys support important riparian communities. Vegetation communities in the eastern portion of the action area include Madrean Oak woodlands, some coniferous forests, and semidesert grasslands. Summers can be hot in this portion of the action area, but not as hot as the western deserts. Winter temperatures are variable, but are often subfreezing, especially at the higher elevations. Precipitation in the eastern portion of the action area is much greater than in the western deserts and ranges from 11 to 22 inches of annual precipitation.
Monsoon thunderstorms play an important role throughout the action area. The intense monsoon thunderstorms are often associated with flooding. Flooding and runoff from monsoon storms regularly impacts the tactical infrastructure included in the proposed action, necessitating the maintenance and repair activities that are included in the TIMR Program.

SONORAN PRONGHORN

STATUS OF THE SPECIES

Description, Legal Status, and Recovery Planning

The Sonoran subspecies of pronghorn (*Antilocapra americana sonoriensis*) was first described by Goldman (1945) and is the smallest of the four subspecies of pronghorn (Nowak and Paradiso 1983, Brown and Ockenfels 2007). The subspecies was listed throughout its range as endangered on March 11, 1967 (32 FR 4001) under the Endangered Species Preservation Act of October 15, 1966 without critical habitat. Three sub-populations of the Sonoran pronghorn are extant: 1) a U.S. sub-population in southwestern Arizona, 2) a sub-population in the Pinacate Region of northwestern Sonora, and 3) a sub-population on the Gulf of California west and north of Caborca, Sonora. The three sub-populations are predominantly geographically isolated due to barriers such as roads and fences, and, in the case of the two Sonora sub-populations, by distance.

The 1982 Sonoran Pronghorn Recovery Plan (FWS 1982) was revised in 1998 (FWS 1998). The recovery criteria presented in the revised plan entailed the establishment of a population of 300 adult pronghorn in one self-sustaining population for a minimum of five years, as well as the establishment of at least one other self-sustaining population in the U.S. to reclassify the subspecies to threatened. Actions identified as necessary to achieve these goals include the following: 1) enhance present sub-populations of pronghorn by providing supplemental forage and/or water; 2) determine habitat needs and protect present range; 3) investigate and address potential barriers to expansion of presently used range and investigate, evaluate, and prioritize present and potential future reintroduction sites within historical range; 4) establish and monitor a new, separate herd(s) to guard against catastrophes decimating the core population, and investigate captive breeding; 5) continue monitoring sub-populations and maintain a protocol for a repeatable and comparable survey technique; and 6) examine additional specimen evidence available to assist in verification of taxonomic status. In 2002, a supplement and amendment to the 1998 Final Revised Sonoran Pronghorn Recovery Plan was prepared (FWS 2002). The FWS concluded that data do not yet exist to support establishing delisting criteria. Tasks necessary to accomplish reclassification to threatened status (as outlined in the 1998 plan) should provide the information necessary to determine if and when delisting will be possible and what the criteria should be. Survival of the Sonoran pronghorn is precarious and is likely dependent on drastic and untested methods (Krausman et al. 2005). In order for recovery actions to be effective, providing an environment of reduced impacts related to anthropogenic activities is essential.

The Sonoran pronghorn is a rare and difficult species to study and monitor. As with most endangered species, there is a lack of extensive studies related to the life history requirements of this species. Studies typically are limited by low samples sizes and difficulty of repeat observations due
to the species’ rarity. Low sample sizes and limited observations hinder biologists’ abilities to obtain statistically rigorous data or adequate data for peer-reviewed scientific publications. The most recent, comprehensive publications related to Sonoran pronghorn were associated with the 2005 Wildlife Society Bulletin (Krausman et al. 2005). Since that time, managers have learned much, but, due to lack of resources, time, and incomplete data, this information is typically exchanged informally, rather than through published literature. Most of the existing information on Sonoran pronghorn is not contained in the peer-reviewed literature (Krausman et al. 2005). This is likely to continue until more resources are available or adequate data is gathered to meet the requirements for publication in a peer-reviewed journal. However, all information that contributes to our understanding of endangered and threatened species’ life history requirements and impacts to the species is vital to our management of the species, be it peer-reviewed or personal communications and grey literature from the professionals working with these species in the field. The best available scientific and commercial data comes from a number of sources including published literature, agency reports, and personal communications with land managers and agency personnel. The FWS has used the best available information related to the Sonoran pronghorn in our analysis below.

Life History and Habitat

Sonoran pronghorn inhabit one of the hottest and driest portions of the Sonoran Desert. They forage on a large variety of perennial and annual plant species (Hughes and Smith 1990, Hervert et al. 1997a, FWS 1998). During drought years, Hughes and Smith (1990) reported cacti were the major dietary component (44 percent). Consumption of cacti, especially chain fruit cholla (*Cylindropuntia fulgida*, Pinkava 1999), provides a source of water during hot, dry conditions (Hervert et al. 1997a). Other important plant species in the diet of the pronghorn include pigweed (*Amaranthus palmeri*), ragweed (*Ambrosia sp.*), locoweed (*Astragalus sp.*), brome (*Bromus sp.*), and snakeweed (*Gutierrezia sarothrae*) (FWS 1998). Pronghorn will move in response to spatial limitations in forage availability (Hervert et al. 1997b). Water intake from forage is not adequate to meet minimum water requirements (Fox et al. 2000), hence pronghorn need, and readily use, both natural and artificial water sources (Morgart et al. 2005).

Sonoran pronghorn rut during July-September, and does have been observed with newborn fawns from February through May. Parturition corresponds with annual spring forage abundance. Fawning areas have been documented in the Mohawk Dunes and the bajadas of the Sierra Pinta, Mohawk, Bates, Growler, and Puerto Blanco mountains. Does usually have twins, and fawns suckle for about two months. Does gather with fawns, and fawns sometimes form nursery groups (FWS 1998). Sonoran pronghorn form small herds of up to 21 animals (Wright and deVos 1986).

Telemetry locations of 35 Sonoran pronghorn demonstrated that during 1995-2002, pronghorn used creosote/bursage and palo verde/mixed cactus vegetation associations less than expected or equal to availability. Pronghorn use of palo verde/chain fruit cholla associations and desert washes occurred more than expected. However, during the cool and wet winter on 1997-1998, pronghorn were found in creosote/bursage associations more than expected (Hervert et al. 2005). In contrast, during 1983-1991, pronghorn used creosote/bursage and palo verde mixed cacti associations more than expected (deVos and Miller 2005). Differences between these study results may be due in part to differences in precipitation and forage patterns between these periods. The earlier period was wetter
with greater forage availability in flats and valleys where creosote/bursage associations predominate. In wet winters and early spring pronghorn are often found in flats and valleys, such as Pinta Sands, the Mohawk Dunes west of the Mohawk Mountains, and the west side of the Aguila Mountains. In late spring and summer, pronghorn then move from the flats and valleys upslope into bajadas and often south or southeast where Palo Verde associations, chain fruit cholla, and washes are more common. Movements are most likely motivated by the need for thermal cover provided by leguminous trees and water available in succulent chain fruit cholla (Hervert et al. 1997a). Home range size of Sonoran pronghorn during 1995-2002 ranged from 16.6 to 1,109 square miles, with an average of 197 ± 257 square miles (Hervert et al. 2005).

From 1995-2002, adult mortality rates varied from 11-83%. Adults were killed by coyotes, bobcats, mountain lions, capturing efforts, drought, and unknown causes (Bright and Hervert 2005). However, during 1983-1991, apparently a more favorable period for pronghorn during which the population grew significantly, mean annual survival of females and males was 96% ± 0.04 and 92% ± 0.04 (deVos and Miller 2005). Disease may affect mortality, but has not been thoroughly investigated (Bright and Hervert 2005). Hervert et al. (2000) found that the number of fawns surviving until the first summer rains was significantly correlated to the amount of preceding winter rainfall, and negatively correlated to the number of days without rain between the last winter rain and the first summer rain. Drought may be a major factor in the survival of adults and fawns (Bright and Hervert 2005). Three radio-collared pronghorn died in July and August of 2002 with no obvious cause of death. Given that 2002 was one of the driest years on record, the proximate cause of these mortalities was likely heat stress and/or malnutrition resulting from inadequate forage conditions due to drought.

Distribution and Abundance

United States

Historically, the Sonoran pronghorn ranged in the U.S. from approximately the Santa Cruz River in the east, to the Gila Bend and Kofa Mountains to the north, and to Imperial Valley, California, to the west (Mearns 1907, Nelson 1925, Monson 1968, Wright and deVos 1986, Paradiso and Nowak 1971; Figure 6). Bright et al. (2001) defined the present U.S. range of the Sonoran pronghorn as bordered by Interstate 8 to the north, the International Border to the south, the Copper and Cabeza mountains to the west, and State Route (SR) 85 to the east (see Figure 4). This area encompasses 2,508 square miles (Bright et al. 2001). Sonoran pronghorn are estimated to be currently limited to < 25% of their historical habitat in Arizona and northern Sonora, Mexico (Krausman et al. 2005).

Figure 4 shows the current range of the Sonoran pronghorn and Figure 5 provides geographical distribution of Sonoran pronghorn identified by FWS and Arizona Game and Fish Department (AGFD) on radio telemetry surveys from 1994 through 2001. Data collected and maintained by AGFD from radio-collared individual pronghorn are used to obtain location, distribution, and habitat use information. Unfortunately, the currently radio-collared subset of the U.S. population of Sonoran pronghorn under-represents OPCNM. Most of the current radio collars were put on animals released from the captive breeding facility on Cabeza Prieta National Wildlife Refuge (CPNWR), and most of those animals have stayed in that general region. Wild pronghorn with radio
Collars are usually captured on CPNWR or Barry M. Goldwater Air Force Range (BMGR), because the landscape is safer for both the pronghorn and the capture helicopter, than in OPCNM. While wild Sonoran pronghorn collared outside of OPCNM have often moved into OPCNM in the past, this has not been the case in recent years.

While Mearns (1907) suggested that pronghorn may have been common in some areas in the late 1800s, evidence suggests that the sub-population declined dramatically in the early 20th century. Sub-population estimates for Arizona, which only began in 1925, have never shown the pronghorn to be abundant (Table 3). Repeatable, systematic surveys were not conducted in Arizona until 1992. Since 1992, Sonoran pronghorn in the United States have been surveyed biennially (Bright et al. 1999, 2001; Bright and Hervert 2003, 2005) using aerial line transects (Johnson et al. 1991). Sub-population estimates from these transects have been derived using three different estimators (Table 4); currently the sightability model (Samuel and Pollock 1981) is considered the most reliable estimator (Bright et al. 1999, 2001). Table 4 presents observation data from transects and compares estimates derived from the different population models from 1992 through 2010.

The sightability model population estimates from 1992 to 2000 showed a 45 percent decrease in sub-population size (Table 4). The estimates indicate a steady decline in sub-population size, with the exception of the 1994 survey. The 1994 estimate may be somewhat inflated due to inconsistencies in survey timing (FWS 1998, Bright et al. 2001).

High fawn mortality in 1995 and 1996 and the death of half (8 of 16) of the adult, radio-collared pronghorn during the 13 months preceding the December 1996 survey corresponded to five consecutive six-month seasons of below normal precipitation (summer 1994 through summer 1996) throughout most of the Sonoran pronghorn range, which likely contributed, in part, to observed mortality (Bright et al. 2001, Hervert et al. 1997a).

Mortality of Sonoran pronghorn in 2002 was exceptionally high (Bright and Hervert 2005). At the start of the year, seven radio-collared Sonoran pronghorn were at large in the U.S. sub-population. By December 2002, all but one of these had died. For most, drought stress was considered to be the proximate cause. For those animals that may have succumbed to predation, it was suspected that drought stress was again a factor, by making the animal more vulnerable to predation, due to an emaciated physical condition and being forced into predator habitats by drought. The 2002 drought was one of the driest on record. As an example, annual rainfall at the OPCNM visitor center was only 2.54 inches in 2002 (T. Tibbitts, OPCNM, pers. comm. 2002); average annual rainfall for the visitor center is 9.2 inches (Brown 1982). The November/December 2002 population survey revealed the U.S. sub-population had declined to the lowest level ever recorded. A total of 18 pronghorn were observed, in three groups (8, 9, and 1). The sightability model resulted in a population estimate of 21 animals, or a 79% decline from 2000. Also, very few fawns survived in 2002 to replace these dying adults.

Although drought was likely the proximate cause of the dramatic decline of the U.S. sub-population in 2002, anthropogenic factors almost certainly contributed to or exacerbated the effects of the drought. Historically, pronghorn likely moved to wetted areas and foraged along the Río Sonoyta, Sonora, and the Gila and probably Colorado rivers during drought. These areas are no longer...
accessible to the U.S. population due to fences, Interstate 8, Mexico Highway 2, and other barriers. The rate of decline in the U.S. sub-population from 2000-2002 (79 percent) was also much greater than that observed in either the sub-population southeast of Highway 8 (18 percent decline) or the El Pinacate sub-population (26 percent) during the same period (see discussion of Mexican sub-populations in the next section). Observations of forage availability suggest the El Pinacate sub-population experienced the same severe drought that occurred on the Arizona side (T. Tibbitts, J. Morgart, pers. comm. 2003). Yet that sub-population fared much better than its U.S. counterpart. The high level of human activities and disturbance on the U.S. side, including activities such as undocumented alien, i.e., cross border violator (CBV) traffic, smugglers, and required law enforcement response, as compared to what occurs in the El Pinacate area, may be a contributing factor in the differing rates of decline observed north and south of the border. See the section entitled “Drought” in the Environmental Baseline and “Cumulative Effects” for further discussion.

The December 2004, 2006, 2008, and 2010 aerial surveys resulted in an estimated 58, 68, 68, and 85 (this 2010 estimate does not include the 17 pronghorn released from the pen in December 2010, see below), respectively, pronghorn in the U.S. sub-population (Tables 3 and 4). As of 2012, we suspect that the wild population now numbers over 100, and could be as high as 120 (personal communication, 8/29/2012, Jim Atkinson, CPNWR). This is a substantial increase brought on by the implementation of ongoing recovery measures and improved range conditions (as a result of increased rainfall) since 2002. The 2006 to 2010 estimates included a number of captive-born individuals that were released into the wild (see below). Also, though the exact ratio is unknown, during the 2008 and 2010 surveys observers noted a skewed sex ratio (approximately 2: 1) with more males than females; this affects the rate at which the population may increase.

Though the U.S. Sonoran pronghorn population has increased significantly since 2002, the increase is not as great as the Sonoran Pronghorn Recovery Team (Team) had predicted given the adequate to favorable range conditions since 2002 as well as tremendous multi-agency recovery efforts, including providing waters and forage enhancement plots, implementing seasonal restrictions on public access to pronghorn habitat during the critical fawning season, and a captive breeding program. The Team has suggested a number of reasons for this, including high cross border activity, drought, and forage conditions beyond what is compensated for with the implementation of recovery actions. Information provided by land managers in OPCNM suggest off-road vehicle tracks have been seen progressively increasing in extent and density since 2002, throughout that portion of the pronghorn’s range U.S. range (electronic mail from Tim Tibbitts, OCPNM and member of the Sonoran Pronghorn Recovery Team, September 21, 2009). It has been well documented that human presence in wildlands can disturb animals, causing them to unnecessarily expend energy avoiding people, thereby potentially reducing reproductive success (e.g., Manville 1983, van Dyke et al. 1986, Goodrich & Berger 1994, Primm 1996; as cited by Kerley et al. 2002) or increasing the likelihood of fatal encounters with humans (Kasworm and Manley 1990, Saberwal et al. 1994, Khramtsov 1995, Mattson et al. 1996; as cited by Kerley et al. 2002). Failure of the wild U.S. pronghorn population to rebound to numbers more in line with historical levels since the 2002 population decline is considered by some Team members to be evidence that human disturbance, particularly off-road driving related to cross-border activities, continue to affect the population, inhibiting its ability to recover. However, it is important to note that pronghorn are likely more resilient to impacts associated with human disturbance and similar stressors during periods of improved forage and water
resources. Unfortunately, in recent times, these periods have occurred less often and their occurrence is unreliable. Therefore, in our best professional judgment and based on current observations and predicted climate changes, it is likely that the effects of human disturbance and similar stressors on Sonoran pronghorn will be exacerbated by poor habitat conditions for much of the duration of the proposed TIMR project.

In addition, the low number of females also likely impacts this population’s ability to rebound. With efforts to improve forage and water availability and the release of individuals from the captive pens, we may see an improving population trend. If not, factors other than the reduced number of females may be the primary cause of slow population growth or negative population trends.

Semi-captive Breeding Facility

As part of a comprehensive emergency recovery program, a total of 11 adult pronghorn (10 females and one male) were initially captured (from Sonora and Arizona) and placed into a semi-captive breeding pen at CPNWR in 2004. The breeding program has been very successful and as of January 2012, there were 48 pronghorn in the enclosure. Since establishing the program, 16 pronghorn older than current year have died in the pen due to various causes, including one confirmed case of epizootic hemorrhagic disease, two from malnutrition prior to the introduction of alfalfa hay in the pen, two from bobcat predation, one from entanglement in the fence, and two from capture operations. Eight deaths were from unknown causes and although disease was suspected, it could not be confirmed. Sonoran pronghorn have been released from the pen every year since 2006; as of January 2012, a total of 73 individuals have been released, many of which are known to still be alive.

The objective is to produce at least 20 fawns each year to be released into the current U.S. population, and to establish additional U.S. populations at Kofa NWR and BMGR-East, east of SR 85. The additional populations will be established as experimental, nonessential populations under section 10(j) of the Act. A final Environmental Assessment and final 10(j) rule were published in April and May, 2011, respectively. In December 2011, 13 Sonoran pronghorn were moved from the CPNWR breeding pen to the newly built breeding pen in the King Valley on Kofa NWR. One of the animals died due to capture myopathy, leaving 12 (10 does and 2 bucks) in the pen for breeding purposes.

Mexico

Historically, Sonoran pronghorn ranged in Sonora from the Arizona border south to Hermosillo and Kino Bay, west to at least the Sierra del Rosario, and east to the area south of the Baboquivari Valley on the Tohono O’odham Nation (Nelson 1925, Carr 1974, Monson 1968; Figure 6). The distribution in Baja California is less clear, but observations by Mearns (1907) indicate they occurred in the Colorado Desert west of the Colorado River, as well. Sonoran pronghorn are currently extant in two sub-populations in Mexico, including: (1) Pinacate sub-population west of Highway 8 near the Pinacate Lava flow; and (2) north and west of Caborca and southeast of Highway 8 (see Figure 4). Sub-populations of Sonoran pronghorn in Sonora had not been thoroughly surveyed until the December 2000 surveys (Bright et al. 2001), at which time 346 pronghorn were estimated to occur...
in Sonora. Although the 1993 estimate was approximate, survey results suggested a decline in the sub-populations of 16 percent from 1993 to 2000 (Table 5). Since 2000, the two Mexico sub-populations have been resurveyed biennially, with the exception of the winters of 2004/05 and 2005/06, when they were surveyed both years. In December 2002, a total (both El Pinacate and southeast of Highway 8) of 214 pronghorn in 32 groups were seen for a tentative population estimate of 280, indicating further decline. Only 19 pronghorn were observed in the Pinacate area for an estimate of 25, which is a decline of 26% from the 2000 estimate. Surveys conducted in December 2004 and February 2005 demonstrated that the population southeast of Highway 8 increased to 625 (439 observed), while the Pinacate population increased to 59 (30 observed) (684 total estimated, 469 total observed). In 2004, several capture-related mortalities occurred in Sonora associated with efforts to capture pronghorn to stock the breeding pen in Arizona. Since then, capture protocols were examined and improved. In January 2006, surveys indicated that pronghorn numbers remained relatively steady with an estimated total of 634 (486 observed) individuals (combined for both populations). Nine of these were captured, of which five were fitted with radio-collars and released and four were transferred to the semi-captive breeding facility in the U.S.

In December 2007, surveys indicated pronghorn numbers declined with an estimated total of 404 (360 observed) individuals combined for both sub-populations (including 354 pronghorn [325 observed] in the area southeast of Mexico Highway 8 and 50 [35 observed] to the west of the highway). Of these pronghorn, four pronghorn (three does and 1 buck) from the Pinacate Biosphere Reserve were captured and fitted with GPS radio collars. The male was found dead during a subsequent telemetry flight; his death was likely capture-related as his temperature rose dangerously high during the collaring effort. The decrease in Sonoran pronghorn population in Sonora from 2006 to 2007 is likely attributable, at least in part, to drought conditions in the pronghorn range in Mexico. During the aerial surveys, observers noted many extremely dry areas and some areas where the vegetation appeared dead in the pronghorn range. Additionally, an increasing number of fences and mine expansion within the range of the southeastern pronghorn population may be adversely affecting this population.

In December 2009, surveys indicated pronghorn numbers increased somewhat with an estimated total of 482 (311 observed) individuals combined for both sub-populations (including 381 pronghorn [258 observed] in the area southeast of Mexico Highway 8 and 101 [53 observed] to the west of the highway). In December 2011, surveys indicated pronghorn numbers declined drastically with an estimated total of 241 (197 observed) individuals combined for both sub-populations (including 189 pronghorn [167 observed] in the area southeast of Mexico Highway 8 and 52 [30 observed] to the west of the highway).

Population Viability Analysis

In 1996, a workshop was held in which a population viability analysis (PVA) was conducted for the U.S. sub-population of Sonoran pronghorn (Defenders of Wildlife 1998). A PVA is a structured, systematic, and comprehensive examination of the interacting factors that place a population or species at risk (Gilpin and Soulé 1986). Based on the best estimates of demographic parameters at the time, the likelihood of extinction of Sonoran pronghorn was calculated as one percent in the next 25 years, nine percent in the next 50 years, and 23 percent in the next 100 years. More severe threats
include population fluctuation, periodic decimation during drought (especially of fawns), small present population size, limited habitat preventing expansion to a more secure population size, and expected future inbreeding depression. At populations of less than 100, population viability declined at an increasingly steep rate. To maintain genetic diversity over the long term, a population of at least 500 is desirable (Defenders of Wildlife 1998). The likelihood of extinction increased markedly when fawn mortality exceeded 70 percent. Thus, a 30 percent fawn crop (30 fawns/100 does) each year is necessary to ensure the continuance of the U.S. sub-population. The authors concluded that “this population of the Sonoran pronghorn, the only one in the U.S., is at serious risk of extinction.” The authors made these conclusions prior to the severe drought and decline in the species in 2002. On the other hand, Hosack et al. (2002) found that some management actions were possible that could improve the chances of population persistence significantly. Actions that would ameliorate the effects of drought or minimize mortality of pronghorn were of particular importance for improving population persistence.

More recent work by Horne (2010) attempted to account for uncertainty that can affect the outcome of PVAs. He conducted a series of PVAs to address various sources of uncertainty. Regardless of the degree or type of uncertainty, active management related to captive populations and establishing additional populations increased the viability of wild Sonoran pronghorn. However, without such active management, the wild population has a high probability of dropping to abundance levels that are unsustainable and a low probability that the population would ever reach an abundance that is higher than 100 females (Horne 2010).

Threats

Barriers that Limit Distribution and Movement

Highways, fences, railroads, developed areas, and irrigation canals can block access to essential forage or water resources. Interstate 8, the Wellton-Mohawk and Palomas Canals, agriculture, a railroad, and associated fences and human disturbance near the Gila River act as barriers for northward movement of pronghorn. Brown and Ockenfels (2007) report that numerous railroad and highways bisect what was former contiguous pronghorn habitat, often dividing these rangelands into parcels too small to support, viable, long-term populations of pronghorn in Arizona. Furthermore, they state that railroads and paved highways are especially restrictive, as in addition to acting as intimidating barriers in their own right, they are often fenced on both sides of the right-of-way.

Highways 2 and 8 in Sonora, and SR 85 between Gila Bend and Lukeville, Arizona support a considerable amount of fast-moving vehicular traffic, are fenced in some areas, and are likely a substantial barrier to Sonoran pronghorn (a pen-raised radio-collared male is known to have crossed SR 85 and Mexican Highway 2; however, this is considered highly unusual). NPS records include a Sonoran pronghorn found dead just east of SR 85 along Ajo Mountain Drive in 1972. It was suspected to have been struck and killed by a vehicle (electronic mail from Tim Tibbitts, OPCNM, September 1, 2011). More recently, in 2003/2004 John Hervert (AGFD) investigated a Sonoran pronghorn mortality found a few hundred feet from Interstate 8. It had a broken leg, and so vehicle collision was suspected. deVos and Miller (2005) reported that Sonoran pronghorn used areas
within 0.6 miles of roads less than those greater than 0.6 miles from roads, demonstrating that non-
highway roads can also be restrictive.

Canals have been the cause of four pronghorn deaths since 2008. Three pen-raised pronghorn
drowned in the Palomas Canal in 2008 and one pen-raised pronghorn drowned in the Wellton Canal
in 2010. De-watering of reaches of the Río Sonoyta and lower Gila River has also caused significant
loss of habitat and loss of access to water (Wright and deVos 1986). Agricultural, urban, and
commercial development at Sonoyta, Puerto Peñasco, and San Luis Río Colorado, Sonora; in the
Mexicali Valley, Baja California; and at Ajo, Yuma, and along the Gila River, Arizona, have further
removed habitat and created barriers to movement.

Human-caused Disturbance

A variety of human activities occur throughout the range of the pronghorn that have the potential to
disturb pronghorn or its habitat, including livestock grazing in the U.S. and Mexico; military
activities; recreation; poaching and hunting; clearing of desert scrub and planting of buffelgrass
(Pennisetum ciliare) in Sonora; gold mining southeast of Sonoyta, dewatering and development
along the Gila River and Río Sonoyta; cross-border violator (CBV) activity across the international
border and associated required law enforcement response; and roads, fences, canals, and other
artificial barriers.

Of the aforementioned human activities, in the U.S. range of the pronghorn, CBV activity and
required law enforcement response is the most significant current source of disturbance to Sonoran
pronghorn and its habitat. As a result of increased presence of the USBP in the Douglas, Arizona
area, and in San Diego (Operation Gatekeeper) and southeastern California, CBV traffic has shifted
into remote desert areas, such as CPNWR, OPCNM, and BMGR (Klein 2000). In 2001, estimates
of CBVs reached 1,000 per night in OPCNM alone (OPCNM 2001), and an estimated 150,000
people entered the monument illegally from Mexico (Milstead and Barns 2002). Apprehensions of
CBVs in the USBP Ajo Station, Tucson Sector increased from 21,300 in 1999 to 22,504 in 2006.
The numbers of CBV apprehensions from fiscal year (FY) 2007 to FY 2011 have decreased since
2006, and are shown by location in Table 6. The number of apprehensions and drive-throughs in the
Ajo Station’s overall Area of Responsibility (AOR) declined after the construction of the border
vehicle fences on OPCNM in 2006 and CPNWR in 2009, but has increased since the implementation
of the SBI\text{net} towers and infrastructure became operational in 2010. In the approximately one year
since the SBI\text{net} towers have been operational, the number of apprehensions of CBVs have increased
by 85% within OPCNM and 183% in CPNWR. This increase is believed to be attributable to
increased CBV activity, as well as increased USBP effort, tactical infrastructure, and technology in
the area which have improved USBP’s ability to detect and apprehend CBVs (personal
communication with USBP, September 1, 2011).

In fiscal year 2005, the Yuma Sector of USBP apprehended record numbers of CBVs, and from
October 1, 2005 to May 2006, 96,000 arrests were made, which was a 13% increase over the same
time period in 2005 (Gerstenzang 2006). The Wellton Station of the Yuma USBP Sector made
2,080 apprehensions in fiscal year 2005 and 3,339 apprehensions from October 2005 to February
2006 (personal communication with USBP, February 10, 2006). Apprehensions in recent years have
declined in the Wellton Station AOR (see Table 6). Overall, a dramatic decline in apprehensions in
the Yuma Sector, particularly in the western portions of the sector, is attributed to USBP presence at
Camp Grip, increased numbers of agents, and recently completed tactical infrastructure.

As USBP has been able to successfully gain control of more urban areas, CBV activity has shifted to
more remote areas, such as CPNWR and OPCNM. Both CBV and USBP activities have resulted in
increased human presence in and increased degradation of Sonoran pronghorn habitat, including
direct impacts to habitat from vehicles, but also a reduction in access to forage availability,
particularly during drought and other periods of poor range conditions. Much of the CBV traffic
travels through the southern passes of the Growler Mountains that lead either through or by all of the
forage enhancements and the captive rearing pen in the Child's Valley, with potential to impact these
recovery projects and use of the area by pronghorn (personal communication with Curtis McCasland,
CPNWR, 2007).

There is some anecdotal evidence that pronghorn are avoiding areas of high CBV traffic and law
enforcement activities (personal communication with Curtis McCasland, CPNWR, 2007). This may
be especially true during periods of poor range conditions. For example, according to CBP records,
a drag road adjacent to the current Granite Forage Enhancement Plot (FEP) in the Wellton Station
AOR was created in 1996 and has been in use since before the FEP was installed. However, at the
time the FEP was being planned, this was only a two-track trail with little use (electronic mail
communication with John Hervert, AGFD, October 3, 2012). Wellton Station has confirmed that
USBP use of this drag road has increased recently in response to an increase in illegal activities in the
area. In spring of 2009, AGFD reported that they believe that three does with fawns abandoned the
Granite Forage Enhancement Plot (FEP) due to the high amount of USBP activity at the site
(electronic mail from John Hervert, AGFD, September 16, 2009). The does were later observed at
OPCNM; however, the fawns died (electronic mail from John Hervert, AGFD, September 16, 2009).
Plans are currently being made to move the FEP. Instances such as these are more likely to occur
during periods of poor range conditions and the impacts are likely exacerbated, regardless of the
source of disturbance or impact on the pronghorn.

The Camp Grip Forward Operating Base (FOB), located within the action area and current range of
the pronghorn, was established in 2005. In 2011, FWS completed an analysis of whether the Camp
Grip FOB resulted in impacts on Sonoran pronghorn movement patterns. FWS analyzed available
AGFD Sonoran pronghorn location data from radio-collared animals and results of this analysis were
inconclusive as to whether Camp Grip had any impact on Sonoran pronghorn movement; however,
as described above under “Distribution and Abundance” there are very few radio-collared animals
and documenting pronghorn movement can be difficult. These inconclusive results were also in part
due to the many complex factors involving Sonoran pronghorn movement, including artificial feeding
and watering of the animals across the species’ range. Initial data from radio-collared pronghorn
locations appeared to indicate a potential reduction in use of areas in the vicinity of Camp Grip
(electronic mail from Mark Sturm, OPCNM, August 31, 2011). Data from 2012 have shown several
occurrences of pronghorn in the vicinity of Camp Grip. This may be due to the increased number of
pen-reared pronghorn that have been released and that have been exposed on a more regular basis to
human activity at the pens (electronic mail from Jim Atkinson, CPNWR, October 5, 2012). Data
also indicate a northerly shift in habitat use since Ajo-1 SBInet implementation, which coincides with
a documented increase in impacts. This result is despite the presence of abundant and good habitat conditions in areas nearer the border during 2011.

Prior to 2002, Sonoran pronghorn used the 90,000 acre Valley of the Ajo extensively during the fawning period (March 15-July 31); they primarily entered the Valley through an extremely critical and narrow mountain pass located near Bates Well. During the winter of 2001-2002, NPS stationed a ranger at Bates Well in a small (about 18-foot) temporary Federal Emergency Management Agency trailer, with no outdoor lighting or generators, to provide visitor security in the north part of OPCNM during the park’s peak visitation period, which occurs prior to the Sonoran pronghorn fawning period. Beginning in 2002, USBP began to use the Bates Well site (i.e., the former Bates Well FOB) seasonally during the summer months. The NPS continued to use Bates Well for short periods during the late fall and winter in support of coordinated law enforcement efforts until ultimately discontinuing its use entirely in 2005. Because pronghorn traditionally used the Bates Well and Valley of the Ajo areas during the spring and summer months, it is unlikely that the NPS fall and winter presence at Bates Well between 2001 and 2005 had a significant effect on pronghorn use of the area. From 2005 to 2010, USBP was the sole occupant at Bates Well. Over time, USBP occupancy of this site increased (the site could accommodate eight people); ultimately this site was occupied nearly year round. Furthermore, USBP brought in generators that ran continuously and lights that operated throughout the night.

As part of the SBI
et Ajo-l Tower Project Biological Opinion issued December 10, 2009 (File Number 22410-2009-F-0089), the Bates Well FOB was moved in early 2011 to the current Ajo Station tactical camp site. Since the establishment of the FOB at Bates Well and its subsequent relocation, no pronghorn have been documented entering the Valley of the Ajo through the Bates Well migration corridor. The establishment of the Bates Well FOB coincided with a drastic decline in pronghorn numbers (attributable to drought and an increase in border activity). Documenting pronghorn movement in this area is difficult because radio-collared individuals generally do not occur in the northwestern OPCNM (see “Distribution and Abundance” section under “Status of the Species” for Sonoran pronghorn). Changes in use of the Bates Well area by pronghorn may be in part due to decreased population size; however, the increased human presence at Bates Well, particularly during the fawning period, may have acted to prevent Sonoran pronghorn movements through the area and into the Valley of the Ajo. Since 2002, the population has increased and pronghorn continue to avoid the Bates Well migration corridor. Soundscape data show traffic levels have doubled on Bates Well Road over the past two years (electronic mail from Mark Sturm, OPCNM, August 31, 2011). Considering the sensitivity of pronghorn to human activity and the ongoing use of the area, reduced pronghorn use of the Bates Well area may be tied to the high level of human activity associated with the site. This is a narrow valley limiting the area that pronghorn could potentially use. If resource availability is limited and pronghorn resources are available in this area, human activities will likely be more impacting due to the lack of options for forage elsewhere. If good range conditions are widespread, pronghorn are likely to be more resilient to such impacts. Pronghorn entered the southern end of the Valley of the Ajo briefly in 2010 before returning west. They migrated to/from the valley via a southern pathway, but are not known to have used the Bates Well pass (electronic mail from Mark Sturm, OPCNM, August 31, 2011). These data apply to small group of Sonoran pronghorn documented during a visual hilltop survey conducted by NPS.
While specific studies related to the physiological effects of disturbance on Sonoran pronghorn are extremely limited, some information regarding how these effects are manifest in other wildlife may be helpful in assessing the potential effects to pronghorn. Physiological effects of noise on wildlife can include stresses to neural, endocrine, digestive, cardiovascular, and immune systems as well as reproductive function, causing changes such as increased blood pressure, available glucose, and blood levels of corticosteroids (Manci et al. 1988, Kaseloo and Tyson 2004, Keay et al. 2006). However, available research evaluating physiological impacts of human stressors on wild animal populations also indicates that the responses of species are variable (Manci et al. 1988, Larkin 1996, Radle 1998, Krausman et al. 1998, Kaseloo and Tyson 2004, Stankowich 2008). We believe that, given the information in the above studies, it is possible that Sonoran pronghorn could have a physiological stress response to disturbance without showing an overt behavioral response. To have a population effect, behavioral and physiological responses to disturbance must ultimately affect survival and productivity, and to date, no research efforts have supported or refuted population level impacts on pronghorn from physiological stress. At some point, increased energetic costs resulting from a stress-related increase in metabolic rate, reduced foraging efficiency due to interrupted feeding, and alarm and flight responses could jeopardize survival and productivity if the disturbance is stressful enough and chronic (Bright and Hervert 2005, deVos and Miller 2005).

As stated above, and though not specifically related to Sonoran pronghorn, it has been well documented that human presence in wildlands can disturb animals, causing them to unnecessarily expend energy avoiding people, thereby potentially reducing reproductive success (e.g., Manville 1983, van Dyke et al. 1986, Goodrich and Berger 1994, Primm 1996; as cited by Kerley et al. 2002) or increasing the likelihood of fatal encounters with humans (Kasworm and Manley 1990, Saberwal et al. 1994, Khramtsov 1995, Mattson et al. 1996; as cited by Kerley et al. 2002). Range abandonment has been documented in response to human disturbance (Jorgenson 1988), and investigators have shown that heart rate increases in wildlife in response to auditory or visual disturbance in the absence of overt behavioral changes (Thompson et al. 1968, Cherkovich and Tatoyan 1973, Moen et al. 1978). Studies of captive pronghorn, other than the Sonoran subspecies, have shown that they are sensitive to disturbance such as human presence and vehicular noise. Human traffic, such as a person walking or running past pronghorn in an enclosed pen, a motorcycle driving past, a truck driving past, a truck blowing its horn while driving past, or a person entering a holding pen, caused an increased heart-rate response in American pronghorn in half-acre holding pens (Workman et al. 1992). The highest heart rates occurred in female pronghorn in response to a person entering a holding pen, or a truck driving past while sounding the horn. The lowest heart rates occurred when a motorcycle or truck was driven past their pen. Pronghorn were more sensitive to helicopters, particularly those flying at low levels or hovering, than fixed wing aircraft. Luz and Smith (1976) observed pronghorn reactions to overhead helicopter flights which suggested mild disturbance (muscle tensing and interruption of grazing) by helicopter noise levels at approximately 60 dBA and strong reaction (running) at approximately 77 dBA.

Disturbances that cause pronghorns to startle and run would energetically have a more significant effect during times of drought. Such energetic expenditures, particularly during times of stress, may lead to lower reproductive output and/or survival of individual animals (Geist 1971). Landon et al. (2003) evaluated whether Sonoran pronghorn used areas, as defined by noise levels produced by military aircraft, in proportion to their availability on the BMGR. Using 15% of the Arizona...
pronghorn population, Landon et al. studied pronghorn use of areas with varying sound pressure (ambient sound) levels and found that pronghorns did not use the areas with different ambient sound levels in proportion to their availability (2003). In general, they found that Sonoran pronghorn select areas with the lower noise levels and avoid areas with the higher noise levels; however, they did not consider habitat in their analysis. Whether pronghorn avoid these areas because of the noise or because of some other human-related factor is unknown; however, the various potential factors (i.e. noise levels, human presence, reduced vegetation or cover, disturbance) are interrelated. Hughes and Smith (1990) found that pronghorn immediately ran 1,310-1,650 feet from a vehicle, and that military low-level flights (less than 500 feet above the ground) over three pronghorn caused them to move about 330 feet from their original location.

Krausman et al. (2001, 2004, 2005a) examined effects of military aircraft and ground-based activities on Sonoran pronghorn at the North and South tactical ranges (TACs) on the BMGR and concluded that military activities, both ground-based and aerial, were associated with some changes in behavior (e.g., from standing to trotting or running, or bedded to standing). In response to stimuli, on days without stimuli, pronghorn foraged more and bedded less than on days with stimuli; the opposite was true for fawns (Krausman et al. 2001). Krausman et al. (2001) only considered a change in behavior to trotting or running in response to stimuli as biologically significant. Eighty-seven (4.1%) of the 2,128 events with ground-based stimuli resulted in pronghorn changing their behavior to trotting or running; often moving > 10 m (Krausman et al. 2004). Pronghorn tend to exhibit a predator response to human activities, but can habituate to chronic human disturbance in some instances (Krausman et al. 2004). The authors concluded that these changes were not likely to be detrimental to the animals; however, sightings of Sonoran pronghorn were biased towards disturbed habitats on the TACs and other areas of military activities, which also corresponded to areas of favorable ephemeral forage production (Krausman et al. 2005a). No specific conclusions could be drawn about effects of military activities on fawns during the Krausman et al. study, but the data suggests that fawns and their mothers may be more sensitive to anthropogenic stimuli than other pronghorn (Krausman et al. 2004). In general, the study did not detect differences in the behavior of pronghorn with and without anthropogenic stimuli; however, Krausman et al. (2004) recommends that all ground stimuli and activities that alerts or startles females and their fawns should be terminated. However, the long-term behavioral and physiological effects of military activities have not been quantified (Krausman et al. 2004).

The proposed TIMR project would result in additional human presence and activity in within the range of the Sonoran pronghorn. And, while the noise and activity associated with TIMR activities may be somewhat different than that described in the studies above, TIMR activities do include disturbance by heavy equipment, foot traffic, mowers and trimmers, and welding. While baseline levels of human activity are already relatively high in certain portions of the range of the Sonoran pronghorn, additional disturbance as a result of the proposed action, particularly in those areas that do not have access to the general public, will contribute to the potential for disturbance of pronghorn in the project area. Habituation by pronghorn to disturbance is more likely to occur if the disturbance is consistent or predictable. Krausman et al. (2004) report that animals, in general, minimally habituate to intermittent sounds, and that any habituation is gradual. Most of the actions associated with the TIMR project will be as-needed and occur at irregular intervals, reducing the ability of pronghorn to habituate to the activity. However, some degree of habituation may occur
because of the baseline levels of human activity already occurring on the landscape. Regardless, we believe there is the potential for human activities associated with the TIMR project to disturb pronghorn and, given the precarious nature of the pronghorn population, even limited disturbance of a few individuals may have population level impacts to Sonoran pronghorn.

Habitat Disturbance

Livestock grazing has the potential to significantly alter pronghorn habitat and behavior (Leftwich and Simpson 1978, Kindschy et al. 1982, Yoakum et al. 1996). Overgrazing well into the 19th century by Spaniards and their descendants caused widespread habitat changes throughout much of the Sonoran Desert, particularly in more settled areas such as central Sonora, Mexico (Sheridan 2000). The effects of cattle grazing are largely historical; cattle were removed from OPCNM, CPNWR, and the BMGR in 1979, 1983, and 1986, respectively (FWS 1998, Rutman 1997). While grazing activities across the range of the pronghorn have been largely eliminated, it is likely that long term impacts of this past activity are persistent across the species range. In 2004, the U.S. Bureau of Land Management (BLM) closed the Cameron Allotment on the borders of CPNWR and OPCNM, but grazing still occurs in the nearby Childs and Coyote Flat allotments near Ajo. In Sonora, livestock grazing occurs at Pozo Nuevo and at Ejido Puerto Peñasco, but cattle typically stay close to feed and water except in seasons with abundant annual growth when cattle range widely in the Pinacate region.

Mining occurred historically throughout much of the U.S. range of the pronghorn, but it is currently not a significant threat to Sonoran pronghorn in the U.S. During previous pronghorn surveys in Mexico, increasing effects from gold mining activities were noted in habitats used by the sub-population located southeast of Highway 8.

As discussed above, CBV activities and required USBP response have resulted in increased human presence in remote areas and ongoing habitat degradation. For instance, all the valleys at CPNWR are now criss-crossed with a network of illegal north-south roads and trails, even though those areas are designated as Wilderness. Segee and Neely (2006) report about 180 miles of illegal routes were created in wilderness areas of CPNWR from 2002 to 2006; however, this figure may be grossly underestimated. FWS reported 8,000 miles of off-road impacts in CPNWR as of 2008. Similar levels of impacts are expected to exist at OPCNM, and a report summarizing existing impacts is being produced (electronic mail from Mark Sturm, OPCNM, August 31, 2011); however, we have not yet received this report. OPCNM has mapped thousands of miles of unauthorized off-road impacts to date. Based on this preliminary estimate, hundreds of miles of unauthorized vehicle routes may exist within the vicinity of the proposed TIMR project and thousands may exist within the action area. Many of these routes were likely created both by CBVs and USBP, and are likely currently used by USBP. A cooperative effort is currently underway by CBP, NPS, and BLM to map and mark roads within the range of the Sonoran pronghorn to indicate those roads that are open for use by these agencies, and roads that are closed to vehicle traffic. It is hoped that this effort will reduce the use of unauthorized roads and the associated impacts to Sonoran pronghorn.

Prior to the completion of the vehicle border fences on OPCNM and CPNWR (construction was started on these fences in late 2003 and 2007 and completed 2006 and 2009, respectively), CBVs
Mr. Christopher J. Colacicco

frequently crossed the border in vehicles and created countless illegal routes, many of which were continuously used both by CBVs and responding USBP agents. Subsequent to the construction of the vehicle fences on OPCNM and CPNWR, CBV vehicular traffic was significantly reduced (there are occasional breaches in the fence; however, this CBV vehicular activity represents a fraction of that prior to the presence of the fences). NPS notes that CBV vehicle activity has decreased at OPCNM since about 2004 (electronic mail, Tim Tibbitts, OPCNM, 2009 and 2011); however, the number of off-road tracks, and new roads ("unauthorized vehicle routes") in OPCNM continues to increase (electronic mail, Tim Tibbitts, OPCNM, September 1, 2011). There is some evidence that vehicle activity, particularly in remote areas utilized by Sonoran pronghorn, has increased since 2004 by more than 700% (electronic mail from Mark Sturm, OPCNM, August 31, 2011). This is causing unprecedented levels of impacts to Sonoran pronghorn habitat. Decreased CBV vehicle traffic in pronghorn habitat as a result of the fences significantly alleviated the adverse effects of illegal (smuggling and migration) vehicle traffic on pronghorn and their habitat. USBP, however, continues to respond (by vehicle, horseback, foot, and aircraft) to ongoing CBV activity (mostly foot traffic) in these areas. Frequently, this required response necessitates driving off of authorized roads. Off-road driving conducted in pronghorn habitat results in significant degradation of this habitat and disturbance to pronghorn as discussed above. Because of concern over the dramatic increase in disturbance since 2005/2006, NPS has collected data over time to document the trend. The proliferation of unauthorized roads is a major impact on multiple resources, and provides an index of the level of human activity currently taking place in pronghorn habitat.

One potential measure of pronghorn habitat degradation is affects to carrying capacity, the number and distribution of pronghorn that can be supported by habitat conditions and access to available forage. Although the carrying capacity of the pronghorn range has not been quantified, loss or modification of habitat is a potential impact on Sonoran pronghorn. Loss or modification of habitat can reduce the ability of the overall U.S. population of Sonoran pronghorn to cope with limitations of forage by moving from place to place. Ultimately, loss or modification of habitat would reduce the carrying capacity of the U.S. range, resulting in a lower population. Based on population estimates from the past 85 years (Table 3), the pronghorn range has never supported more than about 300 individuals. A population of 300 animals may approach or exceed carrying capacity given current conditions on the occupied range (FWS 2002). Prior to alteration of the range beginning in the early 1900’s, the carrying capacity was probably higher due to the ability of herds to migrate to perennial water sources during drought (see “Distribution and Abundance” section under “Status of the Species” for Sonoran pronghorn).

However, the concept of carrying capacity is difficult to describe or apply to the Sonoran desert, particularly as it may apply to pronghorn. For example, it may not just be related to quantity (availability), but also quality of forage. Forage may become limiting for Sonoran pronghorn as the quality decreases, rather than from a lack of forage. Even during a prolonged period of drought, forage still occurs on the landscape; however, it is of insufficient quality to sustain pronghorn. How does this affect carrying capacity? In 2002, the remaining 21 pronghorn were slowly starving to death, but survived after summer rains increased forage quality. The forage plants were present, but were not of sufficient quality for use by pronghorn, until after precipitation events. One could say that the carrying capacity for pronghorn was 21 for the year 2002, but this number of pronghorn was also influenced by other decimating factors (predation, human caused stress). Defining carrying
capacity is complex and is likely related to the cumulative influence of all of these factors on pronghorn survival. Factors affecting pronghorn that are not related to forage are likely exacerbated in periods of poor range conditions, and pronghorn are likely more resilient to such threats during periods of good range conditions. Human activities or infrastructure on the landscape can provide impediments, affecting access by pronghorn to forage and water resources. For example, deVos and Miller (2005) found that pronghorn use areas greater than one kilometer from roads preferentially, and used areas within one kilometer of roads less than predicted, even during a period of good range conditions. Regardless of the forage quality, if pronghorn are not able to access the forage, it cannot contribute to survival and recovery of the population. Overall, carrying capacity is a likely a function of timing of rains and the level of rainfall more than any other factor (Horne 2010, email communications from John Hervert, AGFD, October 3, 2012 and Jim Atkinson, CPNWR, October 5, 2012), but Sonoran pronghorn must be able to access forage of adequate quality.

Due to habitat restrictions previously discussed, any further range reduction through habitat degradation would be significant. Examples of actions that may result in loss or modification of habitat include: permanent human developments; building roads, trails, or other areas cleared of vegetation; invasion by non-native plants; modification of plant communities by fire, etc.; or any activity that further limits use of suitable habitat. In addition to degradation from roads on CPNWR and OPCNM from illegal activity and associated CBP response, USBP operations appear to have precluded use of the 90,000-acre Ajo Valley for fawning as discussed above. This constitutes a large portion of the remaining pronghorn habitat.

Fire

The winter and spring of 2004/2005 were very wet, resulting in some of the highest productivity of cool season annual plants in recent memory. As these annual plants dried out, they created fuel for wildfire. In 2005, Mediterranean grass combined with high densities of the native wooly plantain (Plantago ovata) and other species created fuels adequate to carry fire. Military training, such as strafing and bombing in the tactical ranges, as well as fires set by CBVs, provided the ignition sources. Exact numbers are unknown; however, in 2005 roughly 7,500 acres of pronghorn habitat burned on the CPNWR (personal communication with Curtis McCasland, CPNWR, February 15, 2006) and more than 63,000 acres burned on the BMGR-East during that time. Approximately 29,260 acres of pronghorn habitat burned as a result of these fires.

Most Sonoran Desert trees, shrubs, and cacti are poorly adapted to fire (Brown and Minnich 1986, Schwalbe et al. 2000, Alford and Brock 2002). If areas burn repeatedly, permanent changes are likely in the flora. Even in the best scenario, it is likely to be many years before trees once again provide thermal cover in wash communities and cholla recover to a point that they are useful forage plants for pronghorn. This said, from 2007 to 2010 pronghorn were attracted to the burned areas, which often supported better growth of annual plants and forbs than adjacent unburned areas. However, in the long term and if these areas continue to burn, removal of thermal cover (trees) and chain fruit cholla, which pronghorn depend on in drought, would likely adversely affect pronghorn and probably limit the use of these areas to wetter and cooler periods and seasons.
Drought and Climate Change

As discussed, drought may be a major factor in the survival of adults and fawns (Bright and Hervert 2005), and the major decline in 2002 was driven by drought. Mean annual temperatures rose 1.8-3.6°F in the American Southwest from 1970-2004. That trend is accelerating and is predicted to continue through the 21st century and beyond (Intergovernmental Panel on Climate Change 2007). Most of the observed increases in globally averaged temperatures since the mid-20th century are very likely due to the observed increases in anthropogenic greenhouse gas concentrations (Intergovernmental Panel on Climate Change 2007). In the Sonoran Desert, anthropogenic climate change is causing warming trends in winter and spring, decreased frequency of freezing temperatures, lengthening of the freeze-free season, and increased minimum temperatures in winter, which will likely cause changes in vegetation communities (Weiss and Overpeck 2005). These increases in temperature are predicted to be accompanied by a more arid climate in the Southwest (Seager et al. 2007, Intergovernmental Panel on Climate Change 2007). As a result, the Sonoran pronghorn is expected to be confronted with more frequent drought, which increases the importance of recovery actions, such as forage enhancement plots and water developments, which can offset the effects of drought. However, it will be important to consider other factors, such as predation, during management actions. Bright and Hervert (20050) indicated that periods of drought may force Sonoran pronghorn to use areas of available forage where predators may be more effective. Thus, climate change and drought may also exacerbate the effects of predation on the Sonoran pronghorn population and management actions should be focused in areas where predation is likely to be less successful.

Small Population Size and Random Changes in Demographics

At populations of fewer than 100 pronghorn, population viability declines at an increasingly steep rate. To maintain genetic diversity over the long term, a population of at least 500 is desirable (Defenders of Wildlife 1998). At an estimated 21 pronghorn in 2002, and 85 in 2010, the U.S. sub-population is critically endangered and has likely experienced a substantial loss of genetic diversity resulting from the 2002 bottleneck; this should gradually improve as more pen-raised animals are released into the wild sub-population. At an estimated 25 pronghorn in 2002 and 52 in 2011, the Pinacate sub-population is also well below desired numbers. At 189 (in 2011), the third sub-population (southeast of Highway 8) is also below the desired size to maintain genetic diversity and has experienced a substantial decline since the 2004/2005 estimate of 625 pronghorn. Loss of the U.S. sub-population would dramatically reduce our ability to manage or recover this subspecies. Populations at low levels may experience random variations in sex ratios, age distributions, and birth and death rates among individuals, which can cause fluctuations in population size and possibly extinction (Richter-Dyn and Goel 1972). In very sparse populations, males may have trouble finding females, reducing productivity (Ehrlich and Roughgarden 1987). Small populations are also sensitive to variations in natural processes, such as drought and predation (Hecht and Nickerson 1999).

Disease

Sonoran pronghorn can potentially be infected by a variety of viral and bacterial diseases, as well as parasites. Epizootic hemorrhagic disease and bluetongue virus are the most common cause of
disease caused die-off in wild pronghorn (Brown and Ockenfels 2007). A number of deaths (five in the captive breeding pen and two in the wild) in 2010 are suspected to be related to epizootic hemorrhagic disease and bluetongue virus. Blood testing has shown pronghorn exposure to these diseases by increases in antibody titers over time. The diseases relevant to pronghorn can be transmitted indirectly through vectors, such as infected midges or ticks, or directly via aerosolized or direct contact of infected fluids or tissues. Diseases that potentially infect pronghorn are all serious diseases of cattle, which can act as vectors. Cattle within the current range of the pronghorn have not been tested for these diseases.

ENVIRONMENTAL BASELINE

Regulations implementing the Act (50 CFR § 402.02) define the environmental baseline as the past and present impacts of all Federal, state, or private actions in the action area; the anticipated impacts of all proposed Federal actions in the action area that have undergone formal or early section 7 consultation; and the impact of state and private actions which are contemporaneous with the consultation process. The environmental baseline defines the current status of the species and its habitat in the action area to provide a platform from which to assess the effects of the action now under consultation. As described above, the action area for this BO is the action area identified for the project BA (Figures 3a and 3b) and the current range of the pronghorn within the U.S. (Figures 4 and 5). Figure 7 depicts the TIMR proposed action area and infrastructure relative to the Sonoran pronghorn range.

Status of the Sonoran Pronghorn in the Action Area

Within the U.S. portion of the Sonoran pronghorn’s range, pronghorn interact to form one sub-population in which interbreeding may occur. The U.S. sub-population is effectively separated from sub-populations in the El Pinacate Region and on the Gulf Coast of Sonora by Mexico Highways 2 and 8. Activities that may affect animals in any portion of the U.S. range of the pronghorn may affect the size or structure of the U.S. sub-population, or habitat use within the U.S. range. Because of this, the entire U.S. range of the Sonoran pronghorn is included in the action area for the TIMR Program.

Distribution, Abundance, and Life History

The distribution and abundance of the Sonoran pronghorn in the action area is the same as that described above under “Status of the Species” for the U.S. sub-population. Life history, including demographics, chronology of breeding and movements, diet, and other factors are also described above for the U.S. population.

Drought

As discussed in the Status of the Species, climate change in the Southwest and the Sonoran Desert is predicted to result in warming trends and drier conditions, with accompanying changes in vegetation communities (Weiss and Overpeck 2005, Seager et al. 2007). Rowlands (2000) examined trends in precipitation for southwestern Arizona and OPCNM from 1895-1999. For southwestern Arizona, no trend in precipitation was found for the period, but low precipitation occurred around 1895 and
during the 1950s. Periods of high precipitation occurred in 1915-1920 and in the 1980s. For OPCNM, there was a slightly increasing trend in monthly and annual precipitation over the period 1895-1999, a strong drought occurred in the 1950s, and a lesser drought occurred in the 1970s. No discernible trend in precipitation in southwestern Arizona or OPCNM was found in the 1990s, which is when the current decline in the U.S. pronghorn sub-population began.

Since Rowland’s analysis, there was one year characterized by above-average rainfall and abundant ephemeral forage (2001) followed by a year with virtually no precipitation or ephemeral forage (2002). Recruitment and survival were high in 2001 and very low in 2002 (Bright and Hervert 2005). Based on the lack of forage and water, and the condition of pronghorn observed, drought is considered the proximate cause of the 79% decline in the U.S. pronghorn sub-population from 2000 to 2002. From 2003 to 2011, rainfall and Sonoran pronghorn range conditions have varied, but have improved overall when compared to 2002. Current range conditions are well below average precipitation for the calendar year and for the water year (October 1, 2011 – September 30, 2012). The January 2012 long-term (48-months) drought status report (http://www.azwater.gov/azdwr/StatewidePlanning/drought/DroughtStatus2.htm) indicates that southwestern Arizona is experiencing conditions of no drought to severe drought conditions.

Historically, pronghorn populations must have weathered severe droughts in the Sonoran Desert, including many that were more severe and longer term than what has occurred recently. Given that pronghorn populations survived the droughts of the 1890s, 1950s, 1970s, and others before those, it is unreasonable to solely attribute recent declines in the U.S. pronghorn population to drought. OPCNM (2001) concluded, “If (individual) recent dry years have had an impact on Sonoran pronghorn, it is most likely because in recent decades Sonoran pronghorn have much more limited options for coping with even brief moderate drought. Because of restrictions on their movements and range, and increasing human presence within their range, pronghorn are less able to employ their nomadic strategy in search of relief. It is not that drought itself is an impact, but possibly that drought has become an impact, due to other factors confounding the species’ normal ecological strategy.”

Recent Recovery Actions

A number of critically important recovery projects have been recently initiated in an attempt to reverse the decline of the U.S. sub-population of the Sonoran pronghorn (Krausman et al. 2005b). These projects are designed to increase availability of green forage and water during dry periods and warm seasons to offset to some extent the effects of drought and barriers that prevent pronghorn from accessing greenbelts and water, such as the Gila River and Río Sonoyta. Many developed water sources and 10 emergency water sources (seven on CPNWR, one on OPCNM, and two on BMGR-West) have been constructed in recent years throughout the range of the U.S. subpopulation. In March 2009, three temporary, experimental feed and water stations were placed on the South TAC on the BMGR-East and in May 2010, two new temporary water stations were placed on OPCNM. These stations are heavily used by pronghorn during times with poor range conditions brought on by drought.
Four forage enhancement plots within pronghorn habitat, each consisting of a well, pump, pipelines and irrigation lines, have been developed to irrigate the desert and produce forage for pronghorn. One plot is currently being constructed and additional plots may be installed over the next five years if warranted. Plots and waters located in areas with little human activity and better range conditions appear to be more effective (i.e., contribute to fawn and adult survival to a greater degree) than those located in areas of high human activity and poor range condition (i.e., experiencing drought) (personal communication with John Hervert, AGFD, September 16, 2009). Therefore, to ensure the success of these measures, it is critical that human activity be avoided or significantly minimized near the plots and waters.

A semi-captive breeding facility at CPNWR was first stocked with pronghorn in 2004; as of December 2011 it contains 48 animals. As described above, this facility will be used to augment the current U.S. sub-population, and to establish additional herds east of SR 85 at Kofa NWR and BMGR-East. The breeding pen at Kofa NWR was stocked with 12 animals in January 2012. These crucial projects, which we hope will pull the U.S. population back from the brink of extinction, have been cooperative efforts among many agencies and organizations, including FWS, AGFD, Marine Corps Air Station (MCAS)-Yuma, Luke Air Force Base, OPCNM, CBP, Arizona Desert Bighorn Sheep Society, Arizona Antelope Foundation, the Yuma Rod and Gun Club, the University of Arizona, the Los Angeles and Phoenix Zoos, and others.

Past and Ongoing Non-Federal Actions in the Action Area

The Status of the Species section describes a variety of human activities that have affected the Sonoran pronghorn since initiation of livestock grazing over 300 years ago (Officer 1993). Many non-Federal activities that have affected the pronghorn are historical in nature, and pronghorn have been all but extirpated from private, state, and Tribal lands. However, increased illegal activities have likely had a significant impact on Sonoran pronghorn in the U.S. in recent times, particularly since the turn of the millennium. See the “Human-caused Disturbance” and “Habitat Disturbance” portions of the “Threats” section under “Status of the Species” above for further detail.

Past and Ongoing Federal Actions in the Action Area

Due to the extent of Federal lands in the action area, with the exception of CBV activities, most activities that currently, or have recently, affected the U.S. sub-population or their habitat are Federal actions. The primary Federal agencies involved in activities in the action area include the MCAS-Yuma, Luke Air Force Base, FWS, BLM, OPCNM, and Border Patrol. In the following discussion, we have categorized Federal actions affecting the pronghorn as: 1) those actions that have not yet undergone section 7 consultation (although in some cases consultation has been completed on components of the Federal activity), and 2) Federal actions that have undergone consultation.

Federal Actions for Which Consultation Has Not Been Completed

1) U.S. Border Patrol Activities in the Tucson Sector, Arizona

While some USBP field activities to detect, deter, and apprehend CBVs in the Tucson Sector have undergone consultation, others have not. In 2006, the USBP sent us a draft BA for review that
addressed all activities within that sector. We responded with comments on the BA; however, USBP did not submit a final BA. Activities within the Ajo Station of the Tucson Sector have the greatest potential to adversely affect pronghorn and these have been addressed, in part, in the SBInet Ajo-1 Tower consultations (BO issued December 10, 2009 [File Number 22410-2009-F-0089] with subsequent reinitiations). As USBP has been able to successfully gain control of more urban areas, CBV activity has shifted to more remote areas, such as CPNWR and OPCNM. Both activities have resulted in increased human presence in and widespread degradation of Sonoran pronghorn habitat. As discussed above (see the “Human-caused Disturbance” and “Habitat Disturbance” portions of the “Threats” section under “Status of the Species”), hundreds to thousands of illegal routes have been created and are likely currently used by CBVs and USBP on CPNWR and OPCNM. Also as mentioned previously, there is some evidence that pronghorn avoid areas of high CBV traffic and USBP activities on CPNWR and OPCNM. This activity in pronghorn habitat has likely led to varying levels of disturbance to pronghorn, potentially resulting in decreased fitness and death (from reduced availability of important habitat, separation of does and fawns, increased energetic expenditure from fleeing, etc.). However, it is logical to assume the presence of agents in these areas generally reduces the amount of CBV activity; which consequently reduces the potential for disturbance to pronghorn from CBVs.

2) **Smuggler/Drug Interdiction**

In the past, we were aware of U.S. Customs, Drug Enforcement Authority, and Arizona Army National Guard smuggler or drug interdiction activities in pronghorn habitat, including vehicle and helicopter activities. However, we have never received information regarding the extent or types of activities they conduct, and no consultation occurred on these activities. According to CBP, U.S. Customs now only operates at the Lukeville Port of Entry (adjacent to, but not within the range of the Sonoran pronghorn); we do not know whether activities by the Drug Enforcement Authority or the Arizona Army National Guard continue to occur within the range of the pronghorn.

3) **BLM Off-Road Vehicle Use Area**

We are aware of an off-road vehicle (ORV) use area located north of Ajo on BLM land, near the CPNWR, and adjacent to suitable pronghorn habitat. The BLM has not authorized the use of this ORV area, but may include it in the updated Sonoran Desert National Monument and Lower Sonoran Resource Management Plan (RMP) they are developing for BLM lands in the vicinity. They will request formal section 7 consultation on the updated RMP. To date, BLM has not provided us with information about the extent and type of use of the ORV area or its possible effects to pronghorn.

4) **DHS-CBP Hybrid Fence on BMGR and Vehicle Fence on CPNWR**

Consultation was completed for the installation of a vehicle barrier (fence) along the U.S.-Mexico border from Avenue C in Yuma to the western boundary of OPCNM, including the BMGR (see details below). Effects to the Sonoran pronghorn were anticipated and analyzed related to the shift in CBV traffic as a result of the fence. However, subsequent to issuance of the biological opinion, the action was changed to include the installation of a section of hybrid-style fence designed to
prevent the passage of pedestrians. Because all environmental laws were waived (as permitted by the Real ID Act of 2005) by the Secretary of the DHS, CBP never reinitiated consultation with us regarding this change to their proposed action. However, DHS did provide funding to the FWS for the implementation offsetting measures for Sonoran pronghorn, including the development of forage enhancement plots and water sources. These offsetting measures will contribute to recovery actions for the Sonoran pronghorn.

5) DHS-CBP Vehicle Fence on CPNWR

CBP constructed and maintains a 1.6-mile segment of vehicle fence (known as CV-2a) and associated roads on the CPNWR. Although the project was likely to adversely affect pronghorn, as well as benefit pronghorn by reducing CBV vehicle activity within the pronghorn range, because all environmental laws were waived (as permitted by the Real ID Act of 2005) by the Secretary of the DHS, it never underwent formal consultation. We provided CBP with recommendations to avoid, minimize, and offset effects to pronghorn; however, to date, we do not know if they were implemented.

6) Remote Video Surveillance System (RVSS) and Integrated Fixed Towers

CBP is proposing an expansion of both Integrated Fixed Towers (IFT) and RVSS towers within the action area for this project. These projects will involve the construction or placement of new towers to complement the Ajo-1 tower project. Access roads, construction, and operation of these towers have the potential for increased impacts to the Sonoran pronghorn in the action area. Close coordination between DOI agencies and CBP regarding the siting and operation of these towers will be necessary to avoid exacerbating impacts to Sonoran pronghorn already associated with existing and proposed activities in the action area. Coordination with FWS and section 7 consultation has been completed for up to 20 new RVSS towers, as well as for upgrading a number of existing towers. Section 7 consultation will also be completed for the new IFTs.

Federal Actions Addressed in Section 7 Consultations

As part of our comprehensive discussion of all past and present actions affecting pronghorn within the action area, we describe below all BOs issued to date on actions that may affect the pronghorn. A variety of project types were considered with a range of effects to pronghorn, including capture and collaring of pronghorn for research purposes, consultation numbers 02-21-83-F-0026 and 02-21-88-F-0006; installation of a water source in the Mohawk Valley for pronghorn, consultation number 02-21-88-F-0081; implementation of the CPNWR Comprehensive Conservation Plan, consultation number 22410-2006-F-0416; change in aircraft type from the F-15A/B to the F-15E on BMGR-East [F-15E Beddown Project], consultation number 02-21-89-F-0008; and the following projects at OPCNM: widening of North Puerto Blanco Road, consultation number 02-21-01-F-0109; improvements to SR 85 roadway and drainages, consultation 02-21-01-F-0546; and construction of a vehicle barrier, consultation number 02-21-02-F-237. Incidental take was anticipated only for the Beddown Project in the form of harassment as a result of aircraft overflights. This project was later incorporated into the BO on Luke Air Force Base’s activities on the BMGR, discussed below. All of
these formal consultations can be viewed on our website at http://www.fws.gov/southwest/es/arizona/Biological.htm.

Additional information is included for the following consultations, which were generally of a greater scope than the above consultations:

U.S. Border Patrol Activities in the Yuma Sector, Wellton Station, Yuma, Arizona

This biological opinion (consultation number 02-21-96-F-0334), issued September 5, 2000, addressed all USBP activities along the United States/Mexico border in Yuma County from the Colorado River to about the area of Pinta Sands at the southern end of the Sierra Pinta Mountains. The Yuma Sector requested reinitiation of consultation, and we delivered a draft biological opinion in 2004; however, we have not received comments from the USBP to date.

Currently, USBP activities within the Yuma Sector/Wellton Station include air and ground patrols; drag road preparation and associated road maintenance; remote sensor installation and maintenance; pedestrian and vehicle fence and associated road maintenance; apprehensions and rescues; and assistance to other sectors and agencies. In both BO’s, disturbance to pronghorn was anticipated as a result of on-the-ground USBP operations, and direct injury or mortality of pronghorn as a result of collision with USBP vehicles or by low-level helicopter flights abruptly approaching and startling pronghorn, which may result in injury or energetic stress, particularly during drought. Pronghorn may also be adversely affected by noise and visual impacts of helicopter overflights. To reduce adverse effects on pronghorn, the USBP agreed to implement a number of conservation measures including alteration of helicopter flight paths and timing, coordination with AGFD to obtain the locations of telemetered pronghorn, finalization of an MOU with CPNWR, providing monthly reports to CPNWR regarding activities and wildlife observations, and holding an annual meeting with DOI agencies to present the annual report and improve coordination. We determined that the proposed action was not likely to jeopardize the continued existence of the pronghorn. We anticipated take in the form of harassment that is likely to injure up to one pronghorn over a 10 year period. The following reasonable and prudent measures were provided: 1) minimize injury of pronghorn through reduced flights, use of administrative roads, and speed limits; 2) monitor and study reactions of pronghorn on BMGR to USBP activities; and 3) provide a means to determine the level of incidental take that results from USBP activities. Several conservation recommendations were also provided. We are not aware of any incidental take attributable to Yuma Sector activities.

BLM’s Lower Gila South Management Area

Three biological opinions address BLM’s Lower Gila South Management Area. The Lower Gila South Resource Management Plan-Goldwater Amendment (consultation number 02-21-90-F-0042), proposed specific and general management guidance for non-military activities on the BMGR. The non-jeopardy biological opinion, issued April 25, 1990, was programmatic, requiring BLM to consult when site-specific projects are proposed. No incidental take was anticipated. The Lower Gila South Habitat Management Plan (HMP) (consultation number 02-21-89-F-0213) provided management guidance for both specific and general actions in southwestern Arizona. Four actions were addressed in the HMP, including an exchange of 640 acres near Ajo, rehabilitation work on two catchments,
Mr. Christopher J. Colacicco

and assessment of livestock removal from pronghorn habitat. Exchange of land out of public ownership may facilitate development or other uses that would preclude use by pronghorn. The non-jeopardy opinion was issued on May 15, 1990. The biological opinion for the Lower Gila South Resource Management Plan and Amendment (consultation number 02-21-85-F-0069) addressed programmatic management of lands in southwestern Arizona, including livestock grazing, wilderness, cultural resources, fire, minerals and energy, recreation, wildlife management, wood cutting, Areas of Critical Environmental Concern, and other land uses. The non-jeopardy biological opinion was issued on March 27, 1998; no incidental take was anticipated. In regard to management on the BMGR, these three opinions have been replaced by the opinion on the BMGR’s Integrated Natural Resources Management Plan (INRMP) (see below). The Air Force and MCAS-Yuma have assumed BLM’s management responsibilities on the BMGR.

BLM grazing allotments in the vicinity of Ajo, Arizona

The original biological opinion (consultation number 02-21-94-F-0192), issued December 3, 1997, addressed effects to pronghorn resulting from issuance of grazing permits on five allotments, four of which were located near Ajo and Why (Cameron, Childs, Coyote Flat, and Why allotments); and the fifth near Sentinel (Sentinel allotment). All but portions of allotments east of SR 85 were considered to be within the current distribution of the Sonoran pronghorn. Reinitiations resulted in revised biological opinions dated November 16, 2001, September 30, 2002, June 21, 2004, March 3, 2005, and March 8, 2007. Under the current proposed action, the Cameron Allotment is closed, the Sentinel Allotment has been in non-use for several years, the Coyote Flat and Why allotments were combined into one (Coyote Flat Allotment), and the Childs Allotment remains relatively unchanged in terms of management. Effects of livestock grazing activities included reduced forage availability for pronghorn, human disturbance due to livestock management, barriers to movement caused by pasture and allotment fences, and potential for disease transfer from cattle to pronghorn. The March 8, 2007 opinion concluded that the proposed action was not likely to jeopardize the continued existence of the pronghorn. No incidental take was anticipated, and none is known to have occurred.

Organ Pipe Cactus National Monument General Management Plan

The original biological opinion (consultation number 02-21-89-F-0078), issued June 26, 1997, addressed implementation of OPCNM’s GMP. This opinion was reinitiated six times, resulting in revised biological opinions dated November 16, 2001, April 7, 2003, March 10 and August 23, 2005, March 8, 2007, and December 10, 2009. GMP plan elements included: 1) continuing travel and commerce on SR 85 while enhancing resource protection, 2) seeking designation of OPCNM as the Sonoran Desert National Park, 3) establishment of partnerships, 4) increased wilderness and an interagency wilderness and backcountry management plan, 5) changes in trails, facilities, and primitive camping, and 6) implementation of a Cultural Resources Management Plan. Included were a number of conservation measures to minimize impacts to pronghorn, including "Limiting future development to the area north of the North Puerto Blanco Drive and east of the Senita Basin Road/Baker Mine Trail/Dripping Springs Trail . . .". Effects of the action included human disturbance to pronghorn and habitat due to recreation and management activities. We determined that the proposed action was not likely to jeopardize the continued existence of the pronghorn. In the latest versions of the opinion, no incidental take of pronghorn was anticipated. No incidental
take is known to have occurred. The original opinion was the subject of a lawsuit (Defenders of Wildlife, et al. v. Bruce Babbitt, et al.) and was remanded by the court due to our failure to adequately address the impact of proposed activities on pronghorn. The sixth reinitiation addressed a one-time deviation from the aforementioned conservation measure to allow DHS to construct SBInet towers TCA-AJO-170, 302, and 003 and associated access roads outside the area referenced in the conservation measure. OPCNM issued a Special Use Permit for the construction of these towers on OPCNM lands; but all incidental take was addressed as part of the DHS reinitiation, not the GMP. Therefore, incidental take is addressed in the biological opinions on the SBInet Ajo-1 Tower Project, discussed below.

Marine Corps Air Station-Yuma in the Arizona Portion of the Yuma Training Range Complex

The original biological opinion (consultation number 02-21-95-F-0114), was issued on April 17, 1996. That opinion was reinitiated and revised opinions were issued November 16, 2001, August 6, 2003, October 21, 2009, and September 17, 2010 (current consultation number is 22410-1995-F-0114 and its reinitiations). These opinions addressed all proposed and authorized actions on the BMGR by MCAS-Yuma, including ongoing and proposed changes to military flights over CPNWR and the BMGR, operation of various training facilities such as landing strips, a rifle range, targets, a parachute drop zone, a transmitter/telemetry system, ground support areas, and Weapons Tactics Instructor courses, conducted twice a year (March-April and October-November) that involve overflights, ground-based activities, and ordnance delivery at targets in BMGR-East. Ground-based activities, such as those of troops and vehicles at ground-support areas, were determined to adversely affect pronghorn habitat use. In areas where helicopters fly particularly low and create noise and visual stimuli, disturbance of pronghorn was anticipated. Ordnance delivery at North and South TACs could disturb pronghorn, and ordnance, live fire, and shrapnel could potentially strike and kill or injure a pronghorn. MCAS-Yuma proposed measures to reduce the direct and indirect impacts of the proposed action, including measures to reduce or eliminate incidental take of Sonoran pronghorn and to minimize destruction and degradation of habitat. We determined that the proposed action was not likely to jeopardize the continued existence of the pronghorn. In the 2003, 2009, and 2010 versions of the biological opinion, no incidental take of pronghorn was anticipated and none is known to have occurred.

Luke Air Force Base Use of Ground-Surface and Airspace for Military Training on the BMGR

The original biological opinion (consultation number 02-21-96-F-0094), issued August 27, 1997, addressed military use of the airspace above and the ground space on BMGR-East and CPNWR by Luke Air Force Base. Military activities within the area of overlap with the CPNWR were limited to use of airspace and operation of four Air Combat Maneuvering Instrumentation sites. Military activities occurring within BMGR-East included: airspace use, four manned air-to-ground ranges, three tactical air-to-ground target areas, four auxiliary airfields, Stoval Airfield, and explosive ordnance disposal/burn areas. Primary potential effects of the action included habitat loss due to ground-based activities, harassment and possible mortality of pronghorn at target areas, and disturbance of pronghorn due to military overflights. We determined that the proposed action was not likely to jeopardize the continued existence of the pronghorn. This opinion was reinitiated in 2001, 2003, and 2010, resulting in revised opinions dated November 16, 2001, August 6, 2003, and
May 4, 2010. In the latest (2010) opinion, we anticipated take of one wild Sonoran pronghorn every 10 years, one pen-raised (free ranging) female pronghorn every 10 years, and four pen-raised (free ranging) male pronghorn every 10 years in the form of direct mortality or injury; and one wild Sonoran pronghorn of either sex, one pen raised (free ranging female) every 10 years, and two pen-raised (free ranging) male pronghorn every 10 years in the form of harassment. The following reasonable and prudent measure was provided: monitor incidental take resulting from the proposed action and report to the FWS the findings of that monitoring. We are not aware of any take of pronghorn confirmed attributable to Luke Air Force Base use of the ground-surface and airspace on the BMGR. A pronghorn was recently found dead near a target, but the cause of death was impossible to determine because the animal had been heavily scavenged by the time it was found.

During the development of these opinions, Luke Air Force Base made substantial commitments to minimize the effects of their activities on the Sonoran pronghorn, and additionally committed to implementing a variety of recovery projects recommended by the Sonoran Pronghorn Recovery Team.

Western Army National Guard Aviation Training Site Expansion Project

The non-jeopardy biological opinion for WAATS (consultation number 02-21-92-F-0227) was issued on September 19, 1997; however, Sonoran pronghorn was not addressed in formal consultation until reinitiations and revised opinions dated November 16, 2001 and August 6, 2003. The purpose of WAATS is to provide a highly specialized environment to train Army National Guard (ARNG) personnel in directed individual aviator qualification training in attack helicopters. The WAATS expansion project included: 1) expansion of the existing Tactical Flight Training Area, which includes establishing four Level III touchdown sites, 2) development of the Master Construction Plan at the Silver Bell Army Heliport, and 3) establishment of a helicopter aerial gunnery range for use by the ARNG on East TAC of the BMGR. All activities that are part of the proposed action occur outside the current range of the pronghorn, with the exception of training at North TAC. Training at North TAC only occurs when East TAC is closed for annual maintenance and EOD clearances (4-6 weeks each year). Effects to pronghorn at North TAC are minimized by monitoring protocols established by Luke Air Force Base. Training at East TAC could preclude recovery of historical habitat which might otherwise recover if the many other barriers that prevent pronghorn use of East TAC were removed. The November 16, 2001 and August 6, 2003 opinions found that the proposed action was not likely to jeopardize the continued existence of the pronghorn. No incidental take was anticipated and none is known to have occurred as a result of the proposed action. ARNG included the following conservation measures as part of their proposed action: 1) they proposed to study the effects of low-level helicopter flights on a surrogate pronghorn population at Camp Navajo (to date this measure has not been implemented), and 2) they committed to funding up to five percent of the emergency recovery actions on the BMGR which they have been doing on an annual basis. In December 2006, the ARNG requested reinitiation of formal consultation on this project based on changes in their mission, the availability of new information, and the inability to implement the aforementioned conservation measure regarding studying the effects of helicopter flights on pronghorn. In January 2007, we sent a letter to ARNG to request additional information and to inform them that reinitiation of formal consultation would not begin until we received the information. To date, ARNG has not responded to our request.
BMGR Integrated Natural Resources Management Plan

The non-jeopardy opinion for this action was issued on August 26, 2005. The Military Lands Withdrawal Act of 1999 required that the Secretaries of the Air Force, USN, and Interior jointly prepare an INRMP for the BMGR, the purpose of which was to provide for the “proper management and protection of the natural and cultural resources of [the range], and for sustainable use by the public of such resources to the extent consistent with the military purposes [of the BMGR].” The proposed action was comprehensive land management, including public use restrictions, authorizations, and permitting on portions of the BMGR regarding camping, vehicle use, shooting, entry into mines, firewood collection and use, rockhounding, and other activities; natural resources monitoring, surveys, and research; habitat restoration; wildlife water developments; development of a wildfire management plan; law enforcement; limitations on the locations of future utility projects and the Yuma Area Service Highway; control of trespass livestock; and designation of special natural/interest areas, while allowing other designations to expire. The proposed action included many land use prescriptions that would improve the baseline for the pronghorn. No incidental take was anticipated, and none is known to have occurred from the proposed action. The current INRMP is being updated, but no substantial changes in related actions are anticipated.

CBP and USBP Permanent Vehicle Barrier from Avenue C to OPCNM, Arizona

This biological opinion (consultation number 22410-2006-F-0113), issued September 15, 2006, addressed the CBP - Office of the Border Patrol’s installation of a permanent vehicle barrier (as well as access improvements, construction/improvement of border roads, and associated maintenance and patrol activities) along sections of the border from the western end of the OPCNM barrier to Avenue C just east of San Luis, Arizona. Effects to pronghorn included 1) disturbance of a narrow swath of habitat along the border, 2) presence of construction crews and vehicles that may disturb or preclude use of the area by pronghorn, 3) presence of maintenance and patrol vehicles and crews along the barrier access road, and 4) dramatic reduction or elimination of illegal drive-throughs and required law enforcement response, with much reduced route proliferation and habitat damage from off-highway vehicles. Included were a number of conservation measures to minimize and offset impacts to pronghorn, including the contribution of funds to establish pronghorn waters and forage enhancement plots. We determined that the proposed action was not likely to jeopardize the continued existence of the pronghorn. No incidental take of pronghorn was anticipated; however adverse effects were anticipated as a result of the shifting of CBV traffic because of the fence. As mentioned above, subsequent to issuing the biological opinion, the action was changed to include the installation of a section of hybrid-style fence designed to prevent the passage of pedestrians. Because all environmental laws were waived (as permitted by the Real ID Act of 2005) by Secretary of the DHS, CBP never reinitiated consultation with us regarding this change to their proposed action.

CBP and USBP 5.2-Mile Primary Fence near Lukeville, Arizona

This biological opinion (consultation number 22410-2008-F-0011), issued February 11, 2008, addressed the CBP and USBP action to construct and maintain 5.2 miles of primary fence along the U.S.-Mexico border near Lukeville, Arizona. Effects to pronghorn included 1) disturbance of a
narrow swath of habitat along the border, 2) disturbance to pronghorn from construction and maintenance activities, 3) disturbance to pronghorn and their habitat from potential redirection of CBV traffic and ensuing USBP response to the west of the fence; and 4) reduction in CBV and USBP activities north of the fence, with reduced habitat impacts and disturbance to pronghorn. Included were a number of conservation measures to minimize and offset impacts to pronghorn, including the contribution of funds to close and restore unauthorized routes within pronghorn habitat in OPCNM. These funds were provided to OPCNM in 2011 and unauthorized route restoration planning is currently underway. We determined that the proposed action was not likely to jeopardize the continued existence of the pronghorn. No incidental take of pronghorn was anticipated.

SBInet Ajo-1 Tower Project, Ajo Area of Responsibility, USBP Tucson Sector, Arizona

This biological opinion (consultation number 22410-F-2009-0089), issued December 10, 2009, addressed the DHS’s implementation of the SBInet Ajo-1 Tower Project in the Ajo Station’s AOR of USBP Tucson Sector, Arizona. The project included the following components: construction, operation, and maintenance of 10 communication and sensor towers; construction, use, and maintenance of new associated access roads; repair, improvement, use, and maintenance of associated approach roads; USBP operations, including relocating and operating a FOB; and implementation of conservation measures for endangered species. The opinion was reinitiated in 2010 and 2011, resulting in revised opinions dated March 15, 2010, April 29, 2011, and December 16, 2011. Adverse effects to pronghorn included: 1) disturbance of Sonoran pronghorn from noise and lights associated with tower, road, and FOB construction, operation, and maintenance; 2) loss of foraging habitat from tower and road construction; 3) increased risk of collision with project construction and maintenance vehicles; 4) continued degradation of habitat from USBP operations; and 5) disturbance of pronghorn from USBP operations, potential shifts in cross-border violator traffic to important pronghorn areas, better access for the public provided by new or improved roads, and the presence of towers in Sonoran pronghorn habitat. Long-term reduction of impacts to Sonoran pronghorn were anticipated if the project results in greater effective control of the border leading to eventual decreased cross-border violator and USBP activity in the project area. Included were a number of BMPs and offsetting measures to avoid, minimize, and offset effects to Sonoran pronghorn resulting from the project, including the contribution of funds to implement Sonoran pronghorn recovery actions. We determined that the proposed action was not likely to jeopardize the continued existence of the pronghorn. We anticipated incidental take of three Sonoran pronghorn due to harassment within the first year of towers becoming operational and two every five years thereafter; and one due to direct mortality over the life of the project. The following reasonable and prudent measures were stipulated: 1) monitor incidental take resulting from the proposed action and report to the FWS the findings of that monitoring; and 2) minimize harassment of Sonoran pronghorn resulting from the proposed action. To date, we are not aware of any incidental take attributable to the project.

In the approximately one year since the SBInet towers became operational, the number of apprehensions of CBVs have increased by 85% within OPCNM and 183% in CPNWR (see Table 6). Additionally, CBV traffic has appeared to have shifted west of the area of coverage of the SBInet towers. However, operational control of the area has not been accomplished as quickly as anticipated under the original SBInet Ajo-1 Tower Project Environmental Assessment and our
subsequent BO. The CBP 2009 Environmental Assessment states “…when the proposed towers become functional as a result of the enhanced detection capabilities, … interdiction efforts would be more focused and off-road interdiction activities would not be expected to increase overall and would decrease over time.” The original SBI\textit{net} Ajo-I Tower Project BO states “both on and off-road vehicle travel in pronghorn habitat is likely to result in significant disturbance to pronghorn. Off-road vehicle travel is especially problematic because it intrudes into areas that should act as refuges from human disturbance, and creates new routes that then facilitate increased CBV and USBP travel into pronghorn habitat.” The BO goes on to predict that “interdiction along authorized roads should generally increase, and off-road incursions should decrease as compared to current practices. As a consequence, impacts to Sonoran pronghorn from USBP activities will also decrease over time.”

NPS notes that CBV vehicle activity has decreased at OPCNM since about 2004 (electronic mail, Tim Tibbitts, OPCNM, 2009 and 2011); however, the number of off-road tracks, and new roads ("unauthorized vehicle routes") in OPCNM continues to increase (electronic mail, Tim Tibbitts, OPCNM, September 1, 2011). There is evidence to suggest that vehicle activity, particularly in remote areas utilized by Sonoran pronghorn, has increased since 2004 by more than 700% (electronic mail from Mark Sturm, OPCNM, August 31, 2011). This is causing ongoing impacts to Sonoran pronghorn habitat. Decreased CBV vehicle traffic in pronghorn habitat as a result of the fences significantly alleviated the adverse effects of illegal (smuggling and migration) vehicle traffic on pronghorn and their habitat. USBP, however, continues to respond (by vehicle, horseback, foot, and aircraft) to ongoing CBV activity (mostly foot traffic) in these areas. Frequently, this required response necessitates driving off of authorized roads. Off-road driving conducted in pronghorn habitat can result in degradation of this habitat and disturbance to pronghorn as discussed above.

Because off-road impacts from a variety of sources are ongoing, and tracking such incursions has proven to be difficult, we believe that the baseline levels of impacts to Sonoran pronghorn that result from these activities are greater now than were described in the original SBI\textit{net} Ajo-I Tower Project BO. Difficulty in defining baseline conditions and tracking take has been increased by the lack of a consistent definition and documentation of off-road incursions by CBP. Because of the lack of easily identifiable criteria for determining if an off-road incursion has occurred, data may not be collected or reported appropriately and, subsequently, the database information may be incomplete. A cooperative mapping and signage project is being implemented by CBP, DOD, BLM, NPS and FWS which should improve the ability of personnel on the ground to identify designated roads and determine when off-road incursions have occurred. However, it is difficult for FWS or CBP to determine how the baseline conditions have changed, whether incidental take has occurred, or if incidental take limits have been exceeded. In an effort to improve implementation of the conditions in the Ajo I Tower BO, CBP met with FWS and NPS staff regarding these issues. CBP subsequently indicated that they do not believe the reinitiation criteria have been triggered for this consultation (letter dated August 2, 2012). We are evaluating the effects of the proposed TIMR Program based on the current baseline of the project area which includes ongoing issues related to off-road incursions, human activities, and existing NPS, FWS, BLM and CBP infrastructure and facilities.
Summary of Activities Affecting Sonoran Pronghorn in the Action Area

Historically, livestock grazing, hunting or poaching, and development along the Gila River and Río Sonoyta were all probably important factors in the well-documented Sonoran pronghorn range reduction and apparent population decline that occurred early in the 20th century. Historical accounts and population estimates suggest pronghorn were never abundant in the 20th century, but recently, the estimated size of the wild population in the action area declined from 179 (1992) to 21 (December 2002). Although the proximate cause of the decline during 2002 was drought, human activities limit habitat use options by pronghorn and increase the effects of drought on the sub-population. For example, deVos and Miller (2005) reported that Sonoran pronghorn used areas greater than one kilometer from a road as expected or greater than expected, while using areas less than one kilometer from a road less than expected. Bright and Hervert (2005) concluded that lack of nutritious forage and water increased Sonoran pronghorn fawn mortality. Therefore, we believe that human activities can contribute to increased fawn mortality if such activities prevent access to nutritious forage and water.

Few studies have addressed human disturbance of pronghorn, but Berger et al. (1983) found that human disturbance reduces the foraging efficiency of pronghorn. Krausman et al. (2001) reported that Sonoran pronghorn reacted to ground disturbances (vehicles or people on foot) with a change in behavior 37 percent of the time, resulting in the animals running or trotting away 2.6 percent of the time. Wright and deVos (1986) noted that Sonoran pronghorn exhibit “a heightened response to human traffic” as compared to other subspecies of pronghorn. They noted that “once aware of an observer, Sonoran pronghorn are quick to leave the area. One herd was observed 1.5 hours later 18 kilometers north of the initial observation in October 1984. Other pronghorn have run until out of the observer’s sight when disturbed.” Hughes and Smith (1990) noted that on all but one occasion, pronghorn ran from the observer’s vehicle and continued to run until they were out of sight. Disturbance and flight of ungulates are known to result in a variety of physiological effects that are adverse, including elevated metabolism, lowered body weight, reduced fetus survival, and withdrawal from suitable habitat (Geist 1971, Harlow et al. 1987). Frequent disturbance imposes a burden on the energy and nutrient supply of animals (Geist 1971), which may be exacerbated in harsh environments such as those occupied by Sonoran pronghorn. Krausman et al. (2001) also found that fawns and their mothers were more sensitive to human disturbance than other life stages of Sonoran pronghorn.

The U.S. pronghorn sub-population is isolated from other sub-populations in Sonora by a highway and the U.S./Mexico boundary fence, and access to the greenbelts of the Gila River and Río Sonoyta, which likely were important sources of water and forage during drought periods, has been severed. Since 2002, due to improved drought status and implementation of emergency recovery actions, the wild sub-population increased to 85 in 2010. At 85, however, the wild sub-population is still in grave danger of extirpation due to, among other factors, human-caused impacts, drought, loss of genetic diversity, and predation (Horne 2010, Defenders of Wildlife 1998).

Within its remaining range, the pronghorn is subjected to a variety of human activities that disturb the pronghorn and its habitat, including military training, increasing recreational activities, grazing, significant presence of CBV and subsequent required law enforcement activities. OPCNM (2001)
identified 165 human activities in the range of the pronghorn, of which 112 were adverse, 27 were beneficial, 26 had both adverse and beneficial effects, and four had unknown effects. OPCNM (2001) concluded that in regard to the pronghorn, “while many projects have negligible impacts on their own, the sheer number of these actions is likely to have major adverse impacts in aggregate.” MCAS-Yuma (2001) quantified the extent of the current pronghorn range that is affected by select activities and found the following: recreation covers 69.6% of the range, military training on North and South TACs covers 9.8%, active air-to-air firing range covers 5.8%, proposed EOD five-year clearance areas at North and South TACs and Manned Range 1 cover 1.0%, and MCAS-Yuma proposed ground support areas and zones cover 0.29%.

CBV traffic and responding USBP enforcement activities occur throughout the range of the pronghorn, and evidence suggests pronghorn may be avoiding areas of high CBV and enforcement activities. Historically, pronghorn tended to migrate to the southeastern section of their range (southeastern CPNWR, such as south of El Camino del Diablo, and OPCNM, such as the Valley of the Ajo) during drought and in the summer. Within the last several years, very few pronghorn have been observed south of El Camino del Diablo on CPNWR. This suggests CBV and the interdiction of these illegal activities have resulted in pronghorn avoiding areas south of El Camino del Diablo; these areas are considered important summer habitat for pronghorn and may have long-term management and recovery implications (personal communication with Curtis McCasland, CPNWR, 2007). Sonoran pronghorn have historically used the Valley of the Ajo extensively during the fawning period (they primarily entered the Valley through Bates Pass, an extremely critical and narrow Sonoran pronghorn movement corridor). After the establishment of a FOB at Bates Well, which was located in the middle of Bates Pass on OPCNM, few pronghorn have been documented using the Valley of the Ajo, and no pronghorn have been documented entering the Valley of the Ajo through the Bates Pass area. The valleys at CPNWR and OPCNM, which were once nearly pristine wilderness Sonoran Desert, now have many braided, unauthorized routes through them and significant vehicle use by USBP pursuing CBVs (electronic mail, Tim Tibbitts, OPCNM, September 1, 2011). These areas have also been affected by trash and other waste left by CBVs.

Although major obstacles to recovery remain, since 2002, numerous crucial recovery actions have been implemented in the U.S. range of the species, including 10 emergency waters and four forage enhancement plots, with additional waters and forage plots planned. The projects tend to offset the effects of drought and barriers that prevent movement of pronghorn to greenbelts such as the Gila River and Río Sonoyta. A semi-captive breeding facility on CPNWR currently holds 78 pronghorn. This facility will provide pronghorn to augment the existing sub-population and to establish the additional populations east of SR 85 at Kofa NWR and BMGR-East. A new semi-captive breeding facility on Kofa NWR currently holds 20 pronghorn (electronic mail communication with John Hervert, AGFD, October 3, 2012). Additionally, vehicle barriers on the international border on CPNWR and OPCNM are facilitating recovery of pronghorn by drastically reducing the amount of CBV vehicle traffic in pronghorn habitat.

The current range of the pronghorn in the U.S. is almost entirely comprised of lands under Federal jurisdiction; thus authorized activities that currently affect the pronghorn in the action area are almost all Federal actions. These include ongoing military training activities that could negatively affect pronghorn, disturbance from livestock grazing on public lands, and land use prescriptions on BMGR,
CPNWR, and OPCNM. These same Federal agencies also implement various actions which may benefit the pronghorn. Effects from multiple CBP-related infrastructure projects and activities have been reduced through various conservation measures; however, CBV foot traffic and off-road vehicle activity and required Federal law enforcement response have been, and continue to be, significant threats to the pronghorn and its habitat. Prior to November 2001, in seven of 12 biological opinions issued by FWS that analyzed impacts to the pronghorn, we anticipated that take would occur. In total, we anticipated take of five pronghorn in the form of direct mortality every 10-15 years, and an undetermined amount of take in the form of harassment. Given the small and declining population of pronghorn in the U.S. at the time the opinions were written, take at the levels anticipated in the biological opinions would constitute a substantial impact to the population. In fact, based on population viability analysis, the loss of even a single pronghorn per year could significantly threaten species survival (Hosack et al. 2002).

Changes made in proposed actions and reinitiated biological opinions, plus the findings in other opinions from 2001 to the present, reduced the amount or extent of incidental take anticipated to occur from Federal actions. Significantly, action agencies have worked with us to modify proposed actions and to include significant conservation measures that reduce adverse effects to the pronghorn and its habitat. The current opinions that anticipate incidental take are 1) the Yuma Sector BO, in which we anticipated take in the form of harassment that is likely to injure up to one pronghorn in 10 years; 2) the Ajo 1 Tower BO, in which we anticipated take of three Sonoran pronghorn due to harassment within the first year of towers becoming operational and two every 5 years thereafter; and one due to direct mortality over the life of the project; and 3) the Luke Air Force Base BO, in which we anticipated take of one wild Sonoran pronghorn every 10 years, one pen-raised (free ranging) female pronghorn every 10 years, and four pen-raised (free ranging) male pronghorn every 10 years in the form of direct mortality or injury; and one wild Sonoran pronghorn of either sex, one pen-raised (free ranging female) every 10 years, and two pen-raised (free ranging) male pronghorn every 10 years in the form of harassment. With the exception of likely capture-related deaths during telemetry studies (which were addressed in 10(a)(1)(A) recovery permits), we are unaware of any confirmed incidental take resulting from the Federal actions described here.

We believe the aggregate effects of limitations or barriers to movement of pronghorn and continuing stressors, including habitat degradation and disturbance within the pronghorn’s current range resulting from a myriad of human activities, exacerbated by periodic dry seasons or years, are responsible for the present precarious status of the Sonoran pronghorn in the action area (deVos and Miller 2005). However, collaborative, multi-agency and multi-party efforts to develop forage enhancement plots and emergency waters, reduce human disturbance of pronghorn and their habitat, combined with the success of the semi-captive breeding program, plus planned future recovery actions, including establishment of a second U.S. sub-population, provide a path toward the recovery of the Sonoran pronghorn in the U.S. Key to achieving recovery will be a reduction in human disturbance to pronghorn and their habitat (Sonoran Pronghorn Recovery Criteria, Sonoran Pronghorn Recovery Plan Supplement and Amendment, January 2002).
EFFECTS OF THE ACTION

Effects of the action refer to the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated and interdependent with that action that will be added to the environmental baseline. Interrelated actions are those that are part of a larger action and depend on the proposed action for their justification. Interdependent actions are those that have no independent utility apart from the action under consideration. Indirect effects are those that are caused by the proposed action and, are later in time, but are still reasonably certain to occur.

There are no interrelated or interdependent actions that are part of the TIMR Program and that are dependent upon the TIMR Program for justification or have no independent utility apart from the TIMR Program. Ongoing and planned CBP activities in southern Arizona to secure the international border have independent utility from the TIMR Program and would continue, although in many cases less efficiently, regardless of implementation of the TIMR Program. Ongoing maintenance activities that are not considered in this BO, including operation of existing maintenance facilities and equipment used for those activities, also have independent utility from the TIMR Program and are not dependent upon it for justification. Thus, this BO only considers the direct, indirect, and cumulative impacts of TIMR Program activities in the description of the proposed action.

There currently are approximately 100 miles of roads and 15 low water points that are within the range of the Sonoran pronghorn. All of these roads are within OPCNM or CPNWR. The Sonoran pronghorn is expected to be affected both directly and indirectly by the proposed action. Short-term, direct adverse effects include disturbance of Sonoran pronghorn from noise and visual stimuli associated with maintenance and repair activities. There is also some potential for increased risk of collision with vehicles. Long-term, indirect adverse effects to Sonoran pronghorn may include the introduction of non-native species through project activities.

Disturbance to Sonoran pronghorn as a result of the proposed action will occur in areas of the Sonoran pronghorn’s range in proximity to the infrastructure to be maintained or repaired as discussed in the TIMR Program description, including areas like OPCNM and CPNWR, key areas to the survival and recovery of the U.S. population of pronghorn. CPNWR and OPCNM are essential areas for pronghorn, particularly during the fawning period and annual spring warming-drying trend (i.e., pronghorn use these areas under conditions of greatest thermal and hydration stress). Because the Sonoran pronghorn is endangered and the population has failed to increase to a sustainable number in over 40 years, any effects to individual pronghorn have the potential to affect the species as a whole.

Sonoran pronghorn are sensitive to human disturbance (Luz and Smith 1976; Hughes and Smith 1990; Workman et al. 1992; Landon et al. 2003; Krausman et al. 2004). Human traffic, such as a person walking or running past pronghorn in an enclosed pen, a motorcycle driving past, a truck driving past, a truck blowing its horn while driving past, or a person entering a holding pen, caused an increased heart-rate response in American pronghorn in half-acre holding pens (Workman et al. 1992). The highest heart rates occurred in female pronghorn in response to a person entering a...
holding pen, or a truck driving past while sounding the horn. The lowest heart rates occurred when a motorcycle or truck was driven past their pen.

Evaluating noise effects on pronghorn from anthropogenic factors is difficult, and human caused noise is difficult to assess separately from its visual appearance. Landon et al. (2003) found that, in areas with noise produced by military aircraft, Sonoran pronghorn used the lowest noise level area more than the higher noise level areas. Disturbance and flight of ungulates are known to result in a variety of physiological effects that are adverse, including elevated metabolism, lowered body weight, reduced fetus survival, and withdrawal from suitable habitat (Geist 1971, Harlow et al. 1987), which may be exacerbated in harsh environments, such as those occupied by Sonoran pronghorn. Disturbance may also lead to increased risk of predator attack, susceptibility to heat stress and malnutrition, and abandonment of fawns. Behavioral responses such as interrupted activity, vigilance, alert distance, flight distance, and displacement have been used to assess reactions of bighorn sheep to disturbance (Papouchis et al. 2001, Jansen et al. 2006). When compared to physiological stress responses, such as increased heart rate, increased serum cortisol levels, and fecal and urinary corticosteroid levels (MacArthur et al. 1979, Miller et al. 1991, MacArthur et al. 1982, Stemp 1983, Harlow et al. 1987, Hayes et al. 1994, and Keay et al. 2006), bighorn sheep have been shown to have a pronounced physiological stress response to disturbance without showing an overt behavioral response (MacArthur et al. 1982, Stemp 1983).

Ground-based activities can destroy or degrade forage and cover, and result in behavioral or physiological changes that may be detrimental (Geist 1971, Freddy et al. 1986, Workman et al. 1992). Vehicle traffic is disturbing to pronghorn and will often cause flight or startle responses with associated adverse physiological changes. Hughes and Smith (1990) found that a Sonoran pronghorn immediately ran 1,310-1,650 feet from a vehicle. Krausman et al. (2001 and 2004) found that Sonoran pronghorn reacted to human ground-based stimuli (vehicles and foot traffic) with a change in behavior, including occasionally running or trotting away. Wright and deVos (1986) noted that Sonoran pronghorn exhibit “a heightened response to human traffic” as compared to other subspecies of pronghorn.

Relatively favorable rainfall and forage conditions for pronghorn population growth occurred from 2005-2010. Additionally, 73 pronghorn have been released from the semi-captive breeding pen into the wild population as of January 2012. Forage and water have been provided via several artificial water sources and forage enhancement plots. Nonetheless, the population stayed fairly static during this period (58 pronghorn in 2004, 68 in 2006, 68 in 2008, and 85 in 2010). At 85 animals, this is still a precariously small population. For this population to increase and ultimately recover, other stressors need to be addressed. If drought and human caused disturbance and habitat degradation within the Sonoran pronghorn range in Arizona continue at their current level, Sonoran pronghorn in Arizona may only continue to survive as a result of captive breeding efforts and providing supplemental feed and water for the wild pronghorn population (Horne 2010, Krausman et al. 2005, deVos and Miller 2005). We believe that, based on the identification in the literature of human disturbance as an impact to pronghorn, a significant reduction in disturbance to pronghorn and their habitat is critical to the continued survival and recovery of this species (deVos and Miller 2005, Gavin 2004, Krausman et al. 2004, FWS 2002). With the pen releases, population genetics among the wild herds and resistance to EHD and BTV are likely improving.
Potential impacts on this species include the risk of direct injury and mortality from collisions with maintenance vehicles accessing tactical infrastructure, loss of habitat, behavioral and physiological impacts resulting from noise and other disturbances associated with human presence during maintenance and repair activities, and changes in behavior associated with avoidance of particular areas. However, because maintenance and repair activities would occur infrequently and most repair and maintenance activities would be completed within an area in less than 1 day, it is anticipated that any adverse effects to migration habitat, behavior, and individuals from the proposed project would be minimal. Some proposed actions will result in a very minor loss of Sonoran pronghorn habitat where new erosion-control features and other structures are added. Most of these repairs and upgrades will be confined to roads and drainage channels, which provide limited forage or cover potential for pronghorn, and no significant effects are anticipated to important habitat areas or overall pronghorn habitat suitability. It is anticipated that any adverse effects to migration habitat, behavior, and individuals from the proposed action would be minimal because TIMR Program activities will occur within the existing footprints of the tactical infrastructure. Additionally, impacts to pronghorn will be minimized because all project activities will occur outside of the fawning season (fawning season is from March 15 to July 31) within suitable habitat within the range of the species (Sonoran Pronghorn BMP #3). Substantial impacts to fecundity or mortality are not anticipated due to the implementation of project avoidance and minimization BMPs. Noise, human presence, and vehicles associated with maintenance and repair activities may cause short-term disturbance to Sonoran pronghorn.

Due to the lack of specific research into the effects of human disturbance on Sonoran pronghorn and the general lack of published information related to this species, we must rely on the best available information, including work conducted on other species and personal communications with biologists currently working in the field with Sonoran pronghorn. It is our opinion that human activities and disturbance can affect Sonoran pronghorn by causing behavioral and physiological responses that potentially affect survival and productivity. It is difficult to predict the extent of such effects that may occur as a result of the TIMR Program, particularly when considering the current baseline conditions which include substantial human activity and infrastructure. However, such effects are reasonably certain to occur based on our conversations with biologists in the field, input from the Sonoran Pronghorn Recovery Team, and the published information and grey literature that is available. We believe this is especially true due to the inconsistent occurrence of good range conditions, and the ongoing history of poor range conditions within the range of the Sonoran pronghorn.

Disturbance to Sonoran pronghorn – Direct Effects

Human activity and noise associated with repair and maintenance activities may result in disturbance to Sonoran pronghorn. This disturbance can cause pronghorn to startle and/or flee, travel further distances to find suitable foraging, watering, and resting areas, and result in stress and short-term denial of access to habitat, all of which can result in adverse physiological effects or injury to pronghorn. Fleeing behavior can cause fawns to be abandoned or separated from their mothers, which can leave them vulnerable to predator attack or cause physiological stress that results in death. Disturbance associated with TIMR will be periodic and short-term, and BMPs and CMs will be
implemented to avoid and minimize adverse effects to Sonoran pronghorn to the extent possible. Per Sonoran Pronghorn BMP #1 the number of vehicle trips required for maintenance will be minimized, and per Sonoran Pronghorn BMP #2 and General BMP #2, work will be delayed when pronghorn are within one mile of the activity site upon arrival and vehicle travel adjusted, depending on the proximity of pronghorn.

Mobilization for this effort will require some increase in vehicle traffic on established unpaved roads in the action area. The total number of trips necessary constitutes a minor increase in current road use levels. Potential direct effects along the access roads arise from traffic noise and the potential for collisions with pronghorn. Vehicles associated with project activities could collide with pronghorn causing injury and/or death. An adult male pronghorn was struck and killed by a vehicle near kilometer post 29 on Mexico Highway 8 in July of 1996 (FWS 2002). We know of only one suspected instance of a pronghorn dying as a result of a vehicle collision on or off roads in Arizona (AGFD email, June 21, 2012); thus we believe the likelihood of this occurring in any one year is very low. However, given that the TIMR Program has no definite end point, there is some likelihood of a vehicle colliding at some point with pronghorn. This is particularly anticipated if, consistent with recovery goals, the pronghorn population grows. We anticipate the potential for vehicle collisions will increase as the number of Sonoran pronghorn released from the captive pens increases. This is, in part, due to an anticipated increase in the number of free-ranging pronghorn, but also due to the fact that, behaviorally, these pronghorn may be more susceptible to collision because of their extended exposure to human activity and vehicles. In addition, conditions related to dust, the position of the sun, and the winding nature of many of the roads in the project area contribute to the reduced visibility of pronghorn that may be in proximity to roads. Biologists working in areas occupied by Sonoran pronghorn have reported a number of near misses with pronghorn as a result of dust or the sun obscuring visibility or the unpredictable behavior of pronghorn adjacent to roads (electronic mail communication with Jim Atkinson, CPNWR, October 5, 2012). The risk of vehicle related collisions will be minimized through implementation of General BMP #2 (suspend work in the vicinity of pronghorn), Wildlife BMP #4 (speed limits), and Roadways and Traffic BMPs (prohibit off-road vehicle travel); and these BMPs collectively will further reduce the likelihood of disturbing pronghorn in the area. Additionally, Sonoran Pronghorn BMPs #1-3 will significantly reduce the potential for vehicle related disturbance.

Human disturbances can be particularly detrimental during certain critical periods of a pronghorn’s life or during the year when animals are in poor condition or more vulnerable to injury. Sonoran pronghorn are particularly susceptible to stress caused by disturbance during the fawning season due to increased energetic demands during this period. Disturbance may result in fawn and adult mortality, particularly during drought years, due to the low availability of forage and water resources and consequent decreased fitness of adults and fawns. Furthermore, as noted above, disturbance during the fawning season may cause fawns to be separated from their mothers which can also result in death. As mentioned above, TIMR Program activities will not occur during the Sonoran pronghorn fawning season within the range and habitat of the species. Therefore, we anticipate these activities will not adversely affect pronghorn during this critical period. In the event that TIMR activities are needed during the fawning period, CBP will obtain guidance and authorization from FWS and other relevant Federal land managers prior to conducting any maintenance and repair activities.
Due to the extremely low population numbers and endangered status of this species, there is only limited research on the physiological impacts of human activities on Sonoran pronghorn (Workman 1992), and baseline levels of stress for this species are not currently known. Most researchers agree, however, that noise can affect an animal's physiology and behavior, and if it becomes a chronic stress, noise can be injurious to an animal's energy budget, reproductive success and long-term survival (Radle 1998, Kaseloo and Tyson 2004). The potential for project activities to cause physiological stress to pronghorn is expected to be short-term and minor. Pronghorn may be exposed to noise arising from maintenance and repair activities; however, the level of noise will be reduced through Noise BMP #1. Sonoran pronghorn may be adversely affected by noise and visual impacts of heavy equipment, vehicles, and personnel. Disturbance to pronghorn is anticipated to result from maintenance equipment, vehicles and activities, which may result in energetic stress or harm related to decreased access to resources, particularly during drought and other periods of poor range conditions. Gavin (2004) indicates that intensity of road use affects pronghorn foraging behavior and habitat use. For example, she indicates that there was a trend for pronghorn to increase vigilance and forage less along roads with higher traffic levels. The direct effects of these activities could include increased behavioral changes or stress in Sonoran pronghorn. Project-related maintenance and repair activities will likely result in short-term visual and auditory disturbance of pronghorn. However, CBP will significantly minimize this disturbance by implementing general and species-specific BMPs. Additionally, as mentioned above, the proposed activities will occur outside of the Sonoran pronghorn fawning season.

Disturbance to Sonoran Pronghorn – Indirect Effects

Potential indirect effects on the Sonoran pronghorn include increased potential for fire, introduction and spread of invasive species, and disturbance impacts from increased use and higher speeds on maintained roads. The introduction of exotic species can reduce the quality of pronghorn habitat, potentially affecting pronghorn occurrence and abundance through habitat degradation and altered fire regimes. Indirect impacts through habitat loss and degradation are addressed below. Per Vegetation BMP #6, a fire prevention and suppression plan will be developed and implemented for all maintenance and repair activities that require welding or otherwise have a risk of starting a wildfire. Implementation of Vegetation BMPs #2, #5, #7, #10 will reduce the potential for indirect effects from invasive plant species.

Habitat Loss and Degradation-Direct Effects

The proposed maintenance and repair activities will not result in any additional habitat loss or degradation beyond the existing tactical infrastructure footprint. Vegetation clearing will not occur in suitable habitat within the range of Sonoran pronghorn without further consultation with FWS (General BMP #3). Implementation of Vegetation BMPs #8 and #11 will ensure that disturbance to pronghorn habitat does not occur outside of the existing footprint.

Habitat Loss and Degradation – Indirect Effects

Non-native plants often thrive in disturbed areas (Tellman 2002); hence, construction activities could encourage the spread and establishment of these plants. Specifically, the perimeter of maintained
roads and infrastructure, and continuously created disturbed ground are susceptible to colonization by invasive non-native plants such as buffelgrass, Sahara mustard (*Brassica tournefortii*), and rocketsalad (*Eruca vesicaria*). Non-native species could spread to other areas and may outcompete native species upon which pronghorn rely, or carry fire which could impact pronghorn habitat. The colonization and spread of non-native plants will be minimized by the implementation of a number of measures (Vegetation BMPs #2, #5, #7, #10). Consequently, we believe effects from the TIMR project related to invasive species and fire to be unlikely to occur.

Limited erosion is expected during and immediately following construction activities. However, erosion and changes to natural hydrology will be minimized through implementing standard construction procedures to minimize potential for erosion and sedimentation (Geology and Soil Resources BMPs), and through environmental design measures implemented through TIMR to decrease erosion and sedimentation. However, given the nature of the braided drainage system and the characteristics of the soils in the project area, there is the potential for roads to capture precipitation runoff in an area and not allow it to follow natural drainages. This affects the occurrence and condition of vegetation downstream of the road (electronic mail communication with John Hervert, AGFD, October 3, 2012). Ongoing maintenance may exacerbate this impact if maintenance blocks or removes the opportunity for water to move across roads.

Effects of Conservation Measures and Best Management Practices

BMPs and CMs incorporated into the proposed action, such as those mentioned above, will significantly help minimize project impacts to Sonoran pronghorn and their habitat. However, the exact location and number of miles of roads and other tactical infrastructure to be maintained under the TIMR Program could change over time to accommodate CBP needs. Any additional TIMR Program activities that may be added in the future will be coordinated with FWS, and consulted on if appropriate, as discussed above. Additionally, the TIMR Program, as presented in the Description of the Proposed Action, has no definite end point. For these reasons, it is difficult to predict the effect of every action under the TIMR Program and whether it will be possible to avoid or minimize some potentially adverse effects.

Since Sonoran pronghorn remain critically endangered, it is imperative that adverse effects be offset by actions to benefit or promote the recovery of the species. Accordingly, as an integral part of the proposed action, CBP has made commitments to provide funding in the total amount of $100,000 over the life of the project, which can be used by FWS to implement priority recovery actions for the Sonoran pronghorn, as decided by the Sonoran Pronghorn Recovery Team (i.e., to construct or maintain wildlife waters or forage enhancement plots within the range of the Sonoran pronghorn). The implementation of recovery projects, such as the construction and maintenance of pronghorn waters and forage enhancement plots, will help improve pronghorn fitness, which should help them better withstand the effects of drought and human disturbance. CBP has pledged to work with FWS to ensure impacts on lands administered by Federal agencies are minimized and will work to facilitate pronghorn recovery actions when feasible. This will help further offset impacts to pronghorn from proposed TIMR activities.
Changes in Pronghorn Status with the Proposed Action

The U.S. Sonoran pronghorn population increased from about 21 in 2002 to about 85 or 90 in 2011, and maybe even as high as 100 in 2012, and pronghorn use of OPCNM has increased. As the population increases, it is more likely that a pronghorn will be adversely affected by TIMR activities, particularly during times when they are stressed by lack of forage and water. Proposed project activities that elicit pronghorn response (such as fleeing behavior) or that lead to reduced use of preferred habitat could contribute to decreased physical condition of individual animals, which could result in increased mortality, particularly during times of drought. Three populations of Sonoran pronghorn exist throughout their range, including two in Mexico and one in Arizona. The two smallest populations occur primarily within federally protected lands (in Sonora and Arizona). The largest population occurs primarily outside of protected lands in Mexico and consequently, is at greatest risk (i.e., authorities have much less of an ability to control activities that may harm pronghorn outside of federally-protected lands). The survival of all three of these populations is critical to the survival of this species. However, because the largest population occurs outside of a protected area, ensuring the survival of the two populations within federally-protected areas, including the one in Arizona, is even more imperative.

Of these two populations, the one in Arizona, which comprises 29% of the total number of estimated wild pronghorn, is the only one over which we have management authority. Additionally, critical recovery projects, including the captive breeding pen, forage enhancement plots, and pronghorn waters, are all located in Arizona and, when the number of Sonoran pronghorn in the captive pens are included, the overall percentage of the total population of Sonoran pronghorn in Arizona is approximately 38%. Therefore, although the majority (62%) of Sonoran pronghorn occur outside of the U.S. and will not be affected by the proposed action, because of the importance of the U.S. population, it is critical that project impacts be minimized and offset to the greatest degree possible. Accordingly, as part of its proposed action, CBP will implement or fund the implementation of BMPs and CMs that will avoid, minimize and offset the impacts of the proposed project and will help to ensure that these impacts do not significantly affect the reproduction, numbers, and distribution of Sonoran pronghorn in the wild in Arizona.

Implementing priority recovery actions for pronghorn, such as constructing and maintaining wildlife waters or forage enhancement plots, will help improve pronghorn fitness, which should help them better withstand the effects of drought and human disturbance.

CUMULATIVE EFFECTS

Cumulative effects include the effects of future State, tribal, local or private actions that are reasonably certain to occur in the action area considered in this BO. Future Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the Act.

Most lands within the action area (within the current range of the pronghorn within Arizona) are managed by Federal agencies; thus, most activities that could potentially affect pronghorn are Federal activities that are subject to section 7 consultation. The effects of these Federal activities are not
considered cumulative effects. Relatively small parcels of private and State lands occur within the currently occupied range of the pronghorn near Ajo and Why, north of the BMGR from Dateland to SR 85, and from the Mohawk Mountains to Tacna. State inholdings in the BMGR were acquired by the USAF. Continuing rural and agricultural development, recreation, vehicle use, grazing, and other activities on private and State lands adversely affect pronghorn and their habitat. MCAS-Yuma (2001) reports that 2,884 acres have been converted to agriculture near Sentinel and Tacna. These activities on State and private lands and the effects of these activities are expected to continue into the foreseeable future. Historical habitat and potential recovery areas currently outside of the current range are also expected to be affected by these same activities on lands in and near the action area in the vicinity of Ajo, Why, and Yuma. Of most significant concern to pronghorn is the high level of CBV activity in the action area. CBV activity and its effects to pronghorn and pronghorn habitat is described under the “Human-caused Disturbance” and “Habitat Disturbance” portions of the “Threats” section under “Status of the Species” for Sonoran pronghorn. CBV activity has resulted in route proliferation, off-highway vehicle activity, increased human presence in backcountry areas, discarded trash, abandoned vehicles, cutting of firewood, illegal campfires, and increased chance of wildfire. Habitat degradation and disturbance of pronghorn have resulted from these CBV activities. Although CBV activity levels are still high, the trend in overall CBV apprehensions and drive-throughs is a decline in recent years within the action area likely due to increased law enforcement presence, the border fence, and the status of the economy in the U.S. Despite high levels of CBV activity and required law enforcement response throughout the action area, pronghorn in the U.S. have managed to increase since 2002, although their use of areas subject to high levels of CBV use and law enforcement appears to have declined.

We believe the aggregate effects of limitations or barriers to movement of pronghorn and continuing stressors, including habitat degradation and disturbance within the pronghorn’s current range resulting from a myriad of human activities, exacerbated by periodic dry seasons or years, are responsible for the present precarious status of the Sonoran pronghorn in the action area. Anticipated incidental take has increased recently, and action agencies have worked with us to modify proposed actions and to include significant conservation measures that reduce adverse effects to the pronghorn and its habitat. Collaborative, multi agency and multi-party efforts to develop forage enhancement plots and emergency waters, reduce human disturbance of pronghorn and their habitat, combined with the success of the semi-captive breeding facility, plus planned future recovery actions, including establishment of a second U.S. sub-population, provide a path toward the recovery of the Sonoran pronghorn in the U.S. At the same time, the rate of recruitment in the wild population in the U.S. is not self sustaining. Population gains are being achieved through augmentation from the semi-captive breeding pen. This indicates that for a number of reasons, including persistent physiological stress of individuals, low recruitment levels persist in the wild U.S. Sonoran pronghorn population.

CONCLUSION

The conclusions of this BO are based on full implementation of the project as described in the Description of the Proposed Action section of this document, including any BMPs and CMs that are incorporated into the project design. After reviewing the current status of the Sonoran pronghorn, the environmental baseline for the action area, the effects of the proposed activities, and cumulative
effects, it is FWS’s biological opinion that the proposed action is not likely to jeopardize the continued existence of the Sonoran pronghorn. Pursuant to 50 CFR 402.02, to “jeopardize the continued existence of” means to engage in an action that reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of both survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of that species. No critical habitat has been designated for this species; therefore, none will be affected. Our conclusion is based on our discussion in this document found in the “Effects of the Action” section above, and the following:

1) The proposed action will not directly affect Sonoran pronghorn habitat, and measures have been included to reduce significant indirect effects; any exceptions are subject to additional consultation with FWS.

2) Although we anticipate that activities associated with the proposed action may result in disturbance to pronghorn, the proposed BMPs and CMs will reduce the potential for adverse effects to the Sonoran pronghorn.

3) CMs included in the proposed action (e.g. providing funding to construct or maintain wildlife waters or forage enhancement plots) will help offset adverse effects to Sonoran pronghorn that could result from implementation of the project. Thus, the project is not expected to significantly affect the distribution, numbers, and reproduction of Sonoran pronghorn in the wild.

INCIDENTAL TAKE STATEMENT

Section 9 of the Act and Federal regulation pursuant to section 4(d) of the Act prohibit the take of endangered and threatened species, respectively, without special exemption. “Take” is defined as to harass, harm, pursue, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. “Harm” is defined to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering (50 CFR 17.3). “Harass” is defined as intentional or negligent actions that create the likelihood of injury to listed species to such an extent as to significantly disrupt normal behavior patterns which include, but are not limited to, breeding, feeding or sheltering (50 CFR 17.3). “Incidental take” is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the Act provided that such taking is in compliance with the terms and conditions of this Incidental Take Statement.

The measures described below are non-discretionary, and must be undertaken by CBP so that they become binding conditions of any grant or permit issued to the (applicant), as appropriate, for the exemption in section 7(o)(2) to apply. CBP has a continuing duty to regulate the activity covered by this incidental take statement. If CBP (1) fails to assume and implement the terms and conditions or (2) fails to require any applicant, contractor, or permittee to adhere to the terms and conditions of the incidental take statement through enforceable terms that are added to the contract, permit, or grant document, the protective coverage of section 7(o)(2) may lapse. In order to monitor the
impact of incidental take, CBP must report the progress of the action and its impact on the species to the FWS as specified in the incidental take statement. [50 CFR '402.14(i)(3)].

AMOUNT OR EXTENT OF TAKE

Incidental take of the Sonoran pronghorn is reasonably certain to occur from the continued implementation of the TIMR Program. We anticipate incidental take of Sonoran pronghorn as a result of this proposed action in the form of harassment due to the effects of human disturbance associated with the project, and direct mortality or injury as a result of a collision with a CBP (or contract personnel) vehicle in the project area.

Specifically, incidental take of one Sonoran pronghorn every 10 years, from the time the TIMR Program is initiated for the duration of the TIMR Program, in the form of harassment is anticipated from the following activity:

- Disturbance of pronghorn due maintenance and repair activities in the form of vehicles, heavy equipment, and personnel which causes increased energetic stress and curtailment of access to crucial habitat components.

Additionally, incidental take of one pronghorn over the duration of the TIMR Program is also anticipated in the form of direct mortality from the following activity:

- CBP or contract personnel vehicle use in the action area that may result in a collision with, and injury or mortality of, a Sonoran pronghorn over the life of the TIMR Program.

We anticipate that incidental take in the form of harassment will be difficult to detect. However, reporting requirements will allow us to assess the effects of TIMR activities. Incidental take will have been exceeded, triggering a requirement for reinitiation (50 CFR 402.16[c]) if:

1) During the life of the proposed action, more than one pronghorn is killed or injured due to a collision with a CBP or contract personnel’s vehicle, or

2) Based on the annual reporting and discussions with CBP on status of TIMR:

 a. The proposed action results in the loss or degradation of Sonoran pronghorn habitat within the action area beyond the area immediately adjacent to the existing footprint of tactical infrastructure described and covered in this BO. The Project Description indicates that TIMR activities will occur within or immediately adjacent to tactical infrastructure (BA, pg. 4-20). These effects have been analyzed in this BO. However, such actions occurring outside the area immediately adjacent to the existing footprint of the tactical infrastructure have not been evaluated, would likely result in take in the form of harassment, and would trigger the need to reinitiate this consultation; or

 b. TIMR activities within suitable habitat within the range of the pronghorn 1) exceed 150 miles of roads (100 miles are currently anticipated) and 20 low water points (15
are currently anticipated) within the action area, 2) occur more than four times per year for each road segment or infrastructure facility within the action area, or 3) occur between March 15 and July 31 (Sonoran pronghorn fawning season). The Project Description indicates the level and timing of TIMR Program activities (BA, 4-22, A-10, C-16). The above numbers add a buffer of 50 road miles and five low water points to the proposed extent and number of project activities to allow some flexibility, and this extent of effects has been analyzed in this BO. The effects of actions that exceed the number or timing described above represent potential effects and take of an extent that has not been analyzed and would thus trigger reinitiation of this consultation.

EFFECT OF THE TAKE

In this biological opinion, the FWS determines that this level of anticipated take is not likely to result in jeopardy to the species. If there is a significant decline in the numbers of free-ranging pronghorn, the effects of this level of take may need to be reconsidered per the Reinitiation Statement below.

REASONABLE AND PRUDENT MEASURES AND TERMS AND CONDITIONS

A comprehensive suite of BMPs and CMs have been incorporated into the proposed action for the TIMR Program. These conservation measures generally and specifically require CBP to reduce effects to the Sonoran pronghorn and its habitat. No additional reasonable and prudent measures are necessary to minimize incidental take.

If mortality or injury of Sonoran pronghorn is detected, the instructions provided below under “Disposition of Dead or Injured Listed Species” will be followed. In addition, CBP must report activities implemented under the TIMR Program, including the outcome of any monitoring, as well as any potential take of this species, in its annual report to FWS.

Review requirement: Because FWS has determined that no Reasonable and Prudent Measures or Terms and Condition are required beyond the measures outlined in the Proposed Action above, it is imperative that CBP implement the BMPs and CMs described above, including the required monitoring and reporting. If, during the course of the proposed action, the level of incidental take is exceeded, such incidental take would represent new information requiring review of the proposed action, potentially through reinitiation of section 7 consultation as described below in the Reinitiation Notice.

CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the Act directs Federal agencies to utilize their authorities to further the purposes of the Act by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations are discretionary agency activities to avoid or minimize adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information. FWS recommends the following conservation activities:
1. We recommend CBP continue to pursue funding for Sonoran pronghorn research and conservation needs identified by the Sonoran Pronghorn Recovery Team.

2. We recommend CBP hire and maintain at least one full-time biologist or environmental specialist for both the Tucson and Yuma Sectors to assist CBP with compliance with ESA, NEPA, and other environmental requirements; to provide environmental training to agents; and to coordinate with agencies regarding environmental issues.

In order for the FWS to be kept informed of actions minimizing or avoiding adverse effects or benefiting listed species or their habitats, the FWS requests notification of the implementation of any conservation recommendations.

CHIRICAHUA LEOPARD FROG

STATUS OF THE SPECIES

Description, Legal Status, and Recovery Planning

The Chiricahua leopard frog is distinguished from other members of the Lithobates pipiens complex by a combination of characters, including a distinctive pattern on the rear of the thigh consisting of small, raised, cream-colored spots or tubercles on a dark background; dorsolateral folds that are interrupted and deflected medially; stocky body proportions; relatively rough skin on the back and sides; and often green coloration on the head and back (Platz and Mecham 1979). The species also has a distinctive call consisting of a relatively long snore of 1 to 2 seconds in duration (Platz and Mecham 1979, Davidson 1996). Snout-vent lengths of adults range from approximately 2.1 to 5.4 inches (Platz and Mecham 1979, Stebbins 2003).

The Chiricahua leopard frog (Lithobates [=Rana] chiricahuensis) was listed as a threatened species without critical habitat in a Federal Register notice dated June 13, 2002. Included was a special rule to exempt operation and maintenance of livestock tanks on non-Federal lands from the section 9 take prohibitions of the Act. Critical habitat was designated in 2012 (FWS 2012) and includes 39 critical habitat units (CHUs) in Arizona and New Mexico. The Ramsey Canyon leopard frog (Lithobates “subaquavocalis”), found on the eastern slopes of the Huachuca Mountains, Cochise County, Arizona, has recently been subsumed into Lithobates chiricahuensis (Crother 2008) and recognized by the FWS as part of the listed entity (FWS 2009, 2012).

The Chiricahua Leopard Frog Final Recovery Plan (Recovery Plan) was finalized in April 2007 (FWS 2007). The goal of the Recovery Plan is to improve the status of the species to the point that it no longer needs the protection of the ESA. The recovery strategy calls for reducing threats to existing populations; maintaining, restoring, and creating habitat that will be managed in the long term; translocation of frogs to establish, reestablish, or augment populations; building support for the recovery effort through outreach and education; monitoring; conducting research needed to provide effective conservation and recovery; and application of research and monitoring through adaptive management. Recovery actions are recommended in each of eight recovery units (RUs) throughout
the range of the species. Management areas (MAs) are also identified within RUs where the potential for successful recovery actions is greatest.

The Recovery Plan identifies eight RUs in Arizona and New Mexico (Figure 8, Table 7). Focus areas, referred to as MAs, are identified within each RU. Management Areas are areas with the greatest potential for successful recovery actions and threat alleviation. Hydrologic units and mountain ranges are used as MA boundaries. Within MAs, sites where metapopulations and robust, isolated populations occur or will be established are referred to herein as “recovery sites.” MAs have been delineated to include all habitats of known extant Chiricahua leopard frog populations as well as other sites with the highest potential for recovery, including sites where habitat restoration or creation, and establishment or re-establishment of Chiricahua leopard frog populations will likely occur or has already occurred. We include all known extant populations within MA boundaries because of the high value of those populations for recovery.

For the Chiricahua leopard frog to be recovered, conservation must occur in each RU (Table 7). Successful conservation is not necessary in every MA and recovery does not depend upon an even distribution of recovery efforts across an RU. Rather, we anticipate that recovery efforts will be focused in those MAs and portions of RUs in which opportunities are best. Recovery criteria to delist the Chiricahua leopard frog includes: 1) at least two metapopulations located in different drainages, plus at least one isolated and robust population in each RU, 2) protection of these populations and metapopulations, 3) connectivity and dispersal habitat protection, and 4) reduction or elimination of threats and long-term protection. As noted in the FWS’s 1998 Consultation Handbook, RUs are population units that have been documented as necessary to both the survival and recovery of the species. Avoiding loss of populations or other serious adverse effects in a RU will ensure continued contribution of that RU to the recovery of the species.

Existing populations and suitable habitat in MAs will be protected through management. Management will include maintaining or improving watershed conditions both upstream and downstream of Chiricahua leopard frog habitats to reduce physical threats to aquatic sites and allow for Chiricahua leopard frog dispersal, reducing or eliminating non-native species, preventing and managing disease, and other actions. Suitable or potentially suitable unoccupied habitat with high potential for supporting Chiricahua leopard frog populations or metapopulations (referred to here as recovery sites) will be protected, and restored or created as needed, within MAs. These habitats will include aquatic breeding habitats and uplands or ephemeral aquatic sites needed for movement among local populations in a metapopulation. Activities to achieve this include habitat management, removal of non-native species (e.g. American bullfrogs, non-native fishes, and crayfish), enhancing water quality conditions, and reducing sedimentation. Populations of Chiricahua leopard frogs will be established or reestablished in these MAs.

Life History and Habitat

The life history of the Chiricahua leopard frog can be characterized as a complex life cycle, consisting of eggs and larvae that are entirely aquatic and adults that are primarily aquatic, making the species a habitat specialist (FWS 2007). The species has a distinctive call and males can be temporarily territorial (FWS 2007). Amplexus is axillary and the male fertilizes the eggs as the
female attaches a spherical mass to submerged vegetation. Eggs are laid from February into October, with most masses found in the warmer months (FWS 2007). Numbers of eggs in a mass range from 300 to 1,485 (Jennings and Scott 1991) and may be correlated with female body size. The hatching time of egg masses in the wild ranges between 8-14 days, depending on water temperature (FWS 2007). Upon hatching, tadpoles are mainly herbivorous and remain in the water, where they feed and grow, with growth rates faster in warmer conditions. Tadpoles have a long larval period, from three to nine months, and may overwinter. After metamorphosis, Chiricahua leopard frogs eat an array of invertebrates and small vertebrates and are generally inactive between November and February (FWS 2007). Males reach sexual maturity at 2.1-2.2 in (5.3-5.6 cm), a size they can attain in less than a year (Sredl and Jennings 2005). Under ideal conditions, Chiricahua leopard frogs may live as long as 10 years in the wild (Platz et al. 1997, p. 553).

Chiricahua leopard frogs can be found active both day and night, but adults tend to be active more at night than juveniles (Sredl and Jennings 2005). Chiricahua leopard frogs presumably experience very high mortality (greater than 90 percent) in the egg and early tadpole stages, high mortality when the tadpole turns into a juvenile frog, and then relatively low mortality when the frogs are adults (Zug et al. 2001, FWS 2007). Adult and juvenile Chiricahua leopard frogs avoid predation by hopping to water (Frost and Bagnara 1977). They also possess an unusual ability among members of the *Rana pipiens* complex; they can also darken their ventral skin under conditions of low reflectance and low temperature (Fernandez and Bagnara 1991; Fernandez and Bagnara 1993), a trait believed to enhance camouflage and escape predation (FWS 2007).

The Chiricahua leopard frog is an inhabitant of montane and river valley cienegas, springs, pools, cattle (stock) tanks, lakes, reservoirs, streams, and rivers. The species requires permanent or semi-permanent pools for breeding and water characterized by low levels of contaminants and moderate pH, and may be excluded or exhibit periodic die-offs where *Batrachochytrium dendrobatidis* (*Bd*), a pathogenic chytridiomycete fungus, is present (see further discussion of this in the threats section below and in FWS 2012). The diet of the Chiricahua leopard frog includes primarily invertebrates such as beetles, true bugs, and flies, but fish and snails are also eaten (Christman and Cummer 2006).

Prior to the invasion of perennial waters by predatory, non-native species (American bullfrog, crayfish, fish species), the frog was historically found in a variety of aquatic habitat types. Today, leopard frogs in the Southwest are so strongly impacted by harmful non-native species, which are most prevalent in perennial waters, that their occupied niche is increasingly restricted to the uncommon environments that do not contain these non-native predators, and these now tend to be ephemeral and unpredictable. This increasingly narrow realized niche is a primary reason for the threatened status of the Chiricahua leopard frog.

Distribution and Abundance

The range of the Chiricahua leopard frog includes central and southeastern Arizona; west-central and southwestern New Mexico; and, in Mexico, northeastern Sonora, the Sierra Madre Occidental of northwestern and west-central Chihuahua, and possibly as far south as northern Durango (Platz and Mecham 1984, Degenhardt et al. 1996, Lemos-Espinal and Smith 2007, Rorabaugh 2008) (Figure 8). Reports of the species from the State of Aguascalientes (Diaz and Diaz 1997) are questionable.
The distribution of the species in Mexico is unclear due to limited survey work and the presence of closely related taxa (especially *Lithobates lemosespinali*) in the southern part of the range of the Chiricahua leopard frog (see further discussion below).

Males have larger home range sizes than females, with the largest home range for a male documented at 251,769 square ft (7,674 by 32 ft, or 23,390.2 square meters [2,339 by 9.8 m]) (UFWS 2007). The maximum distance moved by a radio-telemetered Chiricahua leopard frog in New Mexico was 2.2 miles (3.5 km) in one direction (preliminary findings of telemetry study by R. Jennings and C. Painter, Technical Subgroup, 2004). In 1974, Frost and Bagnara (1977) noted passive or active movement of Chiricahua and Plains (*Lithobates blairi*) leopard frogs for five miles or more along West Turkey Creek in the Chiricahua Mountains. In August 1996, Rosen and Schwalbe (1998) found up to 25 young adult and subadult Chiricahua leopard frogs at a roadside puddle in the San Bernardino Valley, Arizona. They believed that the only possible origin of these frogs was stock tank located 3.4 miles away. Although amphibians are known to have limited dispersal and colonization abilities due to physiological constraints, limited movements, and high site fidelity (Blaustein et al. 1994), Chiricahua leopard frogs can disperse to avoid competition, predation, or unfavorable conditions (Stebbins and Cohen 1995). Dispersal most likely occurs within favorable habitat, making the maintenance of corridors that connect disjunct populations possibly critical to preserve populations of frogs. Active or passive dispersal (while carried along stream courses) of juveniles or adults to discrete aquatic habitats facilitates the creation and maintenance of metapopulations (FWS 2007), an important option for a water-dependent frog in an unpredictable environment like the arid Southwest.

Population Status in Arizona and Mexico

Evidence indicates that since the time of listing, the species has probably made at least modest population gains in Arizona, but is apparently declining in New Mexico. Overall in the U.S., the status of the Chiricahua leopard frog is either static or, more likely, improving, with much of the increase attributable to an aggressive recovery program that is showing considerable results on the ground through the reestablishment of populations (mainly in Arizona), captive rearing programs, creation of refugial populations, and enhancement and development of habitat have helped stabilize or improve the status of the species in some areas (FWS 2012). In Arizona, there is currently one main captive breeding facility – the Phoenix Zoo. This captive breeding program was established with the Phoenix Zoo in 2005. This program, in concert with habitat restoration activities occurring across Arizona, is contributing to range-wide recovery of the frog. Population status and trends in Mexico are unknown.

Arizona

In Arizona, the frog still occurs in seven of eight major drainages of historical occurrence (Salt, Verde, Coronado, San Pedro, Santa Cruz, Yaqui/Bavispe, and Magdalena river drainages), but appears to be extirpated from the Little Colorado River drainage on the northern edge of the species’ range. Within the drainages where the species occurs, it was not found recently in some major tributaries and/or in river mainstems. For instance, the species has not been reported since 1995 from the following drainages or river mainstems where it historically occurred: White River, West
Clear Creek, Tonto Creek, Verde River mainstem, San Carlos River, upper San Pedro River mainstem, Santa Cruz River mainstem, Aravaipa Creek, Babocomari River mainstem, and Sonoita Creek mainstem. In southeastern Arizona, no recent records (1995 to the present) exist for the following areas: Pinaleno Mountains, Peloncillo Mountains, and Sulphur Springs Valley. Moreover, the species is now absent from all but one of the southeastern Arizona valley bottom cienega complexes. Large valley bottom cienega complexes may have once supported the largest populations in southeastern Arizona, but non-native predators are now so abundant that the cienegas do not presently support the frog in viable numbers (FWS 2002).

A review of the status of the species in Arizona from 2002, when the species was listed, to 2009 was conducted by Rorabaugh (2010). A comparison of survey results during 2005-2009 versus 1999-2002 revealed increasing numbers of sites occupied by Chiricahua leopard frogs from 2002-2008. The total number of occupied sites increased from 49 in 2002 to 80 in 2008 and 90 in 2009, while the number of robust breeding populations increased from 5 in 2002 to 13 in 2008, and then declined slightly to 11 in 2009. The total number of breeding populations increased from 26 in 2002 to 34 in 2008 and then declined by 1 for a total of 33 sites in 2009. These trends were also generally reflected at the RU level of analysis. Exceptions included a reduction in number of breeding populations in RU 3 from three to two and in RU 6 from three to zero. Recovery Unit 5 also exhibited a reduction in the number of robust breeding populations from two to zero. Overall, the data suggest that there has been an increase in the number of occupied sites from 2002-2009. However, the increase in sites may only represent a positive response to temporarily favorable environmental conditions (i.e., such as adequate summer rains in rare years that allow for limited dispersal, rather than an intrinsic improvement that will endure over time due to factors such as long-term drought) and/or it could be a result of our underestimating the number of sites in 2002 due to lack of surveys in areas the frog actually occurred in at that time.

The above data suggest substantial gains in the number of known locations of Chiricahua leopard frogs since the time of listing. However, basing status and trends on differences in numbers of occupied sites from 2002-2009 can be problematic for several reasons. First, if increasing trends are accurate, they may represent population response to temporarily favorable environmental conditions, such as adequate summer rains that allow dispersal, rather than an intrinsic improvement that will endure over time. Second, there are sources of bias that affect the conclusions. For instance, both data sets likely underestimate the number of occupied sites existing at the time, because some sites were unknown or surveys had not been conducted within the last three years to categorize all sites as occupied or unoccupied. But there is further bias in the survey data in that the 2009 data set benefits from recent discoveries of populations that could have existed in 2002, but we did not know of them at the time.

The latter type of bias can be eliminated by adding to the 2002 total all of the occupied sites that were discovered after 2002, except for those for which we are reasonably certain were unoccupied in 2002. If analyzed in this way, the total number of occupied sites, in 2002, increases from 49 to 83. This is roughly the same number of occupied sites as in 2008 (85). Based on this, the total number of occupied sites was fairly stable or increasing slightly in Arizona from 2002 (83) to 2008 (85) and 2009 (92). However, this correction inserts yet another type of bias into the sample – analyzed in this way; the 2002 total is based not only on what was found during 1999 to 2002, but also surveys
during period 2003 to 2009. Yet the 2008 and 2009 totals are only based on surveys during 2005-2008 and 2006-2009 respectively. The number of occupied sites in 2009 would no doubt increase if we could add in new sites during the equivalent future period (through 2016). Although we cannot provide an exact number of expected new sites that may be established by 2016, each RU stakeholder group has identified locations for potential new sites, so we potentially could work toward establishing four to eight new sites per year (though not all of these sites are guaranteed to be successful).

As a result, concluding there were 83 extant sites in 2002, 85 in 2008, and 92 in 2009, is likely the worst case scenario, in that this analysis is most likely to show any declines, if they occurred from 2002-2009. The actual trend is probably somewhere between that (roughly stable) to what was concluded in the previous analysis (substantial increases). In conclusion, there is no evidence of decline in Arizona; rather, the data suggest at least modest increases.

Mexico: Sonora and Chihuahua

Based on published and unpublished reports and perusal of Sonora, Mexico collection data from 23 museums, the Chiricahua leopard frog is known from about 26 localities in Chihuahua, Mexico and 19 localities in Sonora (Lemos-Espinal and Smith 2007). *Lithobates [Rana] chiricahuensis* have been reported as far south as the Mexican state of Aguascalientes, but frogs south of central Chihuahua are of questionable identification (FWS 2007). Based on limited surveys, populations of leopard frogs, gartersnakes, and other native aquatic herpetofauna are generally more intact and non-native predators are much less widely distributed in Sonora and at least parts of Chihuahua (Rosen and Melendez 2010, Lemos-Espinal and Smith 2007, Rorabaugh 2008). However, specifically for the Chiricahua leopard frog, data are insufficient to determine status or trends in Mexico. None of the Chiricahua leopard frog localities in Sonora have been revisited recently, with the exception of one in the Sierra Los Ajos. No frogs were found at that site (L. Portillo, pers. comm. 2009). Chiricahua leopard frogs have been observed recently at several sites in Chihuahua (R. Jennings, pers. comm. 2007), but not enough is known to assess status or trends.

Summary of Population Status

In conclusion, the data suggest the status of the Chiricahua leopard frog is at least stable and probably improving in Arizona, declining in New Mexico, and unknown in Mexico. In pooled data for the U.S., a worst case analysis shows essentially no change in the number of occupied sites from 2002 to 2009 (133 versus 131, respectively); however, as discussed above, this likely underestimates the status of the species in Arizona, overestimates the status of the species in New Mexico, and includes data that are not standardized to be truly comparable. The actual situation is probably that the status of the species is stable in the U.S overall, but the different conditions between Arizona and New Mexico indicate that improvement is occurring only in Arizona at this time, while in New Mexico, frog numbers continue to decline. Continued and new aggressive recovery actions are needed to address threats to the species rangewide, to maintain positive trends in Arizona, to stabilize population losses in New Mexico, and to assist partners in Mexico with their conservation efforts. If on-going recovery actions are interrupted, drought worsens, or other threats intensify, the status of the species across its range could easily deteriorate.
Threats

The primary threats to this species are predation by non-native organisms and die-offs caused by a fungal skin disease – chytridiomycosis. The chytridiomycete skin fungus, \(Bd \) is the organism that causes chytridiomycosis) is responsible for global declines of frogs, toads, and salamanders (Berger et al. 1998, Longcore et al. 1999, Speare and Berger 2000, Hale 2001). Additional threats include: drought, floods, degradation and loss of habitat as a result of water diversions and groundwater pumping, poor livestock management, altered fire regimes, mining, development, and other human activities; disruption of metapopulation dynamics, resulting from an increased chance of extirpation or extinction resulting from small numbers of populations and individuals, and environmental contamination (FWS 2007). Loss of Chiricahua leopard frog populations is part of a pattern of global amphibian decline, suggesting other regional or global causes of decline may be important as well (Carey et al. 2001). Witte et al. (2008) analyzed risk factors associated with disappearances of ranid frogs in Arizona and found that population loss was more common at higher elevations and in areas where other ranid population disappearances occurred. Disappearances were also more likely where introduced crayfish occur, but were less likely in areas close to a source population of frogs.

Critical Habitat

The 2012 final rule for the designation of critical habitat includes 39 CHUs across the range of the species in Arizona and New Mexico (FWS 2012). Through the critical habitat designation process, the FWS determined the Primary Constituent Elements (PCEs) for the Chiricahua leopard frog. We consider the PCEs to be the elements of the physical or biological features (PBFs) that provide for a species’ life history processes and are essential to the conservation of the species.

Based on the above needs and our current knowledge of the life history, biology, and ecology of the species, and the habitat requirements for sustaining the essential life-history functions of the species, we have determined that the PCEs essential to the conservation of the Chiricahua leopard frog are:

1. Aquatic breeding habitat and immediately adjacent uplands exhibiting the following characteristics:
 a. Standing bodies of fresh water (with salinities less than 5 parts per thousand, pH greater than or equal to 5.6, and pollutants absent or minimally present), including natural and manmade (e.g., stock) ponds, slow-moving streams or pools within streams, off-channel pools, and other ephemeral or permanent water bodies that typically hold water or rarely dry for more than a month. During periods of drought, or less than average rainfall, these breeding sites may not hold water long enough for individuals to complete metamorphosis, but they would still be considered essential breeding habitat in non-drought years.
 b. Emergent and or submerged vegetation, root masses, undercut banks, fractured rock substrates, or some combination thereof, but emergent vegetation does not completely cover the surface of water bodies.
c. Non-native predators (e.g., crayfish (*Orconectes virilis*), American bullfrogs (*Lithobates catesbeiana*), non-native predatory fishes) absent or occurring at levels that do not preclude presence of the Chiricahua leopard frog.

d. Absence of chytridiomycosis, or if present, then environmental, physiological, and genetic conditions are such that allow persistence of Chiricahua leopard frogs.

e. Upland areas that provide opportunities for foraging and basking that are immediately adjacent to or surrounding breeding aquatic and riparian habitat.

2. Dispersal and non-breeding habitat, consisting of areas with ephemeral (present for only a short time), intermittent, or perennial water that are generally not suitable for breeding, and associated upland or riparian habitat that provides corridors (overland movement or along wetted drainages) for frogs among breeding sites in a metapopulation with the following characteristics:

 a. Are not more than 1.0 mile (1.6 kilometers) overland, 3.0 miles (4.8 kilometers) along ephemeral or intermittent drainages, 5.0 miles (8.0 kilometers) along perennial drainages, or some combination thereof not to exceed 5.0 miles (8.0 kilometers).

 b. In overland and non-wetted corridors, provides some vegetation cover or structural features (e.g., boulders, rocks, organic debris such as downed trees or logs, small mammal burrows, or leaf litter) for shelter, forage, and protection from predators; in wetted corridors, provides some ephemeral, intermittent, or perennial aquatic habitat.

 c. Are free of barriers that block movement by Chiricahua leopard frogs, including, but not limited to, urban, industrial, or agricultural development; reservoirs that are 50 acres (20 hectares) or more in size and contain predatory non-native fishes, bullfrogs, or crayfish; highways that do not include frog fencing and culverts; and walls, major dams, or other structures that physically block movement.

 d. With the exception of impoundments, livestock tanks, and other constructed waters, critical habitat does not include manmade structures (such as buildings, aqueducts, runways, roads, and other paved areas) and the land on which they are located existing within the legal boundaries.

The purpose of the designation of critical habitat is to conserve the PCEs essential to the conservation of the species through the identification of the appropriate quantity and spatial arrangement of the PCEs sufficient to support the life-history functions of the species. Because not all life-history functions require both PCEs, not all areas designated as critical habitat contain both PCEs. Each of the areas designated as critical habitat have been determined to contain sufficient PCEs, or with reasonable effort, PCEs can be restored to provide for one or more of the life-history functions of the Chiricahua leopard frog.

All areas designated as critical habitat will require some level of management to address the current and future threats to the Chiricahua leopard frog and to maintain or restore the PCEs.
management in aquatic breeding sites will be needed to ensure that these sites provide water quantity, quality, and permanence or near permanence; cover; and absence of extraordinary predation and disease that can affect population persistence. In dispersal habitat, special management will be needed to ensure frogs can move through those sites with reasonable success.

Approximately 31 percent of all critical habitat for the Chiricahua leopard frog is located on five national forests in Region 3 (the Coronado, Gila, Tonto, Coconino, and Apache-Sitgreaves national forests). In total, approximately 3,265 acres of critical habitat occurs on these five national forests and the majority of these CHUs are represented by populations occupying cattle tanks.

ENVIRONMENTAL BASELINE

Regulations implementing the Act (50 CFR § 402.02) define the environmental baseline as the past and present impacts of all Federal, state, or private actions in the action area; the anticipated impacts of all proposed Federal actions in the action area that have undergone formal or early section 7 consultation; and the impact of state and private actions which are contemporaneous with the consultation process. The environmental baseline defines the current status of the species and its habitat in the action area to provide a platform from which to assess the effects of the action now under consultation.

Status of the Chiricahua Leopard Frog in the Action Area

The area encompassed by the proposed action occupies a significant portion of the range of the species in the U.S. and, therefore, the species’ status in the action area is similar to the rangewide status. The TIMR Program’s action area and proposed infrastructure, relative to the range of Chiricahua leopard frog, is included in Appendix C of the BA and is incorporated herein by reference. The proposed project occurs in three RUs identified in the Chiricahua leopard frog recovery plan: RU 1, RU 2, and RU 3.

Recovery Unit 1 (Tumacacori-Atascosa-Pajarito Mountains, Arizona and Mexico) contains several population and breeding sites. Sycamore Canyon is the only significant site with moving water in RU 1 to support breeding frogs; most other sites are livestock tanks or impounded springs. The Sycamore Canyon site which includes the Bear Valley Ranch Tank, Rattlesnake Tank, and Atascosa Canyon downstream of Bear Valley Ranch were all occupied by frogs at the time of listing. Within Sycamore Canyon occupied tanks include the following: Yank Tank, North Mesa Tank, South Mesa Tank, and Bear Valley Ranch Tank. Bonita Tank and Mojonera Tank are considered occupied breeding sites. In wet years, Upper Turner Tank has been known to be occupied. Peña Blanca Lake/Spring and Associated Tanks is the third population area that includes Peña Blanca Lake, Peña Blanca Spring, Summit Reservoir, Tinker Tank, Thumb Butte Tank, and Coyote Tank. These sites were all occupied in 2009. Adult frogs and tadpoles were found in Peña Blanca Lake in 2009 and 2010, after the lake had been drained and then refilled, which eliminated the non-native predators. However, early in 2010, rainbow trout (Oncorhynchus mykiss) were restocked back into the lake by AGFD, and they plan to reestablish a variety of warm water fishes as well. Three additional waters including Sierra Tank East, Sierra Tank West, and Sierra Well may have the potential to support breeding with habitat work.
Recovery Unit 2 (Santa Rita-Huachuca- Ajos Bavispe, Arizona and Mexico) also contains several population sites. The Florida Canyon site was augmented with frogs from elsewhere in the Santa Rita Mountains in 2009. The site was enhanced in 2010, with the addition of a steel tank for breeding. The eastern slope of the Santa Rita Mountains is another population site which includes two metal troughs in Louisiana Gulch, Greaterville Tank, Los Posos Gulch Tank, and Granite Mountain Tank complex. The Granite Mountain Tank complex includes two impoundments and a well. All but Los Posos Gulch Tank are currently occupied breeding sites. More than 60 frogs were observed at Los Posos Gulch Tank in 2008 which was once thought to be a robust breeding site; however, it dried, and the frogs disappeared in 2009. Scotia Canyon is another population area where breeding habitat occurs at Peterson Ranch Pond and possibly at other perennial or nearly perennial pools. Frogs were reestablished in this canyon via a translocation in 2009; the last record of a frog in the canyon before that was 1986. A population of the Ramsey Canyon leopard frog was located at Carr Barn Pond. The Coronado National Forest created and now maintains Carr Barn Pond consistent with the Ramsey Canyon (=Chiricahua) leopard frog conservation agreement, to which they are a signatory. This site was occupied in 2009, but the population has since been eliminated, probably by Bd. Brown and Ramsey Canyons have been intensively managed for the Ramsey Canyon (=Chiricahua) leopard frog since 1995. Places where frogs have bred and that still retain habitat needed for the leopard frog include Ramsey Canyon, Trout and Meadow Ponds on private lands owned by The Nature Conservancy, and the Ramsey Canyon Box; and in Brown Canyon, the Wild Duck Pond, House Pond, and the Brown Canyon Box.

Recovery Unit 3 (Chiricahua Mountains- Malpai Borderlands-Sierra Madre, Arizona, New Mexico, and Mexico) includes the Peloncillo Mountains. Areas where frog populations occur or have occurred include Geronimo, Javelina, State Line, and Canoncito Ranch Tanks; Maverick Spring; and pools or ponds in the Cloverdale Cienega and along Cloverdale Creek below Canoncito Ranch Tank. Breeding occurs in State Line and Canoncito Ranch Tanks, and possibly other aquatic sites. In the Chiricahua Mountains, John Hands Pond (the type locality for the Chiricahua leopard frog) and a spring-fed pond at the Southwest Research Station are managed for frog recovery however, no frogs have been observed at the site since 1977.

Status of Critical Habitat Within the Action Area

Critical habitat for the Chiricahua leopard frog has been designated for 39 units, 12 of which are within the action area, composing 2,991 acres. These CHUs are as follows: Twin Tanks and Ox Frame Tank; Garcia Tank; Buenos Aires NWR Central Tanks; Bonita, Upper Turner, and Mojonera Tanks; Sycamore Canyon; Peña Blanca Lake and Spring and Associated Tanks; Florida Canyon; Eastern Slope of the Santa Rita Mountains; Scotia Canyon; Carr Barn Pond; Ramsey and Brown Canyons; and Cave Creek. Each unit includes one to several tanks, springs, ponds, or other aquatic habitat and many also include dispersal habitat such as perennial, ephemeral, or intermittent drainages. Critical habitat extends for 6.1 meters (20 feet) beyond the high water line or boundary of the riparian and upland vegetation of each pond, tank, or spring, and also extends 100 meters (328 feet) upstream of that aquatic habitat. Critical habitat also extends 100 meters (328 feet) on either side of most drainages included as dispersal or other habitat. The information provided below describes the status of critical habitat in the action area within RUs and CHUs.
Recovery Unit 1 (Tumacacori-Atascosa-Pajarito Mountains, Arizona and Mexico)

Twin Tanks and Ox Frame Tank CHU

This unit include 1.3 acres (0.5 ha) of lands owned by the Arizona State Land Department and 0.4 acres (0.2 ha) of private lands in the Sierrita Mountains, Pima County, Arizona. Twin Tanks is on lands owned and managed by the Arizona State Land Department and consists of two tanks in proximity to each other as well as a drainage running between them. Ox Frame Tank is on private lands. Occupancy of these livestock tanks at the time of listing is unknown, as they were not surveyed for frogs until 2007; however, these sites are important breeding sites for recovery.

Twin Tanks held more than 1,000 frogs in 2008, and is a robust breeding population. Ox Frame and Twin tanks are too far apart (4.3 miles [7.0 km] overland) across rugged terrain to expect frogs to move between these sites. Hence, these tanks serve as isolated populations. PCE 1 is present at both sites. The Twin Tanks area is less than 0.5 miles (0.8 km) upslope of active mining at Freeport McMoRan's Sierrita Copper Mine and could be affected by those mining activities. Both sites are also at risk of introduction of nonnative predators, such as bullfrogs and crayfish. Presence of *Bd* at these tanks has not been investigated.

Garcia Tank CHU

This unit, consisting of 0.7 acres (0.3 ha), is a former cattle tank located on the Buenos Aires NWR, Pima County, Arizona. It is a double tank; the southwest or downstream impoundment is what dependably holds water, but both parts of the tank are proposed as critical habitat. This was occupied at the time of listing and currently contains sufficient PCEs (PCE 1) to support life-history functions essential for the conservation of the species. This unit is a breeding site, and was known to have been occupied in 2002 and 2006. Leopard frogs were noted in 2010, but they were not identified to species (the lowland leopard frog, *Lithobates yavapaiensis*, is known to occur in the area). It is about 3.6 miles (5.8 km) over land across dissected and hilly terrain to the next nearest population at Lower Carpenter Tank. The nearest known populations to the east are on the Coronado National Forest more than 9.0 miles (14 km) away. Hence, this site is isolated and is managed as an isolated, robust population. The greatest threats needing management are introductions of or colonization by nonnative species, such as bullfrogs and crayfish; and drought that could greatly reduce or eliminate the aquatic habitat.

Buenos Aires National Wildlife Refuge Central Tanks CHU

This unit, consisting of 1,720 acres (696 ha) within the Buenos Aires NWR, Pima County, Arizona, includes former cattle tanks and other waters used as breeding and dispersal sites plus intervening and connecting drainages and uplands. This unit was occupied at the time of listing and currently contains sufficient PCEs (PCEs 1 and 2) to support life-history functions essential for the conservation of the species.
Core breeding sites at permanent or nearly permanent tanks (Carpenter, Rock, State, Triangle, and New Round Hill) support the strongest metapopulation known within the range of the species. Chongo Tank, where a population was established in 2009, may become a sixth breeding site. Seven other tanks support frogs periodically to regularly, and breeding and recruitment likely takes place at these tanks in wet cycles. Frogs occupied Carpenter, Rock, and Triangle Tanks in 2002 at or about the time of listing. Tanks include Carpenter, Rock, State, Triangle, New Round Hill, Banado, Choffo, Barrel Cactus, Sufrido, Hito, Morley, McKay (a cluster of three tanks), and Chongo Tanks. Also included in this unit are the intervening drainages, including: (1) Puertocito Wash from Triangle Tank north through and including Aguire Lake to New Round Hill Tank, then upstream to the confluence with Las Moras Wash, and upstream in Las Moras Wash to Chongo Tank; (2) an unnamed drainage from Puertocito Wash upstream to McKay Tank; (3) an unnamed drainage from Puertocito Wash upstream to Rock Tank, including Morley Tank, then upstream in an unnamed drainage to the top of that drainage, directly overland to an unnamed drainage, and then upstream to Hito Tank and downstream to McKay Tank; (4) from Sufrido Tank downstream in an unnamed drainage to its confluence with an unnamed drainage running between Rock and Morley tanks; (5) Lopez Wash from Carpenter Tank downstream to Aguire Lake; (6) an unnamed drainage from its confluence with Lopez Wash upstream to Choffo Tank; (7) an unnamed drainage from its confluence with Lopez Wash upstream to State Tank; (8) an unnamed drainage from Banado Tank downstream to its confluence with an unnamed drainage, then upstream in that drainage to Barrel Cactus Tank; and (9) an unnamed drainage from Banado Tank upstream to a saddle, then directly downslope to Lopez Wash.

In this unit, bullfrogs remain a threat, but efforts are underway to eliminate the last known populations of bullfrogs in the Altar Valley (on the Santa Margarita Ranch to the south of Buenos Aires NWR). Frogs in this area have tested positive for \(\text{Bd} \), but the disease appears to have little effect on population viability.

Bonita, Upper Turner, and Mojonera Tanks CHU

This unit includes 201 acres (81 ha) of Coronado National Forest lands in the Pajarito and Atascosa Mountains, Santa Cruz County, Arizona. Two breeding sites (Bonita Tank and Mojonera Tank), combined with a dispersal site or site where breeding and recruitment may occur in wet years (Upper Turner Tank), form the center of a future metapopulation. Three additional waters—Sierra Tank East, Sierra Tank West, and Sierra Well—may have the potential to support breeding with habitat work. Frogs currently occupy Bonita and Mojonera Tanks. Frogs were last found at Upper Turner Tank in 2004.

In this unit, bullfrogs are a continuing threat, and illegal border activity and associated law enforcement have resulted in watershed damage. A road on the berm of Upper Turner Tank is scheduled for improvement to access a surveillance tower operated by CBP. Frogs in this region have tested positive for \(\text{Bd} \), but the disease appears to have little effect on population persistence.
Sycamore Canyon CHU

This unit includes 262 acres (106 ha) of Coronado National Forest land and 7 acres (3 ha) of private lands along Atascosa Canyon through Bear Valley Ranch in the Pajarito and Atascosa Mountains, Santa Cruz County, Arizona. Sycamore Canyon, Yank Tank, North Mesa tank, South Mesa Tank, and Bear Valley Ranch Tank are currently occupied. The current occupancy status of Rattlesnake Tank and Atascosa Canyon downstream of Bear Valley Ranch Tank is unknown. Sycamore Canyon from Ruby Road to the international border supports frogs and breeding, but in the driest months (May and June) the stream dries to pools.

Bullfrogs have been a continuing problem in this unit, although recent control efforts seem to have eliminated them from Sycamore Canyon. Non-native green sunfish (*Lepomis cyanellus*) have occasionally been found in Sycamore Canyon, as well. Pools critical to survival of frogs and tadpoles through the dry season, are sensitive to sedimentation and erosion upstream in the watershed of Sycamore Canyon. The earliest records of *Bd* in Arizona are from Sycamore Canyon (1972). A robust population of Chiricahua leopard frogs persists at this site despite the disease and periodic die-offs. Illegal border activity and associated law enforcement have resulted in many trails and new vehicle routes in the area, as well as trampling in the canyon.

Peña Blanca Lake and Spring and Associated Tanks CHU

This unit includes 202 acres (82 ha) on Coronado National Forest lands in Santa Cruz County, Arizona. This unit is a metapopulation that includes Peña Blanca Lake, Peña Blanca Spring, Summit Reservoir, Tinker Tank, Thumb Butte Tank, and Coyote Tank. These sites were all occupied in 2009.

Chiricahua leopard frogs and tadpoles were found in Peña Blanca Lake in 2009 and 2010, after the lake had been drained and then refilled, which eliminated the non-native predators. However, early in 2010, rainbow trout were stocked back into the lake, and plans were underway to reestablish a variety of warm water fishes in the spring of 2012. Despite the stocking of rainbow trout, Peña Blanca Lake now boasts a robust population of Chiricahua leopard frogs; the largest single population throughout its range. Surveys of the lake in April 2011, confirmed that Chiricahua leopard frogs remained extant. Surveys of the lake in September 2011, estimated the Chiricahua leopard frog population to number between 300-500 individuals which is likely a low estimate because only a single night survey was performed and the shoreline habitat was complex, making observations difficult. During that survey, Chiricahua leopard frogs were calling, indicating that fall breeding may have been occurring (AGFD unpublished data).

Non-native introduced predators, particularly bullfrogs and sportfish, remain a serious threat in this region. A concerted effort began in 2008 to clear the area of bullfrogs. The effort appears to be successful, and Chiricahua leopard frogs have clearly benefited. However, there is a continuing threat of recolonization or purposeful introduction of bullfrogs, and management of this area will continue to concentrate on preventing bullfrogs from decolonizing the area and eliminating those that do. As discussed, warmwater sportfish at Peña Blanca Lake were stocked in the spring of 2012,
which will affect the suitability of the lake as Chiricahua leopard frog habitat. However, given the management against bullfrogs and ensuring the persistence of dense shoreline vegetation, the proposed stocking of warmwater fish would not result in adverse modification of this CHU. Frogs in this region have tested positive for \textit{Bd}; however, the disease appears to have little effect on population persistence.

\textbf{Recovery Unit 2 (Santa Rita-Huachuca-Ajos Bavispe, Arizona and Mexico)}

The requisite number of metapopulations (two) and isolated, robust populations (one) have not been met (Criterion 1) for this recovery unit, although we are working toward metapopulations meeting the definition in the recovery plan on the eastern slope of the Santa Rita Mountains and on the southeastern slopes of the Huachuca Mountains. An isolated, robust population occurs at Beatty’s Guest Ranch in the Huachuca Mountains and is the most stable, robust population in this RU. Several other isolated populations also occur scattered across the RU, and we are currently working with partners to build a metapopulation in the Las Cienegas area.

The appropriate protection and management of habitats for persistence of two metapopulations and connectivity have not been met (Criteria 2 and 3). However, dispersal sites and corridors for connectivity have been established in the Huachuca Mountains (e.g. Ramsey Canyon), and various conservation plans and Safe Harbor Agreements have been developed or are in development in this RU. Threats have not been eliminated (Criterion 4). American bullfrogs, crayfish, \textit{Bd}, non-native fishes, illegal border activities and law enforcement response, and wildfire continue to threaten Chiricahua leopard frogs in this RU.

American bullfrogs, crayfish, \textit{Bd}, non-native fishes, illegal border activities and law enforcement response, and wildfire continue to threaten Chiricahua leopard frogs in this RU. The status of the Chiricahua leopard frog is relatively stable and threats are increasing.

\textit{Florida Canyon CHU}

Florida Canyon includes 4 acres (2 ha) and is all on the Coronado National Forest in the Santa Rita Mountains, Pima County, Arizona. Included in the proposal is approximately 1,521 feet (463 m) of Florida Canyon from a silted-in dam to the downstream end of the Florida Workstation property. PCE 1 is present and was enhanced in 2010, with the addition of a steel tank for breeding. Chiricahua leopard frogs currently occupy this site. This is considered an isolated population.

Water is a limiting factor in this system, particularly during drought. Fire in the watershed could result in scouring and sedimentation in the pools important as habitat for the frog. The addition of a steel tank will provide dependable water for breeding that is safe from erosion or sedimentation events. Introduced predators and \textit{Bd} are potential threats, but neither has been recorded at this site.

\textit{Eastern Slope of the Santa Rita Mountains CHU}

This unit includes 172 acres (70 ha) of Coronado National Forest lands and 14 ac (6 ha) of private lands in the Greaterville area in Pima County, Arizona. PCEs 1 and 2 are present. Included in the
CH designation are two metal troughs in Louisiana Gulch, Greaterville Tank, Los Posos Gulch Tank, and Granite Mountain Tank complex. The Granite Mountain Tank complex includes two impoundments and a well. All but Los Posos Gulch Tank are currently occupied breeding sites. More than 60 frogs were observed at Los Posos Gulch Tank in 2008. It was once thought to be a robust breeding site; however, it dried, and the frogs disappeared in 2009. These four sites collectively form a metapopulation.

Surface water is a primary limiting factor in this unit. The breeding habitat at Louisiana Gulch, although limited to two 6.0-ft (1.8-m) diameter steel tanks, is dependable because it is fed by a well. The other tanks are filled by runoff and susceptible to drying during drought. Nonnative predators and *Bd* are not known to be imminent threats in this area.

Scotia Canyon CHU

This unit includes 70 acres (29 ha) in Scotia Canyon, Huachuca Mountain, Cochise County, Arizona, and is entirely on Coronado National Forest lands. Breeding habitat occurs at Peterson Ranch Pond and possibly at other perennial or nearly perennial pools. Chiricahua leopard frogs were reestablished in this canyon via a translocation in 2009; the last record of a Chiricahua leopard frog in the canyon before that was 1986. PCEs 1 and 2 are present. This site is managed as an isolated population, but there is some potential for creating connectivity to the metapopulation in Ramsey and Brown Canyons via population reestablishment in Garden Canyon at Fort Huachuca. Scotia Canyon, with its pond and stream habitats, has the potential to be a robust population.

Intensive bullfrog eradication and habitat enhancement work has been done in preparation for reestablishing the Chiricahua leopard frog. However, bullfrog reinvasion is a significant, continuing threat, and other nonnative predators could potentially reach Scotia Canyon via natural or human assisted releases. In addition, barred tiger salamanders from the Peterson Ranch Pond tested positive for *Bd*, but the frogs appeared to be persisting in that same pond. Further, heavy fuel loads could result in a catastrophic wildfire, which would have significant detrimental effects on the frog and its aquatic habitats. Finally, a road through the canyon is eroded in places and contributes sediment to the stream; it receives much use by recreationists and CBP.

Carr Barn Pond CHU

This unit includes 0.6 acres (0.3 ha) of Coronado National Forest lands in the Huachuca Mountains, Cochise County, Arizona. This population is considered isolated. We believe PCE 1 is present. Carr Barn Pond is an impoundment with a small, lined pond with water provided from a well. During runoff events, the size of the pond expands considerably and then gradually shrinks back to the lined section. The population has since been eliminated, probably by *Bd*. The unit has a history of nonnative predator problems and disease. The population has been eliminated after *Bd* dieoffs three times; twice the population has subsequently been reestablished through translocations. Largemouth bass (*Micropterus salmoides*) have been introduced illegally into the pond and then removed, and bullfrogs periodically invade the site but are promptly removed before they breed.
Ramsey and Brown Canyons CHU

This unit includes 49 acres (20 ha) of private lands in Ramsey Canyon and 58 acres (24 ha) of Coronado National Forest in Brown and Ramsey Canyons, Huachuca Mountains, Cochise County, Arizona. PCEs 1 and 2 are present within this unit. This unit is managed as a metapopulation. Places where Chiricahua leopard frogs have bred and that still retain PCE 1 include Ramsey Canyon, Trout and Meadow Ponds on private lands owned by The Nature Conservancy, and the Ramsey Canyon Box; and in Brown Canyon, the Wild Duck Pond, House Pond, and the Brown Canyon Box (on Coronado National Forest lands).

Ramsey Canyon and Brown Canyon are considered currently occupied, but although frogs have bred at the Box in Brown Canyon, the site is too small to support more than just a few frogs. In addition, recent die-offs associated with \(B. d. \) have significantly reduced populations in both canyons. The House and Wild Duck ponds as well as Ramsey Canyon have a history of \(B. d. \) outbreaks. The Ramsey Canyon population has been eliminated twice and then reestablished; the Wild Duck and House Ponds have also undergone repeated disease-related declines and extirpations followed by reestablishments. The populations tend to persist for months or years after reestablishment only to experience epizootic (an outbreak of disease affecting many animals of one kind at the same time) \(B. d. \) outbreaks followed by declines or extirpation.

Additional threats in this unit include nonnative species, drying, sedimentation, and fire. Non-native predators threaten populations at the House and Wild Duck Ponds, where bullfrogs have been found periodically and goldfish (\(C. a. a. \)) were once introduced. Those two ponds are buffered against drought and drying by a pipeline from a spring and a windmill. However, the Box in Brown Canyon is subject to low water and drying during drought. That latter population depends upon immigration or active reestablishment for long-term persistence. The Trout and Meadow Ponds in Ramsey Canyon are fed by pipelines; thus the water supply is dependable. The Trout Pond could however be filled in with sediment during a flood. Further, a fire in the watershed could threaten aquatic breeding sites in both canyons.

Recovery Unit 3 (Chiricahua Mountains-Malpai Borderlands-Sierra Madre, Arizona, New Mexico, and Mexico)

Cave Creek CHU

This unit includes 234 acres (95 ha) of Coronado National Forest lands in the Chiricahua Mountains, Cochise County, Arizona. Chiricahua leopard frogs and tadpoles were released during the fall of 2011 into a pond on the Southwestern Research Station where they were initially reared in an on-site ranarium. Included in this unit is Cave Creek and associated ponds in or near the channel, from Herb Martyr Pond downstream to the eastern USFS boundary. PCEs 1 and 2 are present. This site will be managed as a metapopulation.

Herb Martyr Pond is the type locality for the Chiricahua leopard frog; however, no frogs have been observed at the site since 1977. The pool behind the dam is entirely silted in, and pools at the base of the dam are probably not adequate for Chiricahua leopard frog survival or reproduction. However,
with restoration this site could once again support Chiricahua leopard frogs. The pond below the
dam at John Hands appears suitable for occupancy, but Chiricahua leopard frogs have not been
recorded there since 1966. Chiricahua leopard frogs were occasionally seen in Cave Creek through
2002.

Scarcity of water can occur in drought years and bullfrogs occur to the east but have never been
recorded in the unit. The current status and past history of *Bd* in this unit are unknown. Rainbow
tROUT were present and occurred concurrently with Chiricahua leopard frogs at Herb Martyr Pond,
but no trout are currently known in the unit.

Wildland Fires

Recent wildfires may have affected the PCEs of designated critical habitat for the frog. Areas
containing designated critical habitat units may have experienced a range of burn severities and fire
could have removed all or a portion of the surrounding vegetation component (including trees,
shrubs, grasses, and forbs). Post-fire storm water runoff may have carried ash or sediment into the
streams, resulting in poor water quality and sedimentation events that reduced or eliminated
particular habitat features. The extent of damage to the PCEs of designated critical habitat units is
not well known at this time. Three major wildfires that occurred in the action area last year are
described below.

Horseshoe 2 Wildfire

The Horseshoe 2 wildfire started in the Chiricahua Mountains on May 8, 2011 and was declared
contained on June 25, 2011. The fire burned a total of 222,954 acres of which included 192,647
acres of National Forest Service lands, 12,163 acres of National Park Service lands, 1,336 acres of
BLM land, 2,874 acres of State of Arizona lands and 13,934 acres of private land. No wild
populations of Chiricahua leopard frog are extant in the Chiricahua Mountains, but one captive
population is found in man-made ponds at the Southwest Research Station in Cave Creek. These
ponds were not significantly affected by suppression activities, the wildfire, or floods. Critical habitat
has been designated in Cave Creek. The creek itself underwent significant flooding following the
fire, but the stream channel is expected to recover as the watershed stabilizes. No suppression
effects have been identified, but critical habitat may be affected by ash flow and sedimentation, at
least for the next year or two. The effects of fire and suppression actions would not be expected to
change the baseline for this species in the Chiricahua Mountains.

Murphy Wildfire

The Murphy Wildfire started on May 30, 2011 on the Nogales RD and was contained on June 14,
2011. Less than three percent of the fire area burned at high severity. Several tanks serve as habitat
for Chiricahua and lowland leopard frogs: Summit, Thumb Butte, Ronquillo Pond (Peña Blanca
Spring) and Peña Blanca Lake are designated CH for the Chiricahua leopard frog. Yank, Summit,
Lookout, Bear Valley Ranch, Tinker, Bellota, and Mesa Tanks; as well as Waterfall Spring,
Ronquillo Pond, Sycamore Canyon and Peña Blanca Lake are occupied by Chiricahua and/or
lowland leopard frogs. All of these may be affected to some degree by ash flow or sedimentation.
Sycamore Canyon may be affected by ash and sediment, but only a portion of this watershed burned. Two designated CHUs (Sycamore Canyon and Peña Blanca Lake and Spring and Associated Unit Tanks) fall within the perimeter of the fire.

Monument Fire

The Monument Fire began on June 12, 2011 and was contained on July 5, 2011. A total of 32,074 acres burned during the fire. One breeding site (also known as Beatty’s Guest Ranch) in Miller Canyon on private land was lost to post-fire flooding. Frogs were salvaged from this site by the AGFD prior to the floods and are being housed off site. Although individuals were lost as a result of post-fire flooding, a remnant population persists in a small pond and in the stream in Miller Canyon. The Carr Barn Pond CHU also burned, but was not occupied by frogs at the time of the fire.

Summary of Activities Affecting Chiricahua Leopard Frog and Designated Critical Habitat in the Action Area

Our information indicates that 29 formal consultations have evaluated actions potentially resulting in adverse effects to the Chiricahua leopard frog within the TIMR action area. These consultations and the incidental take anticipated for the frog from 2001 (i.e., the year the species was proposed for listing) to the present are summarized in Table 8. The threats identified for the rangewide status of the species are affecting the Chiricahua leopard frog and their habitats in the action area (e.g., *Bd*, illegal border activity and law enforcement response, non-native predators, fire, and drought). Activities and threats affecting the Chiricahua leopard frog and its designated critical habitat within each CHU in the action area are included in the previous sections. Federal agencies manage much of the land in the action area, particularly the Coronado National Forest and Buenos Aires NWR. Additional activities and recovery actions in these areas are detailed below.

Activities in the action area include degradation of habitats due to mining (mostly historical) and associated contamination, recreation, illegal smuggling and associated law enforcement activities (particularly those activities that create new vehicle or foot routes of travel near or through frogs habitats), and livestock grazing activities. The latter has been the subject of previous consultation with the Coronado National Forest (2-21-98-F-399 and reinitiations). Recent drought and apparent climate change are contributing to habitat degradation within the range of this species in the action area. For instance, the montane woodlands at the higher elevations have all experienced drought and associated large-scale catastrophic wildfires in recent years that have severely altered habitat.

The environmental baseline for Chiricahua leopard frog within the the Coronado National Forest appears to be stable. Factoring in the three large wildfires in 2011, data do not show a declining population. The greatest threats to Chiricahua leopard frogs on the Coronado National Forest are nonnative species, drought, and disease. The Coronado National Forest is actively participating in recovery actions that are benefiting the frog. A multi-year effort lead by herpetologists at the University of Arizona has nearly eliminated bullfrogs from Sycamore Canyon. Chytridiomycosis has been present in Sycamore Canyon since 1972, which is the earliest date for the disease in the
U.S. (FWS 2007). Although lowland leopard frogs and Tarahumara frogs have disappeared from Sycamore Canyon since the disease was first recorded, the Chiricahua leopard frog has persisted, despite periodic dieoffs. *Bd* and ranaviruses are also known from the Altar Valley.

The Chiricahua leopard frog metapopulation at Buenos Aires NWR is under constant threat from bullfrogs, which again, through a multi-year effort by the same herpetologists at the University of Arizona, have been held at bay and prevented from overrunning the Chiricahua leopard frog populations. The refuge is currently working with the University of Arizona to remove bullfrogs from several tanks in order to prepare them for leopard frog releases in the future. On the Buenos Aires NWR, a well has been dug and a solar pump installed at Garcia Tank in order to provide reliable permanent water for the leopard frog in order to conserve this metapopulation. Carpenter, State, Rock Tanks, and the headquarters holding pond (artificially filled) are permanent water sources. In addition, the restoration of earthen water tanks, once used for livestock, is being planned for wildlife use, including Chiricahua leopard frogs. Additionally, the placement of these tanks is being discussed to avoid providing a potential pathway for bullfrog dispersal.

The effects of increased immigration and CBP activities at Buenos Aires NWR have little impact on Chiricahua leopard frogs. The construction of the border fencing that precludes movements by Chiricahua leopard frogs along the international border may reduce cross border dispersal and gene flow. Such movements may be precluded by the fence itself, depending on design and materials, or through the alteration of hydrologic systems through blockages, headcutting, downcutting, etc. The occupied tanks are relatively large and the potential for impacts from immigrants (undocumented aliens) drinking or walking in the water are insignificant. The use of these tanks for bathing and personal hygiene may result in some decrease in water quality, but effects of this type have not been studied or documented.

EFFECTS OF THE ACTION

Effects of the action refer to the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated and interdependent with that action that will be added to the environmental baseline. Interrelated actions are those that are part of a larger action and depend on the proposed action for their justification. Interdependent actions are those that have no independent utility apart from the action under consideration. Indirect effects are those that are caused by the proposed action and, are later in time, but are still reasonably certain to occur.

There are no interrelated or interdependent actions that are part of the TIMR Program and that are dependent upon the TIMR Program for justification or have no independent utility apart from the Program. Ongoing and planned CBP activities in southern Arizona to secure the international border have independent utility from the TIMR Program and would continue, although in many cases less efficiently, regardless of implementation of the TIMR Program. Ongoing maintenance activities that are not considered in this BO, including operation of existing maintenance facilities and equipment used for those activities, also have independent utility from the TIMR Program and are not dependent upon it for justification. Thus, this BO only considers the direct, indirect, and cumulative impacts of TIMR Program activities in the description of the proposed action.
Effects of the Action on the Chiricahua Leopard Frog

The Chiricahua leopard frog is expected to be affected by the proposed action. There are currently up to 350 miles of roads, 15 culverts, 10 low water points, and 50 towers included in the proposed action that are within the range of the species. Maintenance and repair activities would be conducted within and immediately adjacent to the footprint of existing tactical infrastructure and would result in direct effects and indirect effects on Chiricahua leopard frogs and their habitat. BMPs and CMs will be implemented to minimize the potential for direct and indirect impacts, and monitoring will be conducted to reduce the possibility of this species being harmed during TIMR Program activities.

Disturbance to Chiricahua Leopard Frog – Direct Effects

Potential direct impacts are primarily related to habitat degradation (see below) and the risk of direct injury or mortality from maintenance activities. Direct injury, mortality, or behavioral changes could occur if adult Chiricahua leopard frogs disperse into areas being maintained or repaired. There is some potential for Chiricahua leopard frogs to be killed on roadways used by maintenance or repair vehicles where such vehicles are traveling through or near occupied aquatic habitats. During the summer rainy season frogs frequently disperse overland or along drainages. Although no Chiricahua leopard frogs have been found dead on roads, Lowland and Rio Grande leopard frogs have both been found run over by vehicles on roads in the desert Southwest (J. Rorabaugh, pers. obs.). Road kills can be a significant source of mortality (Carr and Fahrig 2001) and serve as a barrier to movement (deMaynadier 2000) for other species of leopard frogs.

To minimize the possibility that Chiricahua leopard frogs are harmed, in-water work within Chiricahua leopard frog critical habitat will be conducted during the active season (May through September) so that frogs can escape to the best of their ability (Chiricahua Leopard Frog BMP #2). Prior to any in-water work within critical habitat of this species, CBP will contact FWS personnel at the Arizona Ecological Services Office to determine if frogs will be salvaged and placed in holding facilities until work is complete (Chiricahua Leopard Frog BMP #8). Capture, movement, and holding of frogs would be accomplished by permitted biologist at the expense of CBP under all appropriate State and Federal permits, including permit conditions to ensure minimal harm or mortality. A qualified biologist will monitor ground-disturbing maintenance activities and use of heavy equipment to be conducted in vegetated or undisturbed areas (Chiricahua Leopard Frog BMP #1). Monitoring will occur prior to and during activities located within one mile overland of critical habitat, 3 miles along ephemeral drainages in that habitat, and 5 miles along perennial streams in that habitat. If a frog is found in the project area and is in danger of being harmed, work will cease in the area of the frog until either the qualified biological monitor can safely move the individual to a nearby location or the frog moves away on its own. Additional monitoring will occur after the first major precipitation event following the completion of the activity in order to ensure that the BMPs were effective. As mentioned above, direct effects will be minimized by conducting in-water maintenance and repair activities during specified periods. Conducting work during those periods and monitoring for the presence of this species during maintenance activities would reduce, but not eliminate, the possibility that Chiricahua leopard frogs would be harmed during maintenance and repair activities.
Disturbance to Chiricahua Leopard Frog – Indirect Effects

Potential indirect effects to this species include increased spread of diseases, and impacts from habitat loss and degradation (discussed below). Spread of disease (*Bd* or ranavirus) may occur via maintenance and repair equipment or vehicles traveling from one aquatic site to the next. A vehicle traveling along a road and through a stream could potentially carry *Bd* in water or mud to the next wet drainage (Daszak 2000). To prevent the spread of amphibian diseases among drainages via water or mud on maintenance vehicles and equipment, all maintenance work within Chiricahua leopard frog critical habitat shall conform to amphibian disease prevention protocols as described in the recovery plan for this species (see Appendix B). Equipment would either be disinfected between uses at different sites or rinsed and air dried. By implementing BMPs to avoid the spread of diseases (Chiricahua Leopard Frog BMP #4, General BMPs #8 and 9) the potential for adverse indirect effects on Chiricahua leopard frog should be minimized.

Habitat Loss and Degradation-Direct Effects

Maintenance of roads, culverts, and low water points will occur within or immediately adjacent to existing tactical infrastructure. To avoid affecting habitat, maintenance will be designed and implemented so that the hydrology of streams, ponds, and other habitat is not altered (Chiricahua Leopard Frog BMP #4). Nevertheless, minor and temporary alteration of habitat would occur during some maintenance and repair activities, and there remains a possibility that individuals of this species might be harmed during those activities. General BMP #3 will minimize direct effects to habitat because vegetation clearing will not occur in suitable habitat within the range or designated critical habitat of Chiricahua leopard frog. If a PCE, or other indicator of suitable habitat occurs within the project area, then further consultation with FWS will be required.

Habitat Loss and Degradation – Indirect Effects

Potential indirect effects to this species include increased sedimentation in aquatic habitat and introduction of non-native invasive species. Maintenance and repair of access roads, low water crossings, and culverts near currently or future occupied frog habitats may result in erosion and sedimentation into those habitats, or improve access for the public or others who may introduce non-native predators or disease, collect frogs, start fires, or otherwise degrade habitats (NPS 2012, Watson 2005).

Non-native plants often thrive in disturbed areas (Tellman 2002); hence, TIMR activities could encourage the spread and establishment of these plants. Many non-native plants, such as Lehmann’s lovegrass, carry fire better and often burn hotter than the native plants (Bock and Bock 2002, Esque and Schwalbe 2002). As a result, the proposed action has the potential to increase fire frequency and intensity via spread of non-native plants. Fire can result in temporary watershed degradation and increased sedimentation and ash flow into Chiricahua leopard frog habitats. Sediments can fill in frog habitats (Wallace 2003) and ash flow can create toxic conditions (Spencer and Hauer 1991). We believe that impacts to Chiricahua leopard frogs from invasive species and fire as a result of the TIMR Program are unlikely, due to the implementation of BMPs and conservation measures discussed below.
The potential for indirect effects to habitat is much reduced or eliminated by implementing BMPs to reduce sedimentation and runoff from roads and other infrastructure. Other BMPs that minimize potential effects to amphibian habitat include avoiding the spread of non-native invasive species (Vegetation BMPs #2 and 10, General BMP #8), and conducting periodic inspection and maintenance to minimize erosion and other adverse conditions (Vegetation BMP #12). Clearing of riparian vegetation will not occur within 100 feet of aquatic habitats to provide a buffer area to protect the habitat from sedimentation (Wildlife BMP #3). To minimize impacts from habitat degradation due to sedimentation and effects on water quality and quantity, a site-specific SWPPP and a spill protection plan will be prepared and regulatory approval will be sought as required by regulations, for maintenance and repair activities that could result in sedimentation and that occur within 0.3 miles of suitable habitat (Chiricahua Leopard Frog BMP #3). This will include, but is not limited to, placing straw bale-type sediment traps at the inlet of ponds or stock tanks and upstream of drainages known to be occupied by the species or within critical habitat of the species. General BMPs to protect water resources, as listed in the description of the proposed action, will also be implemented (General BMPs #7-9, Water Resources BMPs #1-25, Geology and Soil Resources BMPs #1-4, Chiricahua Leopard Frog BMPs #5 and 7). By implementing BMPs to avoid sedimentation, and by conducting follow-up monitoring in the vicinity of critical habitat (Conservation Measure #1), the potential for adverse indirect effects to Chiricahua leopard frog habitat should be minimized. In addition, CBP or their contractors will conduct monitoring of suitable Chiricahua leopard frog habitat at and downstream of work sites following the first major precipitation event after the activity has been completed. This monitoring will ensure that the BMPs have functioned properly.

Effects of the Action on Chiricahua Leopard Frog Critical Habitat

In our analysis of the effects of the action on critical habitat, we consider whether or not a proposed action will result in the destruction or adverse modification of critical habitat. In doing so, we must determine if the proposed action will result in effects that appreciably diminish the value of critical habitat for the recovery of a listed species. To determine this, we analyze whether the proposed action will destroy or adversely modify any of the PCEs that are the basis for proposing critical habitat. To determine if an action results in adverse modification of critical habitat, we must also evaluate the current condition of all critical habitat units, and the PCEs of those CHUs, to determine the overall ability of all critical habitat to support recovery. Further, the functional role of each of the CHUs in recovery must also be considered because, collectively, they represent the best available scientific information as to the recovery needs of the species.

Based upon the project description for the TIMR Program and previous consultations on other similar Federal agency actions, implementation of the proposed action may result in adverse effects to critical habitat. Below, we describe the PCEs related to Chiricahua leopard frog aquatic breeding habitat (including immediately adjacent uplands) and dispersal habitat and the potential effects from implementation of the proposed action.

1. Aquatic breeding habitat and immediately adjacent uplands exhibiting the following characteristics:
PCE 1a: Standing bodies of fresh water (with salinities less than 5 parts per thousand, pH greater than or equal to 5.6, and pollutants absent or minimally present), including natural and manmade (e.g., stock) ponds, slow-moving streams or pools within streams, off-channel pools, and other ephemeral or permanent water bodies that typically hold water or rarely dry for more than a month. During periods of drought, or less than average rainfall, these breeding sites may not hold water long enough for individuals to complete metamorphosis, but they would still be considered essential breeding habitat in non-drought years.

Effect: With the exception of some potential effects to water quality, activities implemented under the proposed action are expected to retain and recover this PCE for frogs. There are measures in place to ensure that areas supporting listed species are not dewatered or impaired to the point that they cannot support frogs. For example, work will be designed and implemented so that the hydrology of streams, ponds, and other habitat is not altered. Sediment control structures will also be used and BMPs implemented to reduce the potential for contaminants to enter the system.

PCE 1b: Emergent and or submerged vegetation, root masses, undercut banks, fractured rock substrates, or some combination thereof, but emergent vegetation does not completely cover the surface of water bodies.

Effect: No adverse effects to this PCE are expected as a result of the proposed action. Riparian vegetation within 100 feet of critical habitat will not be cleared, and clearing of vegetation would not occur in critical habitat without further consultation with FWS.

PCE 1c: Non-native predators absent or occurring at levels that do not preclude presence of the Chiricahua leopard frog.

Effect: There is very little potential for the proposed action to introduce or transfer non-native predators into critical habitat, and CBP will notify FWS Arizona Ecological Service Office prior to any in-water work within designated Chiricahua leopard frog critical habitat. CBP will not use surface water from aquatic or marsh habitats for maintenance and repair projects, if that site supports aquatic federally-listed species or if it contains non-native invasive species or disease vectors based on the best available information provided by FWS. Additionally, conservation measures CBP is implementing to ensure that the proposed action does not spread amphibian diseases among drainages via water or mud on maintenance vehicles and equipment will also prevent the spread of non-native predators.

PCE 1d: Absence of chytridiomycosis (Bd), or, if present, then environmental, physiological, and genetic conditions are such that allow persistence of Chiricahua leopard frogs.

Effect: There is the potential that actions carried out under the proposed action, such as the cleaning and moving vehicles and equipment between aquatic sites could result in the movement of Bd, or other diseases, to critical habitat. However, CBP will not use surface water from aquatic or marsh habitats for maintenance and repair projects, if that site supports aquatic federally-listed species or if it contains non-native invasive species or disease vectors.
based on the best available information provided by FWS. Additionally, to prevent the
spread of amphibian diseases among drainages via water or mud on maintenance vehicles and
equipment, all maintenance work within Chiricahua leopard frog critical habitat shall conform
to amphibian disease prevention protocols as described in the Recovery Plan for the
Chiricahua leopard frog. Equipment would either be disinfected between uses at different
sites or rinsed and air dried. Pathogens, such as \textit{Bd}, can easily be transferred between
habitats on equipment and footwear. Disinfecting equipment between sites should
significantly reduce the potential for \textit{Bd} to be transmitted to critical habitat.

\textit{PCE 1e}: Upland areas that provide opportunities for foraging and basking that are
immediately adjacent to or surrounding breeding aquatic and riparian habitat.

\textit{Effect}: Vegetation control actions may result in reduced vegetative habitat immediately
around and surrounding critical habitat. However, clearing of vegetation would not occur in
critical habitat without further consultation with FWS. Vegetation clearing will not occur in
suitable habitat within the range or designated critical habitat of threatened and endangered
species. If a threatened or endangered species, primary constituent element (PCE), or other
indicators of suitable habitat occur within the project area, then further consultation with
FWS will be required. Additionally, riparian vegetation within 100 feet of critical habitat will
not be cleared.

2. Dispersal and non-breeding habitat, consisting of areas with ephemeral (present for only a short
time), intermittent, or perennial water that are generally not suitable for breeding, and associated
upland or riparian habitat that provide corridors (overland movement or along wetted drainages) for
frogs to move among breeding sites in a metapopulation. The dispersal and nonbreeding habitat
need to have the following characteristics:

\textit{PCE 2a}: Are not more than 1.0 mile overland, 3.0 miles along ephemeral or intermittent
drainages, 5.0 miles along perennial drainages, or some combination thereof not to exceed
5.0 miles.

\textit{Effect}: Actions implemented under the proposed action should not result in the loss of
aquatic habitats within critical habitat that would change the movement distance between
breeding habitat. Therefore, dispersal and non-breeding habitat should remain intact.

\textit{PCE 2b}: In overland and non-wetted corridors, provides some vegetation cover or structural
features (e.g., boulders, rocks, organic debris such as downed trees or logs, small mammal
burrows, or leaf litter) for shelter, forage, and protection from predators; in wetted corridors,
provides some ephemeral, intermittent, or perennial aquatic habitat.

\textit{Effect}: Actions implemented under the proposed action should not significantly reduce or
modify this PCE within critical habitat. Although actions may result in small reductions in
organic debris as a result of road maintenance, these impacts are not likely to significantly
modify this PCE.
PCE 2c: Are free of barriers that block movement by Chiricahua leopard frogs, including, but not limited to, urban, industrial, or agricultural development; reservoirs that are 50 acres or more in size and contain predatory nonnative fishes, bullfrogs, or crayfish; highways that do not include frog fencing and culverts; and walls, major dams, or other structures that physically block movement.

Effect: Actions implemented under the proposed action would not result in the creation of barriers to movement within critical habitat.

Maintenance activities conducted within and near Chiricahua leopard frog critical habitat could alter the quality of surface water within and downstream of the maintenance area. Impacts on water quality should be localized and temporary, and BMPs will be implemented to reduce sedimentation and runoff from roads and other infrastructure and minimize other potential indirect effects on this species. In areas where maintenance and repair activities took place within 0.3 miles of the critical habitat for Chiricahua leopard frogs, CBP will conduct one additional monitoring visit (by a permitted biologist) following the first significant rainfall event following the completion of TIMR Program activities to determine the effectiveness of BMPs implemented (Conservation Measure #1).

Most TIMR Program activities within critical habitat will occur within and immediately adjacent to the footprint of existing tactical infrastructure, and BMPs designed to avoid impacts to critical habitat of this species will be implemented. For example, work will be designed and implemented so that the hydrology of streams, ponds, and other habitat is not altered (Chiricahua Leopard Frog BMP #2). Riparian vegetation within 100 feet of critical habitat will not be cleared (Wildlife BMP #3 and Vegetation BMP #13), use of herbicides will not occur within 0.3 miles of Chiricahua leopard frog critical habitat or other suitable habitat within the range of this species, unless approved by the FWS (Chiricahua Leopard Frog BMP #7), and clearing of vegetation will not occur in critical habitat without further consultation with FWS (General BMP #3).

While monitoring will occur to ensure BMPs function properly, vandalism or degradation may prevent the erosion control structures and other measures from being effective. This is particularly the case if significant time passes between project implementation and the first major precipitation event. Therefore, because maintenance activities could cause temporary and localized changes in water quality, and because measures implemented to reduce effects may become ineffective over time, the proposed action may affect, and is likely to adversely affect designated Chiricahua leopard frog habitat.

CUMULATIVE EFFECTS

Cumulative effects include the effects of future State, Tribal, local, or private actions that are reasonably certain to occur in the action area considered in this BO. Future Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the Act. Federal agencies manage much of the land in the action area, particularly the Coronado National Forest and Buenos Aires NWR. Thus, most of the actions that are reasonably expected to occur in the project area that may adversely affect the
Chiricahua leopard frog would be subject to future section 7 consultations. However, some occupied breeding localities are on private lands or state lands.

Unregulated activities on non-Federal lands, such as trespass livestock, inappropriate use of off-highway vehicles, and illegal introduction of non-indigenous aquatic species are cumulative effects and can adversely affect the species through a variety of avenues. Illegal introductions of non-indigenous fishes and other aquatic invasive species are routinely made by the public (e.g., topminnow, red shiner, and guppies).

Cumulative effects to native aquatic animals include ongoing activities in the watersheds in which the species occurs such as livestock grazing and associated activities outside of Federal allotments, irrigated agriculture, groundwater pumping, stream diversion, bank stabilization, channelization, and recreation without a Federal nexus. Some of these activities, such as irrigated agriculture, are declining and are not expected to contribute substantially to cumulative long-term adverse effects to native aquatic animals. Other activities, such as recreation, are increasing. Increasing recreational, residential, or commercial use of the non-Federal lands near the Arivaca riparian area and ciénega managed by Buenos Aires NWR would likely result in increased cumulative adverse effects to occupied, as well as potentially occupied native aquatic animal habitat through increased water use, increased pollution, and increased alteration of the stream banks through riparian vegetation suppression, bank trampling, changing flow regimes, and erosion.

CONCLUSION

The conclusions of this BO are based on full implementation of the project as described in the Description of the Proposed Action section of this document, including all BMPs and CMs that are incorporated into the project design. This BO does not rely on the regulatory definition of “destruction or adverse modification” of critical habitat in 50 CFR 402.02 because of various court cases surrounding the FWS’s jeopardy and adverse modification analyses. Instead, we have relied upon the statutory provisions of the Act to complete the analysis with respect to critical habitat. Critical habitat is defined in section 3 of the Act “as the specific areas within the geographical area occupied by the species, at the time it is listed in accordance with the Act, on which are found those physical and biological features essential to the conservation of the species and that may require special management considerations or protection; and specific areas outside the geographical area occupied by a species at the time it is listed, upon a determination that such areas are essential for the conservation of the species.” We have also relied upon the Consultation Handbook which provides guidance on determining adverse modification of critical habitat and jeopardy pursuant to the following: “Adverse effects on individuals of a species or constituent elements or segments of critical habitat generally do not result in jeopardy or adverse modification determinations unless that loss, when added to the environmental baseline, is likely to result in significant adverse effects throughout the species’ range, or appreciably diminish the capability of the critical habitat to satisfy essential requirements of the species” (FWS and National Marine Fisheries Service 1998:4-34).

After reviewing the current status of the Chiricahua leopard frog and its critical habitat, the environmental baseline for the action area, the effects of the proposed activities, and cumulative effects, it is the FWS's biological opinion that the proposed action is not likely to jeopardize the
continued existence of the Chiricahua leopard frog nor adversely modify critical habitat. Pursuant to 50 CFR 402.02, to “jeopardize the continued existence of” means to engage in an action that reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of both survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of that species. Our conclusion is based on our discussion in this document found in the “Effects of the Action” section above, and the following:

1. During the consultation for the proposed action, FWS and CBP jointly developed a set of BMPs and CMs for the Chiricahua leopard frog which became part of the proposed action and which will avoid, minimize, or offset anticipated adverse effects to the Chiricahua leopard frog and its designated critical habitat.

2. TIMR Program activities will primarily occur within the existing footprint of the tactical infrastructure and, as a result, minimal areas of additional habitat disturbance will occur.

3. CBP’s process for implementing proposed maintenance and repair activities will promote the avoidance and minimization of effect to the Chiricahua leopard frog and its critical habitat.

4. Monitoring will allow the CBP and FWS to determine the effectiveness of the BMPs and CMs in reducing the reducing adverse effects to the Chiricahua leopard frog and its critical habitat.

5. CBP will provide project implementation information in an annual report to the FWS indicating that the activities completed under the proposed action were implemented as proposed.

INCIDENTAL TAKE STATEMENT

Section 9 of the Act and Federal regulation pursuant to section 4(d) of the Act prohibit the take of endangered and threatened species, respectively, without special exemption. “Take” is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. “Harm” is defined to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering (50 CFR 17.3). “Harass” is defined as intentional or negligent actions that create the likelihood of injury to listed species to such an extent as to significantly disrupt normal behavior patterns which include, but are not limited to, breeding, feeding or sheltering (50 CFR 17.3). “Incidental take” is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the Act provided that such taking is in compliance with the terms and conditions of this Incidental Take Statement.

The measures described below are non-discretionary, and must be undertaken by CBP so that they become binding conditions of any grant or permit issued to the (applicant), as appropriate, for the exemption in section 7(o)(2) to apply. CBP has a continuing duty to regulate the activity covered by this incidental take statement. If CBP (1) fails to assume and implement the terms and conditions or (2) fails to require any applicant, contractor, or permittee to adhere to the terms and conditions of the incidental take statement through enforceable terms that are added to the contract, permit, or grant document, the protective coverage of section 7(o)(2) may lapse. In order to monitor the
impact of incidental take, CBP must report the progress of the action and its impact on the species to the FWS as specified in the incidental take statement. [50 CFR ‘402.14(i)(3)].

AMOUNT OR EXTENT OF TAKE

Incidental take of the Chiricahua leopard frog is reasonably certain to occur from the proposed implementation of the TIMR Program. There is some potential for take of individual frogs of various life stages (frogs, tadpoles, and eggs) in the form of harm resulting from the increased flow of sediment into occupied habitat due to proposed activities conducted within or upstream of aquatic habitat. For example, individuals may be harmed through changes in the water chemistry, or as a result of heavy sediment deposits covering eggs, tadpoles, and clogging gills. Take of Chiricahua leopard frogs could also occur through direct mortality or harm from trampling (human or machine), and harm and/or harassment through habitat modification (e.g., as a result of maintenance and repair along roads and/or the transmittal of disease). While we believe that the proposed BMPs and CMs will effectively reduce this potential for take, there is some potential for take to occur if measures to reduce sedimentation are not effective.

We believe that we cannot measure the number of frogs taken as a result of this action because these frogs are difficult to find, particularly if they are dead or impaired, and the frog is difficult to see due to its size, cryptic coloring, and complex habitat. In addition, egg masses and tadpoles are frequently hidden in submerged vegetation and cannot be counted precisely. Based on the form of take anticipated for TIMR activities, we will use loss or degradation of habitat as the determinant for take. Take of this species can be anticipated if visual inspection determines that the BMPs designed to control erosion have not been effective and if visual confirmation determines that more than approximately half of an occupied tank, pond or pool is covered by fresh silt, resulting from TIMR Program activities, following a precipitation event. Visual inspections are included as a conservation measure above and will be scheduled and conducted by CBP or their contractors within 7 days of the first significant precipitation event following TIMR activities, and any such sedimentation will be reported to FWS within 5 days. Such deposits are directly related to habitat modifications and indicative of a sedimentation event significant enough that, if exceeded, will constitute an unacceptable impact to occupied habitat and individual Chiricahua leopard frogs. We anticipate take of this type to occur once every five years for the duration of the TIMR Program.

During the visual inspections described above, CBP or their contractors will also conduct visual inspections for any dead or dying Chiricahua leopard frogs within the water bodies inspected. Any such loss of Chiricahua leopard frogs will be reported to the FWS within 5 days.

EFFECT OF THE TAKE

In this biological opinion, the FWS determines that this level of anticipated take is not likely to result in jeopardy to the species or adverse modification of the designated critical habitat.
REASONABLE AND PRUDENT MEASURES AND TERMS AND CONDITIONS

A comprehensive suite of BMPs and CMs have been incorporated into the proposed action for the TIMR Program. These conservation measures generally and specifically require CBP to reduce effects to the Chiricahua leopard frog and its designated critical habitat. No additional reasonable and prudent measures are necessary to minimize incidental take.

If mortality or injury of any Chiricahua leopard frog is detected, the instructions provided below under “Disposition of Dead or Injured Listed Species” will be followed. In addition, CBP must report activities implemented under the TIMR Program, including the outcome of any monitoring, as well as any potential take of this species, in its annual report to FWS.

Review requirement: Because FWS has determined that no Reasonable and Prudent Measures or Terms and Condition are required beyond the measures outlined in the Proposed Action above, it is imperative that CBP implement the BMPs and CMs described above, including the required monitoring and reporting. If, during the course of the proposed action, the level of incidental take exceeded, such incidental take would represent new information requiring review of the proposed action, potentially through reinitiation of section 7 consultation as described below in the Reinitiation Notice.

CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the Act directs Federal agencies to utilize their authorities to further the purposes of the Act by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations are discretionary agency activities to avoid or minimize adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information. FWS recommends the following conservation activities:

1. We recommend that your agency participate in the implementation of the Chiricahua leopard frog recovery plan.

2. We recommend that your agency investigate the distribution of *Bd* and other amphibian diseases in the action area. Protocols for this investigation should be coordinated with our office and AGFD.

In order for the FWS to be kept informed of actions avoiding or minimizing adverse effects or benefiting listed species or their habitats, the FWS requests notification of the implementation of any conservation recommendations.

Please note that surveys for Chiricahua leopard frog that involve capture or take require appropriate permits from the FWS and AGFD.
SONORAN TIGER SALAMANDER

STATUS OF THE SPECIES

Description, Legal Status, and Recovery Planning

Sonoran tiger salamanders (*Ambystoma tigrinum stebbinsi*) are large salamanders with a dark venter and light-colored blotches, bars, or reticulation on a dark background. Metamorphosed terrestrial Sonoran tiger salamanders have a color pattern ranging from a reticulate pattern with an irregular network of light coloration, often coupled with light spots, on a dark background color to a pattern of large, well-defined light or yellow spots or transverse bars, some of which encroach on the dark venter (Jones et al. 1988). Metamorphosed Sonoran tiger salamanders measure from about 6.6 to 12.4 cm (2.6 to 4.9 inches) snout to vent length (SVL) (Lowe 1954, Jones et al. 1988). Male and female adult Sonoran tiger salamanders can be distinguished by the presence of two black folds of tissue (cloacal folds) on the caudal side of the vent.

Branchiate adults are gray to olive on the dorsum, head, and tail, and off-white to yellow on the ventral surface. They have three external gills on each side of their head, and measure between 6.5 and 16.5 cm (2.6 to 6.5 inches) SVL. Larvae are aquatic with external plume-like gills and well-developed tail fins (Behler and King 1980). At this stage, they are gray on the dorsum, head, and tail, with little pigment on the ventral surface. They hatch without legs, but grow hind and forelimbs early in development.

Sonoran tiger salamanders are one of three subspecies of tiger salamanders found in Arizona; the other two subspecies are Arizona tiger salamanders (*A. t. nebulosum*) and barred tiger salamanders (*A. t. mavortium*). The barred salamander is an introduced species in the San Rafael Valley and elsewhere in southern Arizona. The Sonoran tiger salamander was discovered in 1949 at the J.F. Jones Ranch stock tank in Parker Canyon, San Rafael Valley, Arizona (Reed 1951).

The eggs, larvae, and branchiate adults of the three subspecies appear similar, except that larval and branchiate adult Arizona and barred tiger salamanders sometimes develop into a cannibalistic morph that has a wider head, enlarged vomerine teeth, and feeds preferentially on smaller conspecifics. Metamorphosed Arizona tiger salamanders have 11-50 irregularly shaped, yellow to olive spots and blotches, often with indistinct edges (Stebbins 2003), on a dark dorsal ground, with a similar pattern on the head and tail. Metamorphosed barred tiger salamanders have large, distinct, yellowish bars, spots, or transverse bars on a darkly grounded dorsum. Some of the spots or bars encroach on the dark venter. The reticulate pattern that can be seen in Sonoran tiger salamanders is not seen in Arizona or barred tiger salamanders, however, many metamorphosed Sonoran tiger salamanders do not have the reticulate pattern and are visually indistinguishable from barred tiger salamanders.

Genetic analysis was conducted between the gene loci of Sonoran tiger salamanders and the gene loci of rosy salamanders (*Ambystoma rosaceum*), barred tiger salamander, and Arizona tiger salamanders (Jones et al. 1988). Based on this analysis, distinctive reticulate color patterns, low heterozygosity, and apparent geographic isolation, subspecific designation of Sonoran tiger
salamander was considered warranted by Collins and Jones (1987) and Jones et al. (1988). Further analysis of mitochondrial DNA reaffirmed subspecific designation (Collins et al. 1988).

The rosy salamander occurs from Durango, Chihuahua, to Sonora, Mexico, including the southern portion of the San Rafael Valley in Mexico (Shannon 1951, Jones et al. 1995). Rosy salamander larvae are pinkish in color with dark patterning on the sides and back (Taylor 1941) and fewer gill rakers (9-15) than tiger salamanders found in Arizona and Mexico (15-24) (Collins 1979). Metamorphed rosy salamanders are uniformly dark brown on the sides and back and lighter ventrally (Anderson 1961). Allozyme data suggest that interbreeding between tiger salamanders and rosy salamanders is rare or non-existent, even when their distributions overlap (Shaffer 1983).

In 1997, the FWS listed the Sonoran tiger salamander as an endangered species (FWS 1997a). A final Recovery Plan for the species was signed on September 24, 2002. The Sonoran tiger salamander has a recovery priority number of 3. Recovery priority numbers range from 1 to 18, with 1 having the highest priority. No critical habitat has been designated for the Sonoran tiger salamander.

Collecting *Ambystoma* in the San Rafael Valley is prohibited under Arizona Game and Fish Commission Orders 40 and 41, except under special permit. Furthermore, transport and stocking of live bullfrogs and fishing with live bait fish or *Ambystoma* within the range of the Sonoran tiger salamander in Arizona are prohibited (R1-316). Sale of live waterdogs at Parker Canyon Lake is prohibited under the same regulation. In the San Rafael Valley, live crayfish can be used as bait, but only at the place of capture. Transported crayfish must be dead. The Sonoran tiger salamander is included in AGFD’s Draft Species of Special Concern (Arizona Game and Fish Department 1996); however, this designation affords the species and its habitat no legal protection. State of Arizona Executive Order Number 8-16 (Streams and Riparian Resources), signed on June 10, 1989, directs state agencies to evaluate their actions and implement changes, as appropriate, to allow for restoration of riparian resources.

Recovery Actions

Federal listing under the Act provided considerable protection to the Sonoran tiger salamander and its habitat. Section 9 of the ESA prohibits take of any listed wildlife species, including the Sonoran tiger salamander. Because most of the land, cattle ponds, and salamander populations in the San Rafael Valley are on Federal lands, most activities that might affect the salamander or its habitat are also subject to Section 7 consultation.

Biological Opinions and incidental take statements were issued in 1997 and 1999 by the FWS during section 7 consultations with the Coronado National Forest. This consultation process resulted in the development of a “Stock Pond Management and Maintenance Plan” addressing cattle pond maintenance guidelines in order to minimize incidental take of salamanders associated with cleaning out ponds (FWS 1997b, 1999). The 1997 consultation also provided measures to reduce the possibility that salamanders might be unintentionally killed or moved among cattle ponds by fire suppression activities.
The Sonora Tiger Salamander Recovery Plan was completed in 2002; it outlines goals and objectives for downlisting to threatened status by 2007 (FWS 2002). However, the recommendation in the 5-year review (FWS 2007) was to leave the species status unchanged. A final version of the five-year report is still pending. The Sonoran tiger salamander monitoring protocol is set up to detect a 5% change in population trends with a minimum of ten years of data, so it will likely require more time before a more telling trend analysis can be conducted. The “Stock Pond Management and Maintenance Plan” is included as an appendix to the Recovery Plan.

Life History and Habitat

Sonoran tiger salamanders begin their life as jelly-coated eggs laid in water. They hatch and grow as aquatic larvae with gills, and then either mature as gilled aquatic adults called branchiate adults; or metamorphose into terrestrial Sonoran tiger salamanders without gills. Branchiate adults are reproductively mature, but have not undergone metamorphosis and spend their entire lives in water. Terrestrial adults are those that have undergone metamorphosis and spend most of their lives out of the water, but return to ponds to breed. Populations and habitats are dynamic, thus the number and location of extant aquatic populations changes over time, as exhibited by the differences between survey results in 1985 and 1993 to 1997 (Collins and Jones 1987, Collins 1996, Abbate 1998, Ziemba et al, 1998).

Sonoran tiger salamanders begin breeding as early as January, and eggs can be found in ponds as late as early May (FWS 2002). Breeding after monsoon rains in July and August is rare (FWS 2002). Sonoran tiger salamanders that are ready to breed have swollen, reddish vents. Terrestrial adults return to ponds to breed, and branchiate adults in the pond also breed. Although there is little data on breeding site fidelity for Sonoran tiger salamanders, other *Ambystoma* species usually return to breed in the ponds where they were born (Shoop 1965, 1968; Shoop and Doty 1972; Douglas and Monroe 1981; Semlitsch 1981; Madison 1997; Madison and Farrand 1998). Courtship takes place under water, and is difficult to observe in the field.

After fertilization, female tiger salamanders lay 200 to 2000 eggs (FWS 2002), attaching them to aquatic vegetation, sticks, rocks, or substrate either individually or in clumps of up to 50. Eggs take from 2-4 weeks to hatch; the colder the water, the longer the eggs take to develop. Sources of mortality for tiger salamander eggs include freezing, drying, trampling by livestock, and predation by adult salamanders (Holomuzki 1986) and introduced fish (Snyder 1998). Crayfish may prey upon salamander eggs as well.

Following hatching, Sonoran tiger salamander larvae can develop to the minimum size necessary to metamorphose into terrestrial salamanders in as little as two months, from late July to early September. However, because many San Rafael Valley sites with salamanders hold water all year, larvae often remain in the water longer before metamorphosing or develop into branchiate adults instead of metamorphosing. In addition, larvae may not undergo metamorphoses and may overwinter in ponds (Collins and Jones 1987). Only an estimated 17 to 40 percent of Sonoran tiger salamanders metamorphose annually (Collins and Jones 1987). All larvae that hatch in ephemeral waters metamorphose into the terrestrial form. Larvae must be at least 4.5 cm (1.8 in) SVL in order to make the transformation (FWS 1997a).
Small tiger salamander larvae feed primarily on zooplankton (daphnids, copepods, bosminids, ostracods, etc.), but incorporate larger aquatic macroinvertebrates (chironomids, trichopterans, molluscs, zygopterans, etc.) into their diet as they grow (Collins and Holomuzki 1984). Sources of mortality for tiger salamander larvae include pond drying, disease (Jancovich et al. 1997), and predation by wading birds, introduced fish and bullfrogs (Snyder 1998), aquatic insects (Holomuzki 1986), and adult salamanders (Holomuzki 1986). Crayfish may also prey upon larval salamanders.

Salamander larvae in permanent water often develop into branchiate adults. San Rafael Valley ponds that do not dry may support up to several hundred branchiates (FWS 2002). Branchiate adults can sometimes metamorphose into the terrestrial form in response to stressful events such as pond drying, but are often unable to complete metamorphosis and may even die during the process (FWS 2002). The lifespan of branchiate adults in the field is not known, but Arizona tiger salamanders have survived as branchiates for up to 8 years in captivity (FWS 2002). The reason that branchiates have not been kept longer is that they eventually metamorphose, even after years as branchiates.

Branchiate adult tiger salamanders prey on zooplankton and a variety of macroinvertebrates, and eat salamander eggs and larvae during the breeding season (Holomuzki 1986). Although branchiate adult Sonoran tiger salamanders probably eat salamander eggs and larvae, they seldom develop into a cannibalistic morph. Sources of mortality for branchiate adults include pond drying, disease (Jancovich et al. 1997), and predation by wading birds and larger introduced bullfrogs and fish species (Snyder 1998).

When larvae are large enough (>4.5 cm (1.77 inches) SVL), they can metamorphose into terrestrial salamanders. The proportion of larvae that metamorphose depends heavily on pond permanence. In ponds that dry, all larvae that are large enough metamorphose. In ponds that do not dry, approximately 17 percent of larvae that are large enough to metamorphose actually do so (Collins et al. 1988). Metamorphs often re-populate ponds following drying or disease outbreaks that kill most branchiate adults and larvae. Metamorphs are also the only life stage that can disperse from pond to pond and establish new populations.

Outside the pond, metamorphosed tiger salamanders consume terrestrial insects and other macroinvertebrates. In the pond, metamorphosed individuals eat aquatic macroinvertebrates and terrestrial insects that fall in the water (Whiteman et al. 1994). Sources of mortality for metamorphosed adults include extreme conditions in the terrestrial environment, disease (Jancovich et al. 1997), and predation by terrestrial predators and introduced fish and bullfrogs (Snyder 1998). The lifespan of metamorphosed Sonoran tiger salamanders in the wild is not known, but metamorphosed Arizona tiger salamanders have survived 17 years in captivity (FWS 2002). Analysis of growth rings in toe bones (skeletochronology) of 150 Arizona tiger salamanders captured in the field revealed no salamanders over 6 years old (FWS 2002), but it remains to be seen whether the same is true for Sonoran tiger salamanders.

Historically, the Sonoran tiger salamander probably inhabited springs, cienegas, and possibly backwater pools of the Santa Cruz River and streams in the San Rafael Valley where permanent or nearly permanent water allowed survival of mature branchiates. Erosion and arroyo cutting in the late 19th and early 20th centuries caused the San Rafael Valley to dry and natural standing water
habitats to disappear (Hendrickson and Minckley 1984, Hadley and Sheridan 1995). The Sonoran tiger salamanders are no longer found in these rare habitats. The state of Arizona (1990) estimated that up to 90 percent of the riparian habitat along Arizona’s major desert watercourses has been lost, degraded, or altered. The Sonoran tiger salamander apparently has opportunistically taken advantage of available stock tank habitats as natural habitats disappeared (Hendrickson and Minckley 1984) or were invaded by non-native predators with which the salamander cannot coexist (FWS 2002).

The San Rafael Valley is a broad, open valley that forms the headwaters of the Santa Cruz River. The dominant terrestrial plant community in the San Rafael Valley is plains grassland (Brown 1994). Typical grasses include, among others, plains lovegrass (*Eragrostis intermedia*), side-oats grama (*Bouteloua curtipendula*), and curly mesquite (*Hilaria belangeri*). Within the grasslands, stringers or groves of cottonwoods and other wetland plants grow along some drainages and at ponds and springs. Upslope, at the edges of the San Rafael Valley, juniper and several species of oak form patchy woodlands or savannas that gradually give way to pine-oak woodlands at higher elevation (Brown 1994).

The most important habitat requirement for Sonoran tiger salamanders is the availability of standing water for breeding from January through June. This gives the salamanders enough time to breed, grow as larvae, and metamorphose before the pond dries. Permanent bodies of water can be good breeding sites, except they often contain introduced fish and bullfrogs (Snyder 1998). As a result, ponds created by ranchers for watering their cattle are now almost the only suitable breeding sites remaining. However, there are still some springs on the San Rafael Cattle Ranch (FWS 2002), and possibly elsewhere, such as in Scotia Canyon, that may be suitable breeding sites.

Sonoran tiger salamanders are tolerant of a wide range of temperatures, with temperatures in ponds varying from less than 5°C (41°F) at the beginning of the year up to 30°C (86°F) during summer. Temperatures in the terrestrial environment range from below freezing to over 35°C (95°F). Mammal burrows or loosened soils outside the pond likely provide refugia for metamorphosed salamanders in the terrestrial environment, enabling them to burrow underground to avoid extreme environmental conditions.

Distribution and Abundance

Because so few sites were sampled prior to the 1980's, it is impossible to determine the historical distribution of Sonoran tiger salamanders. However, based on collections and observations of salamanders and the distribution of plains grassland and adjacent Madrean evergreen woodlands (Brown 1994) in which the salamander has been found, the range of the subspecies and its occupied and potentially occupied habitat is thought to extend from the crest of the Huachuca Mountains west to the crest of the Patagonia Mountains, including the San Rafael Valley and adjacent foothills from its origins in Sonora north to the Canelo Hills.

It is speculated that historically the Sonoran tiger salamander probably inhabited springs, cienegas, and possibly backwater pools of the Santa Cruz River and streams in the San Rafael Valley that were extant long enough to support breeding and metamorphosis (at least two months), but ideally were
permanent or nearly permanent, allowing survival of mature branchiates. The grassland community of the San Rafael Valley and adjacent montane slopes, where all extant populations of Sonoran tiger salamander occur, may represent a relictual grassland and a refugium for grassland species.

All confirmed historic and extant aquatic populations are found in tanks, ponds, or impounded cienegas within 31 km (19 mi) of Lochiel, Arizona. This region lies between the Patagonia and Huachuca Mountains, is bordered on the north end by the Canelo Hills, and stretches from Santa Cruz County in Arizona south into Sonora, Mexico. Cattle ponds or tanks are the primary habitat for Sonoran tiger salamanders, but there are several observations of unidentified salamanders away from cattle ponds.

Surveys for the Sonoran tiger salamander have been conducted on public lands throughout the Arizona portion of the San Rafael Valley. Dr. James P. Collins began surveying ponds with tiger salamanders in the San Rafael Valley in 1979. The Sonoran tiger salamander has been found at approximately 58 breeding localities, although not all are currently occupied (Collins and Jones 1987, Collins 1996, Abbate 1998, FWS 2002 and files). During intensive surveys in 1997, from one to 150 Sonoran tiger salamanders were found at 25 stock tanks (Abbate 1998). Populations and habitats are dynamic, thus the number and location of extant aquatic populations change over time, as exhibited by the differences between survey results in 1985 and 1993-1996 (Collins and Jones 1987, Collins 1996, FWS 1997a). In 1999, the lab of Dr. James Collins, Arizona State University, found Sonoran tiger salamanders at 17 localities (Collins 1999). Recent genetic analysis confirmed that barred salamanders (A. m. mavortium) or hybrids between barred salamanders and Sonoran tiger salamanders are present at seven stock tanks along Highway 83 and near Parker Canyon Lake in the San Rafael Valley.

A single terrestrial Sonoran tiger salamander was found near Oak Spring in Copper Canyon of the Huachuca Mountains (FWS 1997a). Tiger salamanders have also been reported from a cave, a vertical mining shaft at the northwestern edge of the San Rafael Valley, and one spring-fed well, which have yet to be confirmed (Ziemba et al. 1998). In the past, salamanders were collected from a cienega at Rancho Los Fresnos in the San Rafael Valley, Sonora, and they were likely A. m. stebbinsi. However, surveys during 2006 and 2007 failed to locate additional salamanders, and most waters on the ranch were occupied by non-native bullfrogs, crayfish, green sunfish, and/or black bullhead (FWS 2009).

More data are needed to make definitive statements about the long-term viability of Sonoran tiger salamanders in the San Rafael Valley. About half of the 58 Sonoran tiger salamander populations have been discovered within the last five years, and only within the last five years were ponds with salamanders sampled consistently, making it difficult to determine long-term trends in the proportion of ponds occupied by salamanders and suitability of those ponds for salamander breeding habitat. Also, more data on the ecology of Sonoran tiger salamanders (e.g., life-span, proportion of adults breeding each year, frequency and distance of dispersal events) are required to develop a suitable population viability analysis.

Tiger salamanders have also been found in areas just outside the San Rafael Valley, such as Fort Huachuca, Harshaw Canyon, Copper Canyon, and the Coronado Memorial. Of these localities,
genetic testing has only been performed on salamanders from Fort Huachuca, and with the exception of one pond within a kilometer of the San Rafael Valley, salamanders on the Fort Huachuca appear to be barred tiger salamanders (FWS 2002). A salamander population in Garden Canyon, Fort Huachuca, near the crest of the Huachuca Mountains, also contained hybrids, but this population has apparently disappeared. Barred salamanders are likely present due to their use as fish bait in and around Parker Canyon Lake.

Genetic testing has been performed on salamanders from a number of San Rafael Valley ponds to determine their identity. This testing has showed that some San Rafael Valley ponds contain salamanders with genetic characteristics similar to barred tiger salamanders. Salamanders with these “mavortium-like” sequences are more common on the outskirts of the San Rafael Valley and ponds close to Parker Canyon Lake, which, because of prior use of imported waterdogs as fish bait, is where we expect to find introduced barred tiger salamanders (Ziemba et al. 1998).

Population Dynamics

The dispersal patterns of Sonoran tiger salamanders are also unknown. The number of metamorphs in each population is difficult to estimate because most metamorphosed salamanders leave the pond after breeding, and it is unknown what fraction of salamanders in the terrestrial environment returns each year to breed. In some years, salamanders will be completely absent from a pond, only to return the following year to breed and produce many offspring. Radio tracking of other Ambystoma species has shown that they frequently move up to 250 m (273 feet) from their breeding ponds (Shoop 1965, 1968; Shoop and Doty 1972; Douglas and Monroe 1981; Semlitsch 1981; Madison 1997; Madison and Farrand 1998).

Although most records for Sonoran tiger salamanders occur at stock tanks where breeding occurs, terrestrial metamorphs potentially wander considerable distances from these aquatic habitats, and are occasionally encountered in upland habitats. AGFD personnel captured a Sonoran tiger salamander in a pit fall trap at Oak Spring in Copper Canyon, Huachuca Mountains. The nearest known breeding site is approximately 0.6 mile to the south, suggesting the salamander may have moved at least that far. Capture in a pit fall trap also confirms that the individual was surface active. In other subspecies of Ambystoma tigrinum, metamorphs may disperse hundreds of meters from the breeding pond, or may remain nearby (Gehlbach et al. 1969, Petranka 1998). Of hundreds of marked Ambystoma tigrinum nebulosum in northern Arizona, two were found to move from 0.9 to 1.2 miles to new ponds (FWS 1999a). On Fort Huachuca, Sheridan Stone reported finding terrestrial tiger salamanders (probably A. t. mavortium) 1.9 to 2.5 miles from the nearest known breeding pond (FWS 1999a). Referring to conservation of the California tiger salamander (A. californiense), Petranka (1998) finds that based on studies of movements of other Ambystoma species, conservation of a 650-1,650 foot radius of natural vegetation around a breeding pond would protect the habitat of most of the adult terrestrial population. Adults of western subspecies of A. tigrinum typically live in or about mammal burrows (Petranka 1998), although metamorphs may construct their own burrows, as well (Gruberg and Stirling 1972, Semlitsch 1983). Some species of salamanders exhibit seasonal migrations of up to several miles each way from breeding sites to upland habitats (Stebbins and Cohen 1995). If such migrations occur in the Sonoran tiger
salamander, we have no information about migration corridors or non-breeding habitat. Because of the arid nature of the environments in the region where the subspecies occurs, if salamanders move very far from breeding ponds, they may use wet canyon bottoms as movement corridors.

Threats

The FWS’s final listing rule (FWS 1997a) and Recovery Plan (FWS 2002) for the Sonoran tiger salamander described multiple threats or limiting factors which, when taken together, justified listing. These threats or limiting factors include the following: restricted distribution; limited number of breeding habitats; disappearance of natural standing water habitat; predation by non-native fish, bullfrogs, and crayfish; genetic swamping by introduced, non-native barred salamanders (*A. t. mavortium*); disease; low genetic diversity; collection for bait or translocation by anglers; use of man-made water holding structures (e.g., impoundments, stock tanks, ponds); maintenance of impoundments; use of occupied sites as water sources for fire suppression; loss of cover around occupied sites; illegal collecting; catastrophic floods and drought; and stochastic extirpations or extinction characteristic of small populations.

Salamanders have disappeared from a few ponds since surveys began in the late 1970s, but there is little indication that there is a general decline in the number of populations in the San Rafael Valley. Furthermore, the density of ponds supporting salamander populations in the San Rafael Valley is comparable to that in other regions supporting tiger salamanders. However, the restricted distribution of Sonoran tiger salamanders makes them vulnerable to relatively small-scale environmental disturbances and land-use changes. The primary threats to the Sonoran tiger salamander include predation by non-native fish and bullfrogs, diseases, catastrophic floods and drought, illegal collecting, introduction of other subspecies of salamanders that could genetically swamp *A. m. stebbinsi* populations, and stochastic extirpations or extinction characteristic of small populations (FWS 2009).

Prior to the 20th century, the San Rafael Valley contained many more cienegas and vernal pools than it does today. Erosion and arroyo cutting in the late 19th and early 20th centuries caused the San Rafael Valley water table to drop and natural standing water habitats to disappear (Hendrickson and Minckley 1984, Hadley and Sheridan 1995). However, at the same time natural standing water habitats were disappearing, cattle ponds were built. Many of the remaining springs and cienegas were converted into impoundments at this time, so most of the small standing water habitats remaining in the San Rafael Valley are cattle ponds. Currently, Sonoran tiger salamanders breed almost exclusively in these cattle ponds. The fact that Sonoran tiger salamanders breed in human-constructed cattle ponds instead of natural habitats does not necessarily threaten persistence of the taxon. Sonoran tiger salamanders have successfully bred in cattle ponds for decades, but salamanders are now dependent on humans to maintain the habitat. In particular, cattle ponds require occasional re-excavation because they fill in with silt, and pond dams also require occasional maintenance. Unfortunately, the maintenance required to maintain these ponds also adversely affects the Sonoran tiger salamander. Cattle pond habitats are also vulnerable to extreme weather conditions. Long-term drought could dry many of the ponds, and if ponds remained dry for several years, lack of breeding could lead to local extirpation of the salamander population.
Illegal collection of salamanders for bait has been reported from the San Rafael Valley although there are no data on the number of Sonoran tiger salamanders that are collected for bait (Collins and Jones 1987, FWS 2002). If large numbers of salamanders are collected for bait, it could threaten the persistence of Sonoran tiger salamander populations. Given the popularity of other salamanders as bait, it is reasonable to assume that illegal collection of salamanders will continue to occur.

There are reports of introduced non-native fish occurring in the San Rafael Valley as early as the 1950s, and various introduced fish species now occur in San Rafael Valley ponds, including mosquito fish, green sunfish, bluegill sunfish, black bullheads, and largemouth bass. Bullfrogs have also been in the valley since at least the early 1970s. Laboratory and field experiments have shown that metamorphosed bullfrogs and all of the fish species listed above quickly eat salamander larvae, and even adult Sonoran tiger salamanders have been found in the stomachs of adult bullfrogs (Snyder 1998). In addition, whenever non-native fish are introduced to a pond, the salamanders almost always disappear within the next few years, and do not reappear unless the fish are killed by pond drying (Snyder 1998). For some reason, adult bullfrogs have not maintained consistently high population densities in many San Rafael Valley ponds, so the potential effect of bullfrogs on Sonoran tiger salamanders remains unclear (Snyder 1998). However, given the observation that bullfrogs eat salamanders and the effect of bullfrogs on other native western herpetofauna populations (Rosen and Schwalbe 1996, Kupferberg 1997, Kiesecker and Blaustein 1997), bullfrogs should be considered a threat to Sonoran tiger salamanders. Occasional drying of cattle ponds due to drought or siltation has limited the number of ponds occupied by non-native fish and/or bullfrogs, because both taxa are vulnerable to drying. Crayfish are potential predators on salamanders as well, but have only been found in a few San Rafael Valley ponds, and those did not contain salamanders (FWS 2002). Crayfish are in many San Rafael Valley streams, however, and if they are introduced to ponds with salamanders, it is likely they will harm Sonoran tiger salamanders, much as they have harmed other western herpetofauna populations (Gamradt and Kats 1996, Fernandez and Rosen 1996).

Tiger salamander populations in the western U.S. and Canada, including populations of the Sonoran tiger salamander, exhibit frequent epizootics (Collins et al. 2001). Sonoran tiger salamander populations experience frequent disease-related die-offs (approximately eight percent of populations are affected each year) in which almost all salamanders and larvae in the pond die. *Ambystoma tigrinum* virus (ATV) is the pathogen believed to be primarily responsible for these die-offs (Jancovich et al. 1997). This, and possibly other iridoviruses, is also apparently the proximate cause of die-offs observed in other *Ambystoma* salamander populations in the U.S. and Canada (Collins et al. 2000, Docherty et al. 2003). It is also possible that some die-offs might occur as a result of low pH (FWS 2002). A copper smelter at Cananea, Sonora, less than 25 miles south of the border, may have released sulfur plumes resulting in acid precipitation (Blanchard and Stromberg 1987, Platz 1989), but currently there is no evidence to connect salamander die-offs with the copper smelter, and the smelter has not been operated since 1999. ATV may be spread by bullfrogs, birds, cattle, or other animals that move among tanks (Jancovich et al. 1997); however, the viral life cycle appears to be restricted to tiger salamanders as no other syntopic hosts have been identified (Jancovich et al. 2001). In the laboratory, Sonoran tiger salamanders exhibited lower survival and growth rates when exposed to the disease as compared to *Ambystoma tigrinum nebulosum* from the White Mountains of Arizona (Collins et al. 2003). Animals that survive ATV exposure may harbor transmissible infection for more than six months. Dispersing metamorphosed salamanders have been found
carrying ATV, and may reinfect the aquatic population when they return to a pond to breed (Collins et al. 2003). The disease could be spread by researchers or anglers if equipment such as waders, nets, or fishing tackle used at a salamander tank are not allowed to dry or are not disinfected before use at another tank. ATV has been identified from waterdogs obtained from a Phoenix bait shop, suggesting another mechanism of transmission (Collins et al. 2003). Storfer (2003) considers ATV an emerging pathogen, with recent spread likely attributable to human activities.

Sonoran tiger salamanders also contract chytridiomycosis, a fungal disease associated with global declines of frogs and toads (Berger et al. 1998, Longcore et al. 1999, Speare and Berger 2000, Davidson et al. 2003). However, compared to anurans, infected salamanders exhibit only minimal symptoms (Davidson et al. 2000). In the laboratory, infected Sonoran tiger salamanders did not die from the disease and are capable of ridding themselves or much reducing chytrid infections by frequent sloughing of the skin (Davidson et al. 2003). The effect of this disease on salamander populations needs further study.

Sonoran tiger salamanders also face the threat of genetic swamping by introduced barred tiger salamanders which are often sold as large larvae or branchiate adults for fishing bait or to anglers trying to establish a population that could be harvested at a later date. Genetic analysis has suggested that barred tiger salamanders have been introduced to some San Rafael Valley ponds, perhaps by anglers using salamanders as bait. Ponds in which introduced barred salamanders are most likely to occur are those that are most accessible, i.e. adjacent to roads on public lands, those that have a history of angling, and those near existing populations of barred salamanders. Salamanders with genetic characteristics similar to barred tiger salamanders have been found in 7 San Rafael Valley ponds in the southeastern portion of the valley (Ziemba et al. 1998). Very low sample sizes (maximum of three individuals tested from these sites) have made it impossible to determine what percentage of salamanders in these ponds had *mavortium*-like sequences and what percentage had *stebbinsi*-like sequences. Although the analysis of allozymes that was used could not determine whether there was any hybridization between the two subspecies, such hybridization is likely when the two subspecies co-occur.

Research on the ecology and viability of Sonoran tiger salamander populations should assist in developing a management strategy to protect salamanders and their habitat that will ensure persistence of salamanders in the San Rafael Valley. The genetic status of Sonoran tiger salamanders is still being studied, but it appears that some (approximately 25 percent) San Rafael Valley ponds with tiger salamanders contain at least some salamanders with sequences resembling barred tiger salamanders (Ziemba et al. 1998). The threat of genetic swamping by introduced barred tiger salamanders is one of the most difficult threats to assess because genetic testing is often required to distinguish between Sonoran tiger salamanders, barred tiger salamanders, and potential hybrids of the two subspecies.

Allozyme analysis has shown very little genetic variability in Sonoran tiger salamanders (Jones et al. 1988, 1995; Ziemba et al. 1998). Low genetic variability is a concern because in populations with low heterozygosity, deleterious alleles are expressed more frequently, disease resistance may be compromised, and there is little capacity for evolutionary change in response to environmental change.
ENVIRONMENTAL BASELINE

Regulations implementing the Act (50 CFR § 402.02) define the environmental baseline as the past and present impacts of all Federal, state, or private actions in the action area; the anticipated impacts of all proposed Federal actions in the action area that have undergone formal or early section 7 consultation; and the impact of state and private actions which are contemporaneous with the consultation process. The environmental baseline defines the current status of the species and its habitat in the action area to provide a platform from which to assess the effects of the action now under consultation.

Figure 9 depicts the TIMR Program’s action area and infrastructure to be maintained relative to the range of Sonoran tiger salamander.

Status of the Sonoran Tiger Salamander in the Action Area

The action area for the proposed TIMR Program occupies the entire range of the species in the U.S. and, therefore, the species’ status in the action area is similar to the rangewide status. The historic, extant, and current records indicate 71 ponds rangewide have been known to contain Sonoran tiger salamanders. Of these, 53 (approximately 90%) occur on the Coronado National Forest. Forty ponds are currently known to be occupied (within the last five years) by Sonoran tiger salamanders, 38 (95%) of which are located on Coronado National Forest (USFS 2004). During surveys by the AGFD from 2001-2006, Sonoran tiger salamander were found at 38 of 139 stock tanks, which were sampled from 1-7 times each. At 23 of 29 tanks where salamanders were found, and which were sampled more than once, salamanders were not found on at least one visit. All sites where Sonoran tiger salamanders have been found in Arizona are located in the Santa Cruz and San Pedro river drainages, including sites in the San Rafael Valley and adjacent portions of the Patagonia and Huachuca mountains in Santa Cruz and Cochise counties. All confirmed historical and extant aquatic populations are found in cattle tanks or impounded ciénegas within 19 mi of Lochiel, Arizona. In the past, salamanders were collected from a ciénega at Rancho Los Fresnos in the San Rafael Valley, Sonora, and they were likely A. m. stebbinsi. However, surveys during 2006 and 2007 failed to locate additional salamanders, and most waters on the ranch were occupied by non-native bullfrogs, crayfish, green sunfish, and/or black bullhead (FWS 2009).

Summary of Activities Affecting Sonoran Tiger Salamander in the Action Area

The threats identified for the rangewide status of the species are affecting the Sonoran tiger salamander and their habitats in the action area. Managed livestock grazing, road use and maintenance, and other land management actions occur within the action area on Federal and private lands. The majority of lands occupied by the Sonoran tiger salamander are in the Coronado National Forest. Section 7 consultations on the Coronado National Forest lands consider the presence of the salamander and the effects of actions on its status. Because nearly all occupied and potential salamander breeding habitats are used as livestock watering holes, the fate of the salamander is meshed with that of livestock grazing in the San Rafael Valley and adjacent areas. Management actions to maintain or enhance stock tanks that provide salamander habitats in the action area may provide benefits to the species. Grazing allotments that have ponds occupied (currently or
historically) by Sonoran tiger salamander incorporate the “Stock Pond Management and Maintenance Plan” as part of their plan of operations. All of the allotments are largely in Federal ownership (remaining lands are privately owned). Thus, management of grazing on many or most of the private inholdings within the allotments is likely affected by how the public lands are grazed, and as a result, grazing on the private lands within the allotments is likely interrelated and interdependent to grazing on the public lands.

The presence of non-native invertebrates (crayfish), amphibians (barred tiger salamanders, bullfrogs), fish (largemouth bass, green sunfish, bluegill, and mosquitofish) in the action area poses a continuing threat to the salamander through predation or competition for limited resources in the small tanks that support the species. The sources of these non-native species include both past illegal or inadvertent transport events and past legal stockings of the species into tanks or fishing waters. Illegal use of barred tiger salamanders for bait, and, the subsequent release of live individuals into the lake or tanks in the vicinity allows for hybridization and the spread of ATV.

Drought affects the sustainability of breeding tanks which must retain water long enough to allow young salamanders to reach the size needed to metamorphose. The status of the salamander, particularly regarding the continuing threat of hybridization, is of significant concern.

Possibly the greatest threat to terrestrial salamander populations is fire. Degradation of watershed condition immediately after fires can result in dramatically increased runoff, sedimentation, and debris flow that can scour aquatic habitats in canyon bottoms or bury them in debris (DeBano and Neary 1996). In degraded watersheds, less precipitation is captured and stored, thus perennial aquatic systems downstream may become ephemeral during dry seasons or drought (Rinne and Neary 1996). Fire could result in degradation of the immediate watershed around a pond, and result in erosion, sedimentation, and ash flow into the pond. Erosion and increased runoff could bury or flood burrows, burrow entrances, rock shelters, or other cover sites. Fire may also reduce surface cover such as logs and debris, resulting in reduced invertebrate populations and reduced prey densities for salamanders (FWS 1999b). Reduced cover may also result in heating and dessication of moist cover sites that salamanders require. Grazing immediately after a fire can retard recovery of grasses and other plants, and facilitate erosion of slopes through hoof action and reduced vegetation cover. Erosion in the watersheds of occupied breeding sites could contribute to sedimentation or erosion of tanks and loss of habitat.

If aquatic populations of salamanders are eliminated due to disease, ash flow, increased turbidity, or collection, but the habitat remains suitable (i.e. the tank is not silted in or erodes away, and fish are not introduced), the tank is likely to be recolonized by terrestrial salamanders. As a result, effects of the action that result in destruction of breeding sites or introduction of non-native predators are much more serious to the viability of the species than death or injury of individuals.

EFFECTS OF THE ACTION

Effects of the action refer to the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated and interdependent with that action that will be added to the environmental baseline. Interrelated actions are those that are part of
a larger action and depend on the proposed action for their justification. Interdependent actions are those that have no independent utility apart from the action under consideration. Indirect effects are those that are caused by the proposed action and, are later in time, but are still reasonably certain to occur.

There are no interrelated or interdependent actions that are part of the TIMR Program and that are dependent upon the TIMR Program for justification or have no independent utility apart from the TIMR Program. Ongoing and planned CBP activities in southern Arizona to secure the international border have independent utility from the Program and would continue, although in many cases less efficiently, regardless of implementation of the TIMR Program. Ongoing maintenance activities that are not considered in this BO, including operation of existing maintenance facilities and equipment used for those activities, also have independent utility from the TIMR Program and are not dependent upon it for justification. Thus, this BO only considers the direct, indirect, and cumulative impacts of TIMR Program activities in the description of the proposed action.

The proposed action would result in potential direct effects, as well as indirect effects on Sonoran tiger salamanders. There are currently up to 10 miles of road included in the proposed action that are within the range of the species. Maintenance and repair activities would be conducted within and immediately adjacent to the footprint of existing tactical infrastructure and BMPs would be implemented to minimize the potential for direct and indirect impacts. However, TIMR Program activities conducted within the upstream drainages of suitable stock tank habitat may affect the Sonoran tiger salamander and its habitat if BMPs are not effective in eliminating or reducing sediment that could enter these stock tanks. Monitoring would be conducted to reduce the possibility of this species being harmed during TIMR Program activities, and to determine the effectiveness of BMPs.

Disturbance to Sonoran Tiger Salamander – Direct Effects

Potential direct impacts on this species include habitat degradation (discussed below) and the risk of direct injury or mortality from repair and maintenance activities. Direct injury, mortality, or behavioral changes could occur if adult Sonoran tiger salamanders disperse into areas being maintained or repaired. To minimize the possibility that Sonoran tiger salamanders are harmed, in-water work within the range of this species will occur during periods of low or no flow (Sonoran Tiger Salamander BMP #2 - This BMP may conflict with Chiricahua leopard frog BMP #2. In areas where there is overlap between Sonoran tiger salamander and Chiricahua leopard frog ranges, CBP will base TIMR Program activity implementation on the species most likely to occur in the area and on the potential for effects to either species). A qualified biologist will monitor all ground-disturbing maintenance activities and use of heavy equipment that occurs within 0.1 mile of Sonoran tiger salamander suitable habitat (i.e., cattle ponds and tanks with standing water) (Sonoran Tiger Salamander BMP #1). This monitoring will occur for all maintenance and repair activities to be conducted in vegetated or undisturbed areas, or in proximity to stock tanks. If a salamander is found in the project area and is in danger of being harmed, work will cease in the area of the species until either the qualified biological monitor can safely move the individual to a nearby location or the salamander moves away on its own. Additionally, to avoid direct mortality from vehicles, maintenance vehicles and equipment will be operated during daylight hours and at speeds of 25 mph.
or less within 0.3 miles of Sonoran tiger salamander habitat during the breeding season (January through June) (Sonoran Tiger Salamander BMP #5 and 6).

As mentioned above, direct affects will be minimized by conducting maintenance and repair activities under specific conditions. Conducting in-water work during those periods of low or no flow and monitoring for the presence of these species during maintenance activities would reduce, but not eliminate the possibility that Sonoran tiger salamanders or their stock tank habitats would be harmed during maintenance and repair activities.

Disturbance to Sonoran Tiger Salamander – Indirect Effects

Potential indirect impacts on this species include increased sedimentation in aquatic habitat, introduction of non-native invasive species, and the spread of diseases (especially ATV). The indirect effects to Sonoran tiger salamander will be minimized by the implementation of a number of measures to prevent habitat loss and degradation, including preventing sedimentation (see discussion below). To prevent the spread of amphibian diseases among drainages via water or mud on maintenance vehicles and equipment, all maintenance work within known, occupied Sonoran tiger salamander habitat shall conform to amphibian disease prevention protocols as described in the recovery plan for this species (FWS 2002). Equipment would either be disinfected between uses at different sites or rinsed and air dried. By implementing BMPs to avoid the spread of diseases (Sonoran Tiger Salamander BMP #7, General BMPs #8 and 9) the potential for adverse indirect effects on Sonoran tiger salamander would be minimized.

Habitat Loss and Degradation-Direct Effects

Maintenance activities could alter the quality of surface water within the maintenance area and downstream. However, impacts on water quality would be localized and temporary and BMPs would be implemented to reduce sedimentation and runoff from roads and other infrastructure and minimize other potential indirect effects on this species. To avoid affecting habitat, maintenance will be designed and implemented so that the hydrology of streams, ponds, and other habitat is not altered (Sonoran Tiger Salamander BMP #2). Direct effects to habitat will be minimized because vegetation clearing will not occur in suitable habitat within the range of Sonoran tiger salamander (per General BMP #3). If vegetation clearing in suitable habitat needs to occur within the project area, then further consultation with FWS will be required. Additionally, clearing of riparian vegetation will not occur within 100 feet of aquatic habitats to provide a buffer area to protect the habitat from sedimentation (Vegetation BMP #13 and Wildlife BMP #3). To minimize impacts from habitat degradation due to sedimentation and effects on water quality and quantity, a site-specific SWPPP and a spill protection plan will be prepared and regulatory approval will be sought as required by regulations, for maintenance and repair activities that could result in sedimentation and that occur within 0.3 miles of suitable habitat (Sonoran Tiger Salamander BMP #3). This will include, but is not limited to, placing straw bale type sediment traps at the inlet of ponds or stock tanks and upstream of drainages known to be occupied by the species or within critical habitat of the species. General BMPs to protect water resources will also be implemented. In addition, CBP or their contractors will conduct monitoring of suitable Sonoran tiger salamander habitat at and
downstream of work sites following the first major precipitation event after the activity has been completed. This monitoring will ensure that the BMPs have functioned properly.

By conducting in-water maintenance and repair activities during specified periods and ensuring that the hydrology of their habitat is not altered, adverse direct effects on the habitat of Sonoran tiger salamanders should be avoided or reduced. Nevertheless, minor and temporary alteration of habitat would occur during some maintenance and repair activities, which may affect the species.

Habitat Loss and Degradation – Indirect Effects

Maintenance of roads would occur within or immediately adjacent to existing tactical infrastructure. To avoid affecting habitat, maintenance will be designed and implemented so that the hydrology of streams, ponds, and other habitat is not altered. Indirect effects to habitat from sedimentation at aquatic sites and introduction of non-native invasive species could result in habitat loss or degradation which may affect Sonoran tiger salamander. Maintenance and repair of access roads near currently or future occupied salamander habitats may result in erosion and sedimentation into those habitats, or improve access for the public or others who may introduce non-native predators or disease, collect salamanders, start fires, or otherwise degrade habitats (NPS 2012, Watson 2005). CBP or their contractors will conduct monitoring of suitable Sonoran tiger salamander habitat at and downstream of work sites following the first major precipitation event after the activity has been completed. This monitoring will ensure that the BMPs have functioned properly.

Non-native plants often thrive in disturbed areas (Tellman 2002); hence, TIMR activities could encourage the spread and establishment of these plants. Many non-native plants, such as Lehmann lovegrass, carry fire better and often burn hotter than the native plants (Bock and Bock 2002, Esque and Schwalbe 2002). As a result, the proposed action has the potential to increase fire frequency and intensity via spread of non-native plants. Fire can result in temporary watershed degradation and increased sedimentation and ash flow into Sonoran tiger salamander habitats. Sediments can fill in aquatic habitats (Wallace 2003) and ash flow can create toxic conditions (Spencer and Hauer 1991). We believe that effects to Sonoran tiger salamanders from fire and invasive species as a result of the TIMR Program are unlikely, due to implementation of the BMPs as described below.

The potential for indirect effects to habitat is much reduced or eliminated by implementing BMPs to reduce sedimentation and runoff from roads and other infrastructure. Other BMPs that minimize potential effects on amphibian habitat include avoiding the spread of non-native invasive species (Vegetation BMPs #2 and 10, General BMP #8), and conducting periodic inspection and maintenance to minimize erosion and other adverse conditions (Vegetation BMP #12). Clearing of riparian vegetation will not occur within 100 feet of aquatic habitats to provide a buffer area to protect the habitat from sedimentation (Wildlife BMP #3). To minimize impacts from habitat degradation due to sedimentation and effects on water quality and quantity, a site-specific SWPPP will be prepared and regulatory approval sought, as required by regulations, for maintenance and repair activities that could result in sedimentation and that occur within 0.3 miles of suitable habitat within the range of this species (Sonoran Tiger Salamander BMP #3). This will include, but is not limited to, placing straw bale-type sediment traps at the inlet of ponds or stock tanks known to be occupied by the species. General BMPs listed in the description of the proposed action to protect
water resources will also be implemented (General BMPs #7-9, Water Resources BMPs #1-25, Geology and Soil Resources BMPs #1-4, Sonoran Tiger Salamander BMP #2 and 4). To monitor for delayed indirect effects to habitat, CBP will conduct an additional monitoring visit (by a permitted biologist) in areas where maintenance and repair activities take place the within 0.3 miles of the known occupied habitat following the first significant precipitation event after completion of the TIMR Program activity to determine the effectiveness of BMPs implemented (Conservation Measure #3). By implementing BMPs to avoid sedimentation, and by conducting follow up monitoring in the vicinity of occupied habitat, the potential for adverse indirect effects on Sonoran tiger salamander habitat would be minimized.

CUMULATIVE EFFECTS

Cumulative effects include the effects of future State, Tribal, local, or private actions that are reasonably certain to occur in the action area considered in this BO. Future Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the Act.

Federal agencies manage much of the land in the project area, particularly the Coronado National Forest, Fort Huachuca, and the Coronado National Memorial. Thus, most of the actions that are reasonably expected to occur in the project area that may adversely affect the Sonoran tiger salamander would be subject to future section 7 consultations. However, some occupied breeding localities are on private lands or state lands in the center of the San Rafael Valley. Compliance with the ESA for activities on private lands that may result in incidental take of the Sonoran tiger salamander, but are not addressed by section 7 consultation, could occur through section 10(a)(1)(B) of the ESA. Some activities on private lands may require permits or funding from federal agencies; consequently section 7 consultations would be required. These private lands are used primarily for grazing, but potentially could be used for other purposes. Effects from the current use of lands for grazing could result in improper livestock grazing on private range land leading to degraded cover habitat for terrestrial Sonoran tiger salamanders, degraded water quality for aquatic larvae and branchiate adults, and trampling of various life stages by cattle. Other land uses that could be implemented on private land include: housing subdivisions, oil and gas pipelines, mining, agriculture, and division into ranchettes. The largest private parcel in the center of the valley (San Rafael Ranch) is covered by a conservation easement that prohibits most of these activities. In addition, there is the potential for anglers on private land to collect salamanders as bait or contribute to the spread of non-native predators, although these activities are prohibited by state law. Furthermore, anglers may contribute to the spread of disease on private lands by moving contaminated bait or equipment between aquatic sites.

Additional cumulative impacts to the Sonoran tiger salamander may result from cross-border activities along the U.S./Mexico border. Cross-border activities include, but may not be limited to the following: human traffic, deposition of trash, new trails from human traffic, soil compaction and erosion, increased fire risk from human traffic, water depletion and contamination, introduction and spread of disease, and interference with survey, monitoring, and research efforts.
CONCLUSION

The conclusions of this BO are based on full implementation of the project as described in the Description of the Proposed Action section of this document, including the BMPs and CMs that are incorporated into the project design. After reviewing the current status of the Sonoran tiger salamander, the environmental baseline for the action area, the effects of the proposed activities, and cumulative effects, it is the FWS's biological opinion that the proposed action is not likely to jeopardize the continued existence of the Sonoran tiger salamander. Pursuant to 50 CFR 402.02, to “jeopardize the continued existence of” means to engage in an action that reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of both survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of that species. No critical habitat has been designated for the species; therefore, none will be affected. Our conclusion is based on our discussion in this document found in the “Effects of the Action” section above, and the following:

1. During the consultation for the proposed action, FWS and CBP jointly developed a set of BMPs and CMs for the Sonoran tiger salamander which became part of the proposed action and which will avoid, minimize, or offset anticipated adverse effects to the Sonoran tiger salamander and its habitat.
2. TIMR Program activities will primarily occur within the existing footprint of the tactical infrastructure and, as a result, minimal areas of additional habitat disturbance will occur.
3. CBP’s process for implementing proposed maintenance and repair activities will promote the avoidance and minimization of effects to the Sonoran tiger salamander and its habitat.
4. Monitoring will allow the CBP and FWS to determine the effectiveness of the BMPs and CMs in reducing adverse effects to the Sonoran tiger salamander and its habitat.
5. CBP will provide project implementation information in an annual report to the FWS indicating that the activities completed under the proposed action were implemented as proposed.

INCIDENTAL TAKE STATEMENT

Section 9 of the Act and Federal regulation pursuant to section 4(d) of the Act prohibits the take of endangered and threatened species, respectively, without special exemption. “Take” is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. “Harm” is defined to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering (50 CFR 17.3). “Harass” is defined as intentional or negligent actions that create the likelihood of injury to listed species to such an extent as to significantly disrupt normal behavior patterns which include, but are not limited to, breeding, feeding or sheltering (50 CFR 17.3). “Incidental take” is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the Act provided that such taking is in compliance with the terms and conditions of this Incidental Take Statement.
The measures described below are non-discretionary, and must be undertaken by CBP so that they become binding conditions of any grant or permit issued to the (applicant), as appropriate, for the exemption in section 7(o)(2) to apply. CBP has a continuing duty to regulate the activity covered by this incidental take statement. If CBP (1) fails to assume and implement the terms and conditions or (2) fails to require any applicant, contractor, or permittee to adhere to the terms and conditions of the incidental take statement through enforceable terms that are added to the contract, permit, or grant document, the protective coverage of section 7(o)(2) may lapse. In order to monitor the impact of incidental take, CBP must report the progress of the action and its impact on the species to the FWS as specified in the incidental take statement. [50 CFR ’402.14(i)(3)].

AMOUNT OR EXTENT OF TAKE

Incidental take of the Sonoran tiger salamander is reasonably certain to occur from the continued implementation of the TIMR Program. We anticipate incidental take as a result of this proposed action in the form of harm resulting from the increased flow of sediment into occupied habitats due to proposed activities conducted within or upstream of stock tanks and other suitable aquatic habitat. For example, individuals may be harmed through changes in the water chemistry, or as a result of heavy sediment deposits covering eggs and clogging gills. Take of Sonoran tiger salamanders could also occur through direct mortality or harm from trampling (human or machine), and harm and/or harassment through habitat modification (e.g., as a result of maintenance and repair along roads and/or the transmittal of disease). While we believe that the proposed BMPs and CMs will effectively reduce this potential for take, there is some potential for take to occur if measures implemented to reduce sedimentation are not effective.

As stated previously, the Sonoran tiger salamander is known from 71 localities, although not all are currently occupied and some probably do not represent breeding sites. The FWS expects that numbers and locations of occupied ponds will vary from year to year depending upon disease outbreaks, drought, and other factors. However, in the long-term, we anticipate no decline in habitat. We believe that we cannot measure the number of salamanders taken as a result of this TIMR Program because they are difficult to find. Therefore, the FWS defines incidental take in terms of the condition and number of Sonoran tiger salamander ponds, and is using this surrogate measure to identify when take has been exceeded. Take of this species can be anticipated if visual inspection determines that BMPs designed to control erosion have not been effective and, as a result, visual confirmation determines that more than approximately half of the bottom of an occupied tank, pond or pool is covered by fresh silt, as a result of TIMR activity, following the first major precipitation event after project implementation has been completed. Visual inspections are included as a conservation measure above and will be scheduled and conducted by CBP or their contractors within 7 days of the first significant precipitation event following TIMR activities, and any such sedimentation will be reported to FWS within 5 days. Such deposits are directly related to habitat modifications and indicative of a sedimentation event significant enough that, if exceeded, will constitute an unacceptable impact to occupied habitat and individual Sonoran tiger salamanders. We anticipate take of this type to occur once every five years for the duration of the TIMR Program.
During the visual inspections described above, CBP or their contractors will also conduct visual inspections for any dead or dying Sonoran tiger salamanders within the water bodies inspected. Any such loss of salamanders will be reported to the FWS within 5 days.

EFFECT OF THE TAKE

In this biological opinion, the FWS determines that this level of anticipated take is not likely to result in jeopardy to the species.

REASONABLE AND PRUDENT MEASURES AND TERMS AND CONDITIONS

A comprehensive suite of BMPs and CMs have been incorporated into the proposed action for the TIMR Program. These conservation measures generally and specifically require CBP to reduce effects to the Sonoran tiger salamander and habitat. No additional reasonable and prudent measures are necessary to minimize incidental take.

If mortality or injury of any Sonoran tiger salamander is detected, the instructions provided below under “Disposition of Dead or Injured Listed Species” will be followed. In addition, CBP must report activities implemented under the TIMR Program, including the outcome of any monitoring, as well as any potential take of this species, in its annual report to FWS.

Review requirement: Because FWS has determined that no Reasonable and Prudent Measures or Terms and Condition are required beyond the measures outlined in the Proposed Action above, it is imperative that CBP implement the BMPs and CMs described above, including the required monitoring and reporting. If, during the course of the proposed action, the level of incidental take is exceeded, such incidental take would represent new information requiring review of the proposed action, potentially through reinitiation of section 7 consultation as described below in the Reinitiation Notice.

CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the Act directs Federal agencies to use their authorities to further the purposes of the Act by carrying out conservation programs for the benefit of listed species. Conservation recommendations are discretionary agency activities to avoid or minimize effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information on listed species. The FWS recommends the following conservation activities:

1. CBP is encouraged to participate in the implementation of the Sonoran tiger salamander Recovery Plan.

2. CBP is encouraged to support the implementation of, and/or help fund studies of vectors of disease transmission, salamander metapopulation dynamics, distribution of the *mavortium* genome in the San Rafael Valley, the movements and habitat use of terrestrial salamanders, and other topics that may improve our understanding of the conservation and recovery needs of the Sonoran tiger salamander.
In order for the FWS to be kept informed of actions avoiding or minimizing adverse effects or benefiting listed species or their habitats, the FWS requests notification of the implementation of any conservation recommendations.

Please note that surveys for Sonoran tiger salamander that involve capture or take require appropriate permits from the FWS and AGFD.

PIMA PINEAPPLE CACTUS

STATUS OF THE SPECIES

Description, Legal Status, and Recovery Planning

The Pima pineapple cactus (Coryphantha scheeri var. robustispina; PPC) is a low-growing, hemispherical plant known from the semi-desert grassland and Sonoran desert scrub of southern Arizona and northern Mexico. Pima pineapple cacti can be single-stemmed, multi-headed, or appear in clusters (FWS 1993). Adults of the species measure 4-18 inches (10-46 centimeters) tall and 3-7 inches (7.5-18 centimeters) in diameter. Spines of the pineapple cactus are very stout, and form clusters consisting of one strong, hooked central spine, and 6-15 straight radial spines (FWS 1993). The spines are initially straw colored, but become black with age. Pineapple cactus flowers are silky yellow in color, and the fruit is green ellipsoid, succulent, and sweet. The PPC occurs on lands of the Tohono O’odham Nation, Arizona State lands, and private lands. The cactus also occurs on Federal lands under management of the BLM, USFS, FWS, and Bureau of Reclamation (Arizona Rare Plant Committee 2001).

Coryphantha scheeri var. robustispina was first collected in 1856 by Mr. A. Schott, from grasslands on the south side of the Baboquivari Mountains in Sonora, Mexico. These plants were originally named Mammillaria robustispina, and subsequently underwent several name changes (FWS 1993). Lyman Benson (1969) published the most recent revision, which split Coryphantha scheeri into three varieties, including the variety robustispina. The PPC is also known as Scheer’s strong-spined cory cactus.

The PPC was listed as endangered on September 23, 1993 (58 FR 49875). The rule became effective on October 25, 1993, and critical habitat was not designated at that time. Factors that contributed to the listing include habitat loss and degradation, habitat modification and fragmentation, limited geographic distribution and species rareness, illegal collection, and difficulties in protecting areas large enough to maintain functioning populations. Biological information was summarized in the proposed and final listing rules. A 5-year review was completed in 2007 and recommended no change to the cactus’s classification as an endangered species (FWS 2007).

The PPC is protected as a “Highly Safeguarded Species” under the Arizona Native Plant Law. The Arizona Native Plant Law may delay vegetation clearing on private property for the salvage of specific plant species within a 30-day period. Although the law prohibits the illegal taking of PPC on State and private lands without a permit for educational or research purposes, it does not provide for protection of plants in situ through restrictions on development activities.
There are two established conservation banks for PPC, one on a private ranch in the Altar Valley and another owned by Pima County which includes areas in both the Altar Valley and south of Green Valley. Nine projects have used the bank to mitigate the loss of Pima pineapple cactus and habitat from residential and commercial development. Pima County and the City of Tucson’s large-scale conservation efforts for this species (Habitat Conservation Plans) are not yet complete, but strategies for PPC conservation will likely include additional conservation banks, acquisition of occupied and suitable Pima pineapple cactus habitat, a revision of both the City and County ordinances dealing with native plant protection, and provisions for the protection of PPC and habitat within subdivisions (FWS 2007).

Life History and Habitat

Pima pineapple cacti grow in alluvial basins and hillsides of semi-desert grasslands and desert scrub. The plant occurs most commonly in open areas on flat ridge tops or areas with less than 10-15 percent slope (FWS 1993). Soils range from shallow to deep, and silty to rocky. In Arizona, the plant is found at elevations between 2,360 ft and 4,700 ft (Phillips et al. 1981, Benson 1982, Ecosphere 1992), in transition zone vegetation characterized as a combination of upland Sonoran Desert scrub and semi-desert grasslands (Brown 1982). Vegetation within this transition zone is dominated by mid-sized mesquite trees, half shrubs (snakeweed, burroweed, and desert zinnia) with patches of native grass and scattered succulents. In Sonora, the cactus reportedly occurs in semi-desert grasslands upslope into oak woodlands, at elevations of 2,300-4,920 ft (Paredes-Aguilar et al. 2000). Several attempts have been made to delineate suitable habitat within the range of PPC (McPherson 2002; RECON Environmental Inc. 2006; FWS, unpublished analysis) with very limited success. As such, we are still unable to determine exact ecological characters to help us predict locations of the cactus or precisely delineate suitable habitat (FWS 2007).

The major pollinator of PPC is *Diadasia rinconis*, a ground-nesting, solitary, native bee. McDonald (2005) found that PPC plants need to be within approximately 900 m (2,970 ft) of each other in order to facilitate effective pollination. PPC plants that are located at distances greater than 900 m from one another become isolated. The species is an obligate outcrosser (not self-pollinating), so it is important for plants to be within a certain distance to exchange pollen with each other. Also, the study found that pollination was more effective when other species of native cacti are near areas that support PPC. The native bees pollinate a variety of cacti species and the sole presence of PPC may not be enough to attract pollinators.

Distribution and Abundance

PPC occurs south of Tucson, in Pima and Santa Cruz Counties, Arizona and adjacent northern Sonora, Mexico. The range of the species extends east from the Baboquivari Mountains, 45 miles to the western foothills of the Santa Rita Mountains; and extends south from Tucson, Arizona, 50 miles to Sonora, Mexico. In Arizona, the PPC is distributed at very low densities throughout both the Altar and Santa Cruz Valleys, and in low-lying areas connecting the two valleys. Because populations are healthier in desert scrub/semi-desert grassland transition zones, conservation within these areas is very important (Roller and Halvorson 1997). However, this important habitat type is
not uniformly distributed throughout the plant’s range. Populations of PPC are patchy, widely dispersed and highly variable in density. The few higher population densities that have been documented range from 6.3-7.5 plants per hectare (ha) [1-3 plants per acre]. Other densities across the majority of the plant’s range vary between one plant per 1.9 ha (4.6 acres) and one plant per 8.5 ha (21 acres) (Mills 1991, Ecosphere 1992, Roller 1996).

As a consequence of its general habitat requirements, considerable suitable habitat for this species appears to exist in Pima and Santa Cruz counties, much of which is unoccupied. PPC occurs at low densities, widely scattered, and sometimes in clumps, across valley bottoms and bajadas. The species can be difficult to detect, especially in dense grass cover. For this reason, systematic surveys are expensive and have not been conducted in much of its range. As a result, location information has been gathered opportunistically, either through small systematic surveys, usually associated with specific development projects, or larger surveys that are typically only conducted in areas that seem highly suited for the species. Furthermore, our knowledge of this species is gathered primarily through the section 7 process; therefore, we only see projects that require a Federal permit or have Federal funding. There are many projects that occur within the range of pineapple cactus that do not undergo section 7 consultation, and we have no information regarding the status or loss of plants or habitat associated with those projects. For these reasons, it is difficult to characterize abundance and population trends for this species. Even with complete data on historical change related to pineapple cactus distribution and abundance, we cannot reliably predict population status due to compounding factors such as climate change, urbanization, and legal and political complexities (McPherson 1995). We do not know if the majority of populations of pineapple cacti can be sustainable under current reduced and fragmented conditions. Thus, there is a need to gather information on limits to the plant’s distribution under current habitat conditions.

Section 7 consultations on development projects have provided us information on 2,705 plants found on approximately 15,217 acres within the range of the PPC (FWS 2011). Of the total number of plants, 1,992 (74 percent) were destroyed, removed, or transplanted as a result of development, mining, and infrastructure projects (FWS 2011). In terms of habitat, some of the measured acres likely did not provide PPC habitat, but that amount is difficult to quantify because it was not consistently delineated in every consultation. Of the 15,217 acres, however, we are aware of 14,552 acres (96 percent) have been either permanently or temporarily impacted. Similarly, through section 7 consultations on non-development-related projects (e.g., fire management plans, grazing, buffelgrass control), we are aware of an additional 781 plants within an unknown number of acres; the number of acres is unknown because these types of projects are often surveyed inconsistently, if at all (FWS 2012).

Across the entire PPC range, it is difficult to quantify the total number of cacti lost and the rate and amount of habitat loss for the following three reasons: 1) we review only a small portion of projects within the range of the cactus (only those that have Federal involvement and are subject to section 7 consultation), 2) development that takes place without any jurisdictional oversight is not tracked within Pima and Santa Cruz counties, and 3) many areas within the range of the cactus have not been surveyed; therefore, we do not know how many plants exist, nor how much habitat is presently
available. It is important to note that the above survey results have never been used as an estimate of the entire PPC population, nor was a population estimate ever extrapolated from these data (FWS 2007).

The AGFD maintains the Heritage Data Management System (HDMS), a database identifying elements of concern in Arizona and consolidating information about their distribution and status throughout the state. This database has 7,155 PPC records, 7,015 PPC of which have coordinates. Some of the records are quite old, and we have not confirmed whether the plants are still alive. We also cannot determine which plants may be the result of multiple surveys in a given area. Of the known individuals (7,155), approximately 1,739 PPC plants are documented in the database as extirpated as of 2008. There have been additional losses since 2008, but that information is still being compiled in the database. However, in general, recent reports indicate a continued loss of known PPC individuals. The database is dynamic, based on periodic entry of new information, as time and staffing allows. As such, the numbers used from one biological opinion to the next may vary and should be viewed as a snapshot in time at any given moment. We have not tracked loss of habitat because very few biological assessments quantify habitat for PPC.

Based on surveys and habitat analysis, areas south of Tucson through the Santa Cruz Valley to the town of Amado and surrounding developed parts of Green Valley and Sahuarita, and parts of the San Xavier District of the Tohono O’odham Nation, appear to support abundant populations and some recruitment, and units of extensive habitat still remain. However, the primary threat to the status of this species throughout its range is the accelerated rate (since 1993) at which much of the prime habitat is being developed, fragmented, or modified. The Altar Valley has not seen the development pressures that have been seen in the rest of this species’ range, and the majority of the habitat in this valley remains intact. Surveys related to prescribed fire projects and research activities have continued to provide information on the status of this species in this part of its range.

The protection of habitat and individuals is complicated by the varying land ownership within the range of this species. An estimated 10 percent of the potential habitat for pineapple cacti is held in Federal ownership. The remaining 90 percent is on Tribal, State, and private lands. Most of the federally-owned land is either at the edge of the plant’s range or in scattered parcels. The largest contiguous piece of federally-owned land is the Buenos Aires National Wildlife Refuge, located at the southwestern edge of the plant’s range at higher elevations and lower plant densities.

Threats

Threats to PPC continue to include habitat loss and fragmentation, competition with non-native species, and inadequate regulatory mechanisms to protect this species. We believe residential and commercial development, and its infrastructure, is by far the greatest threat to PPC and its habitat. The cactus has continued to experience declines throughout most of its range because of the loss of habitat and individuals due to residential and commercial development in the Santa Cruz River Valley, the lands south of Tucson and along the corridor north and south of State Route 86. Most of the documented habitat loss has occurred south of Tucson through the Santa Cruz Valley to the town of Amado. This area is critical for the future recovery of the species. The expansion of urban
centers, human population, and mining activities will continue to eliminate habitat and individuals, and result in habitat fragmentation.

Other specific threats that have been previously documented (58 FR 49875), such as overgrazing, illegal plant collection, prescribed fire, and mining, have not yet been analyzed to determine the extent of effects to this species. However, partial information exists. Mining has resulted in the loss of hundreds, if not thousands, of acres of potential habitat throughout the range of the plant. Much of the mining activity has been occurring in the Green Valley area, which is the center of the plant’s distribution and the area known to support the highest densities of pineapple cactus. Overgrazing by livestock, illegal plant collection, and fire-related interactions involving exotic Lehmann’s lovegrass (*Eragrostis lehmanniana*) may also negatively affect pineapple cactus populations (58 FR 49875). Based on current knowledge, urbanization, farm and crop development, and exotic species invasion alter the landscape in a manner that would be nearly irreversible in terms of supporting PPC populations.

ENVIRONMENTAL BASELINE

Regulations implementing the Act (50 CFR § 402.02) define the environmental baseline as the past and present impacts of all Federal, state, or private actions in the action area; the anticipated impacts of all proposed Federal actions in the action area that have undergone formal or early section 7 consultation; and the impact of state and private actions which are contemporaneous with the consultation process. The environmental baseline defines the current status of the species and its habitat in the action area to provide a platform from which to assess the effects of the action now under consultation.

Status of the Pima Pineapple Cactus in the Action Area

Sites suitable for PPC (elevations between 2,360 and 4,700 ft in areas at less than 10 to 15% slope) occur throughout the action area. While wide-ranging survey data are lacking, the species is known from several localities in which TIMR Program activities will occur, including the Altar and Santa Cruz River Valleys, and the plains and bajadas surrounding the mountains bordering those valleys. The action area encompasses a 14- to 50-mile-wide corridor extending north of the U.S./Mexico international border, plus the location of the road north of Three Points, and is a subset of the broader range of the PPC (see Figure 10). The action area encompasses over half of the known range of the PPC, and no systematic inventory of PPC individuals has taken place in the TIMR action area. According to the BA, NatureServe data indicate that within the action area, PPC are known to occur within the boundaries of Amado, Cerro Colorado, Fresno wash, Kino Springs, Las Guijas, Mildred Peak, Palo Alto Ranch, Presumido Peak, and Wilbur Canyon USGS topographic quadrangle maps (2011). Figure 10 depicts the TIMR proposed action area and infrastructure relative to the range of PPC. Approximately 275 - 300 miles of roads will be repaired or maintained in PPC habitat, along with 5 - 20 towers, 1 - 10 culverts, and 1 - 10 low water points. Due to the relatively wide distribution of this species in the action area, the condition of the habitat where project activities will occur is likely varied. The area encompassed by the proposed action occupies an appreciable proportion of the range of the species in the U.S. and, therefore, the species’ status in the action area is similar to the rangewide status.
Summary of Activities Affecting Pima Pineapple Cactus in the Action Area

Our information indicates that, rangewide, more than 45 consultations have been completed or are underway for actions affecting the Pima pineapple cactus. The majority of these biological opinions concerned the effects of development (approximately 38 percent), utility infrastructure (approximately 15 percent), prescribed fire plans (approximately 12 percent), and roads and bridges (approximately 8 percent). The remaining 42 percent of consultations dealt with grazing, mining, and agency planning issues.

The area of habitat reviewed under section 7 of the ESA in approximately 26 consultations between 1987 and 2000 (i.e., habitat developed or significantly modified beyond the point where restoration would be a likely alternative) is approximately 24,429 acres, which represents 43 percent of the total area surveyed to date. While some of these sites occur outside of the TIMR action area, the information is useful in understanding the importance of the remaining PPC populations within the action area for TIMR. For example, in 1998, more than 1,100 acres of pineapple cactus habitat were lost, including 752 acres from the ASARCO, Inc. Mission Complex mining project. In 2000, 586 acres of habitat were lost with the expansion of a state prison in Tucson. In 2001, 177 acres of habitat were lost through development, but 888 acres of occupied and suitable habitat were conserved through conservation easements. In 2002-2003, 76.5 acres of occupied habitat were destroyed, but 36 acre-credits were purchased in the pineapple cactus conservation bank, thus protecting 36 acres of pineapple cactus habitat, and an additional 58.5 acres of pineapple cactus habitat were conserved in a conservation easement. We are aware of housing developments along Valencia Road, Pima County, Arizona, in the vicinity of T15S, R12E, Section 15 and surrounding areas, which support pineapple cacti. In addition, residential development has continued, although at a slower rate than historically, in the Corona de Tucson area in the southeastern portion of the Tucson Basin. These developments affect several hundred acres of habitat and have not been evaluated through the section 7 process. The number of acres lost through private actions, not subject to Federal jurisdiction, is not known but, given the rate of urban development in Pima County, we believe it is significant. Livestock grazing and unauthorized off-road vehicle activity may also be affecting PPC within the action area.

Much of the potential PPC habitat in the action area is subject to intense use by CBVs and law enforcement response by the USBP. The FWS has observed many new roads, vehicle tracks, footpaths, and illegal dumping of trash in areas on Arizona State lands and at Buenos Aires National Wildlife Refuge (BANWR), where larger areas of suitable habitat for PPC exist (personal communication with Dan Cohan, Biologist with BANWR). Areas of TIMR infrastructure that are adjacent to these lands are probably being used in a similar manner. These activities are contributing to overall habitat degradation and may be facilitating the movement of non-native species (e.g., buffelgrass, Lehmann’s lovegrass) into desert scrub and semi-desert grassland communities that support PPC.

In summary, monitoring has shown that the range-wide status of the pineapple cactus appears to have been recently affected by threats that have completely altered or considerably modified more than a third of the species’ surveyed habitat, and have caused the elimination of nearly 60 percent of
documented locations. Dispersed, patchy clusters of individuals are becoming increasingly isolated as urban development, mining, and other commercial activities continue to detrimentally impact the habitat. The remaining habitat also is subject to degradation or modification from current land-management practices, increased recreational use on lands when adjacent to urban expansion (i.e., off-road vehicle use and illegal collection), and the continuing aggressive spread of non-native grasses into pineapple cactus habitat. Although there has been a recent slowdown in the development of residential and commercial properties, habitat fragmentation and degradation will likely continue into the foreseeable future based on historical data and growth projections produced by the Pima County Association of Governments (1996). There is very little Federal oversight on conservation measures that would protect or recover the majority of the potential habitat. Even some areas where section 7 consultations have been completed have been modified and may not be able to support viable populations of the pineapple cactus over the long-term. There is some hope that County-level habitat conservation plans will contribute to the conservation of the PPC, but these planning efforts have not yet been completed or implemented.

EFFECTS OF THE ACTION

Effects of the action refer to the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated and interdependent with that action that will be added to the environmental baseline. Interrelated actions are those that are part of a larger action and depend on the proposed action for their justification. Interdependent actions are those that have no independent utility apart from the action under consideration. Indirect effects are those that are caused by the proposed action and, are later in time, but are still reasonably certain to occur.

There are no interrelated or interdependent actions that are part of the TIMR Program and that are dependent upon the Program for justification or have no independent utility apart from the TIMR Program. Ongoing and planned CBP activities in southern Arizona to secure the international border have independent utility from the TIMR Program and would continue, although in many cases less efficiently, regardless of implementation of the TIMR Program. Ongoing maintenance activities that are not considered in this BO, including operation of existing maintenance facilities and equipment used for those activities, also have independent utility from the TIMR Program and are not dependent upon it for justification. Thus, this BO only considers the direct, indirect, and cumulative impacts of TIMR Program activities in the description of the proposed action.

We do not know specifically if and where the following effects to cacti will occur because we do not have specific information on their location within the action area, but cacti will likely be affected to some degree. Maintenance and repair activities could affect PPC through trampling or crushing of individuals and altering the habitat around individuals. Trampling or crushing that results in injury or death to an individual PPC could occur, but we anticipate that this would not be a common occurrence because individuals and small clumps are scattered and rare and TIMR Program activities will occur primarily within the existing footprint of the tactical infrastructure. Habitat conditions may be altered through proposed activities by decreasing cover, increasing soil compaction, destruction of cryptobiotic crusts, increasing erosion, and increasing non-native grasses and other
plants (with changes in fire frequency and intensity). These effects may decrease the suitability of a site to maintain cacti in the long-term.

Disturbance to Pima Pineapple Cactus – Direct Effects

Potential direct impacts on PPC individuals from maintenance and repair activities include direct injury and mortality from trampling or crushing by equipment, alteration of the plant seed bank, and habitat degradation from disturbance of soils. Although most maintenance and repair activities will be conducted within previously disturbed areas, some activities will need to be conducted in areas immediately adjacent to the existing infrastructure footprint. For example, equipment might need to be operated off of existing roads to remove debris from culverts and fences and to otherwise access and maintain infrastructure. There may be an occasion where CBP might need to conduct maintenance and repair activities outside the footprint of tactical infrastructure in an area where PPC occur. However, activities outside of the existing footprint of tactical infrastructure would occur very infrequently; thus, the proposed action would result in limited direct effects on PPC. Because some individual cacti might be destroyed during that work, the proposed project may affect and is likely to adversely affect PPC. The proposed CM for the PPC indicates that CBP will compensate for any lost PPC habitat or individuals by purchasing credits in an approved PPC conservation bank.

In general, CBP will avoid direct and indirect impacts on PPC by allowing no ground disturbance outside the existing infrastructure footprint in known habitat for this species without offsetting such impacts by purchasing credits in an existing PPC conservation bank. By generally avoiding suitable habitat where these protected plants occur, the proposed project has a reduced likelihood that it would harm individual plants, cause habitat degradation, or otherwise directly adversely affect PPC.

Disturbance to Pima Pineapple Cactus – Indirect Effects

Potential indirect impacts include increased erosion and sedimentation from alterations in hydrology, and increased potential for invasive species and fire. Based on the implementation of BMPs designed to avoid or reduce impacts on this species, these impacts would be extremely unlikely to occur.

Habitat Loss and Degradation-Direct Effects

Potential direct impacts on PPC include habitat degradation from disturbance of soils. To avoid these effects, as well as habitat degradation from removal of canopy cover, vegetation clearing (i.e., removal of vegetation to maintain line of sight for CBP operations or remove CBV hiding locations from areas where vegetation has not been previously cleared) will not be conducted within suitable PPC habitat unless absolutely necessary, in which case habitat impacts will be offset through acquisition of credits in a PPC mitigation bank as described below.

PPC are habitat generalists that are found over a relatively large portion of southern Arizona and, as a consequence, they can be found throughout a substantial portion of the action area. It is therefore possible that some maintenance and repair activities would need to be conducted outside of the footprint of existing tactical infrastructure in an area where this species occurs. To mitigate for the loss of PPC, CBP will purchase, from a conservation bank approved by the FWS Arizona Ecological
Services Office, one credit for each acre of suitable habitat lost. Because almost all maintenance and repair activities would be conducted from existing roads and other disturbed areas, and disturbances outside of existing footprints would be required very infrequently, we anticipate that CBP would need to acquire credits in the conservation bank on a very limited basis.

Habitat Loss and Degradation – Indirect Effects

Maintenance activities that compact soils and change water infiltration could alter local hydrology by increasing sedimentation and runoff in suitable PPC habitat. BMPs will be implemented to reduce sedimentation and runoff from roads and other infrastructure and minimize other potential indirect effects to this species. A SWPPP will be prepared and implemented prior to applicable maintenance activities (i.e., disturbances greater than 1 acre of exposed dirt or as required by the property owner or land manager). BMPs described in the SWPPP to reduce erosion will be implemented. CBP will consider areas with highly erodible soils when planning the maintenance activities and will require the use of measures such as waddles, aggregate materials, and wetting compounds where appropriate. Tactical infrastructure will be periodically inspected for the presence of erosion, and repair and maintenance will be implemented as necessary.

Recently disturbed soils can have an increased potential for invasive species such as Lehman’s lovegrass and Boer lovegrass (*Eragrostis curvula*) to become established. These and other invasive species tend to form dense stands that promote higher intensity fires that occur more often (FWS 2007). However, coordination with the CBP environmental SME would be conducted in order to determine if the maintenance activities occur in a highly sensitive area or an area that poses an unacceptable risk of transmitting invasive species. If it is determined that maintenance activities occur in such an area, the CBP cleaning protocol for all equipment will be followed. In addition, a fire prevention and suppression plan will be developed and implemented for all maintenance and repair activities that require welding or otherwise have a risk of starting a wildfire.

By implementing BMPs to reduce sedimentation and runoff, and by reducing the potential for invasive species and fire, the proposed action should avoid or reduce potential effects on threatened and endangered perennial plant species, including the PPC.

CUMULATIVE EFFECTS

Cumulative effects include the effects of future State, Tribal, local, or private actions that are reasonably certain to occur in the action area considered in this BO. Future Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the Act.

The majority of PPC habitat occurs on Arizona State lands, some of it adjacent to Federal lands within and outside of the action area. State lands are managed primarily for income to the State Trust and ultimately may be sold for development or other purposes. Urban development is the primary threat to the species and causes loss of individuals and fragmentation of populations, especially populations that exist on different land ownerships. Off-road vehicle use also occurs on State land and illegally on BLM lands. This activity, often unsupervised, contributes to habitat
degradation and loss of plants. Erosion, leading to the formation of gullies and headcuts, can form on adjacent State lands and spread onto Federal lands. Livestock grazing on State and private lands, if not properly managed, can contribute to PPC habitat degradation. Trail creation and use, off-road driving, and trash dumping associated with undocumented CBV traffic and associated law enforcement response has been observed in PPC habitat. These actions increase the likelihood of directly affecting individual cacti, compacting soil, and increasing the likelihood of wildfire. Trails may act as vector points for the movement of invasive species into PPC habitat. Illegal collection of this cactus is an additional threat with cumulative effects.

CONCLUSION

The conclusions of this BO are based on full implementation of the project as described in the Description of the Proposed Action section of this document, including the BMPs and CMs that are incorporated into the project design. After reviewing the current status of PPC, the environmental baseline for the action area, the effects of the TIMR Program, and the cumulative effects, it is the FWS's biological opinion that the project, as proposed, is not likely to jeopardize the continued existence of the PPC. No critical habitat has been designated for this species; therefore, none will be affected. We base this conclusion on the following reasons:

1. Maintenance and repair work will be generally confined to the existing, disturbed footprint of the tactical infrastructure described above. These areas would not typically be occupied by PPC. The only anticipated TIMR Program activities outside of the existing footprint would be for the clearing of culverts and debris removal within ephemeral drainages that do not provide suitable habitat for PPC. These types of activities outside of the existing infrastructure footprint would be rare.

2. Vegetation clearing will not be conducted within suitable habitat of PPC unless absolutely necessary. If CBP determines that vegetation clearing must be conducted within suitable habitat of threatened or endangered species, they will offset such impacts by purchasing credits in an approved conservation bank as outlined elsewhere in this document.

3. The effects of maintenance and repair activities will be reduced by the implementation of invasive species control measures, fire prevention and suppression, and sediment control measures, and limited repair activities outside of existing infrastructure. These measures will minimize the scale of effects to PPC, but may not completely offset them.

4. Effects to PPC habitat not avoided or minimized through BMPs will be offset by the purchase of credits at a 1:1 ratio from a Pima pineapple cactus conservation bank approved by FWS.

5. Use of herbicides will not occur within areas of suitable habitat within the range of threatened or endangered plant species unless approved by the FWS.
INCIDENTAL TAKE STATEMENT

Sections 7(b)(4) and 7(o)(2) of the Act generally do not apply to listed plant species. However, limited protection of listed plants from take is provided by the Act through prohibiting the removal and reduction to possession of federally-listed endangered plants from areas under Federal jurisdiction, or for any act that would remove, cut, dig up, or damage or destroy any such species in any other non-Federal area in knowing violation of any regulation of any State or in the course of any violation of a State criminal trespass law. The Pima pineapple cactus is protected as a highly safeguarded, protected native plant under Arizona State Law (Arizona Revised Statutes §§3-900-916 and Arizona Administrative Code Article 11, §§ R3-3-1101-1111). In effect, listed plants may be removed or transplanted within a non-Federal property, but may not be removed or relocated from that non-Federal property.

CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the Act directs Federal agencies to use their authorities to further the purposes of the Act by carrying out conservation programs for the benefit of listed species. Conservation recommendations are discretionary agency activities to avoid or minimize effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information on listed species. The FWS recommends the following conservation activities:

1. We recommend that CBP participate in efforts to identify and conserve PPC throughout its range, including participation in forums that address the control of invasive, exotic plants (e.g. buffelgrass and Lehmann’s lovegrass).

2. We recommend CBP map the occurrence and abundance of Lehmann’s lovegrass and buffelgrass along its infrastructure within the PPC range.

3. We recommend that CBP fund research of PPC pollination biology, which would contribute to our understanding of how habitat fragmentation affects this plant.

In order for the FWS to be kept informed of actions avoiding or minimizing adverse effects or benefiting listed species or their habitats, the FWS requests notification of the implementation of any conservation recommendations.

Disposition of Dead or Injured Listed Species

Upon locating a dead, injured, or sick listed species, initial notification must be made to the FWS's Law Enforcement Office, 2450 W. Broadway Road, Suite 113, Mesa, Arizona, 85202, telephone: (480) 967-7900) within three working days of its finding. Written notification must be made within five calendar days and include the date, time, and location of the animal, a photograph if possible, and any other pertinent information. The notification shall be sent to the Law Enforcement Office with a copy to this office. Care must be taken in handling sick or injured animals to ensure effective treatment and care and in handling dead specimens to preserve the biological material in the best possible state.
REINITIATION NOTICE

This concludes formal consultation on the action(s) outlined in the reinitiation request. As provided in 50 CFR 402.16, reinitiation of formal consultation is required where discretionary Federal agency involvement or control over the action has been retained (or is authorized by law) and if: (1) the amount or extent of incidental take is exceeded; (2) new information reveals effects of the agency action that may affect listed species or critical habitat in a manner or to an extent not considered in this opinion; (3) the agency action is subsequently modified in a manner that causes an effect to the listed species or critical habitat not considered in this opinion; or (4) a new species is listed or critical habitat designated that may be affected by the action. In instances where the amount or extent of incidental take is exceeded, any operations causing such take must cease pending reinitiation.

For further information, please contact Scott Richardson at (520) 670-6150 (x 242) or Jean Calhoun (x 223) of our Tucson Suboffice.

Please refer to the consultation number, 02EAAZOO-2012-F-0170 in future correspondence concerning this project.

Sincerely,

/s/ Jean Calhoun for
Steven L. Spangle
Field Supervisor

cc (hard copy):
Field Supervisor, Fish and Wildlife Service, Phoenix, AZ (2)
Jean Calhoun, Assistant Field Supervisor, Fish and Wildlife Service, Tucson, AZ
Sid Slone, Refuge Manager, Cabeza Prieta National Wildlife Refuge, Ajo, AZ
Sally Gall, Refuge Manager, Buenos Aires National Wildlife Refuge, Sasabe, AZ
Bill Radke, Refuge Manager, San Bernardino/ Leslie Canyon National Wildlife Refuges, Douglas, AZ
Lee Baiza, Superintendant, Organ Pipe Cactus National Monument, Ajo, AZ
Emily Garber, Field Office Manager, Phoenix Field Office, Bureau of Land Management, Phoenix, AZ
Brian Bellew, Field Office Manager, Tucson Field Office, Bureau of Land Management, Tucson, AZ
Jim Upchurch, Forest Supervisor, Coronado National Forest, Tucson, AZ
cc (electronic copy):
 Charles Buchanan, Director, 56th Range Management Office, Luke Air Force Base, Gila Bend, AZ
 Ronald Pearce, Director, Range Management Department, Marine Corp Air Station, Yuma, AZ
 Dr. Ned Norris Jr., Chairperson, Tohono O’Odham Nation, Sells, AZ
 Lane Baker, Superintendent, Coronado National Memorial, Hereford, AZ
 Acting Chief, Habitat Branch, Arizona Game and Fish Department, Phoenix, AZ
 Raul Vega, Regional Supervisor, Arizona Game and Fish Department, Tucson, AZ
 Pat Barber, Regional Supervisor, Arizona Game and Fish Department, Yuma, AZ
LITERATURE CITED

Sonoran Pronghorn

Marine Corps Air Station-Yuma. 2001. Yuma Training Range Complex draft supplemental environmental impact statement. U.S. Department of Defense, Marine Corps Air Station, Yuma, AZ.

Chiricahua Leopard Frog

Christman, B.L. and M.R. Cummer. 2006. Stomach content analysis of Chiricahua leopard frog (Rana chiricahuensis) and plains leopard frog (Rana blairi) in New Mexico. Report to the New Mexico Department of Game and Fish, Santa Fe, NM.

_____. 2009. Endangered and threatened wildlife and plants; partial 90-day finding on a petition to list 475 species in the Southwestern United States as threatened or endangered with critical habitat; proposed rule. *Federal Register* 74(240):66866-66905.

Watson, M.L. 2005. Habitat fragmentation and the effects of roads on wildlife and habitats: Background and literature Review. New Mexico Department of Game and Fish. 18 pp.

Sonoran Tiger Salamander

Arizona Game and Fish Department. 1996. Species of Special Concern. Arizona Game and Fish Department, Phoenix, Arizona.

Mr. Christopher J. Colacicco

Watson, M.L. 2005. Habitat fragmentation and the effects of roads on wildlife and habitats: Background and literature Review. New Mexico Department of Game and Fish. 18 pp.

Pima Pineapple Cactus

RECON Environmental, Inc. 2006. Draft Pima County Multi-Species Conservation Plan, Pima County, Arizona and Attachments.

List of Tables

Table 1. Threatened and Endangered Plant Species Suitable Habitat and Blooming Season

Table 2. Threatened and Endangered Bird Species Suitable Habitat and Nesting Season

Table 3. Summary of Population Estimates for Sonoran Pronghorn in the U.S.

Table 4. Comparison of U.S. Sonoran Pronghorn Population Surveys

Table 5. Comparison of Mexico Sonoran Pronghorn Population Surveys, 2000-2001

Table 6. CBV Apprehensions by Location

Table 7. The eight Chiricahua leopard frog RUs as identified in the Recovery Plan and the current status of the delisting criteria for each RU.

Table 8. Formal consultations and incidental take anticipated for the Chiricahua leopard frog in the Action Area.

List of Figures

Figure 1. General Location Map

Figures 2a and 2b. Work Plan Flow Chart

Figures 3a and 3b. Action Area for Proposed Tactical Infrastructure Maintenance and Repair Areas in Arizona

Figure 4. Current occupied range of the Sonoran pronghorn in Arizona and Sonora, Mexico

Figure 5. Current Sonoran pronghorn distribution in the United State: Records from 1994-2001

Figure 6. Historical range of Sonoran pronghorn in the United States and Mexico

Figure 7. TIMR within Sonoran Pronghorn Range

Figure 8. Known range of the Chiricahua leopard frog as of 2007. The map covers areas in Arizona, New Mexico, and Mexico. All eight recovery units are delineated by number.

Figure 9. TIMR within Sonoran Tiger Salamander Range

Figure 10. TIMR within Pima Pineapple Cactus Range
Table 1. Threatened and Endangered Plant Species Suitable Habitat and Blooming Season

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Habitat</th>
<th>Blooming Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canelo Hills ladies’ tresses</td>
<td>Fine-grained, highly organic, saturated soils of cienegas (i.e., spring-fed marshes) and among sedges and tall grasses up to an elevation of 1,524 meters (5,000 feet).</td>
<td>July–August</td>
</tr>
<tr>
<td>Cochise pincushion cactus</td>
<td>High-calcium Permian limestone, at elevations from 1,280 to 1,433 meters (4,200 to 4,700 feet) where Chihuahuan desert scrub transitions to semi-desert grassland.</td>
<td>March–April</td>
</tr>
<tr>
<td>Huachuca water umbel</td>
<td>Perennial springs, rivers, and stream headwaters that are permanently or seasonally saturated within Sonoran desert scrub, grassland or oak woodlands between 1,219 to 1981 meters (4,000 to 6,500 feet).</td>
<td>June–August</td>
</tr>
<tr>
<td>Kearney’s slimpod</td>
<td>Southwest-draining dry, rocky washes of the Baboquivari Mountains at about 1,220 to 1,830 meters (4,000 to 6,000 feet).</td>
<td>April–May</td>
</tr>
<tr>
<td>Pima pineapple cactus</td>
<td>Transition zone between the semi-desert grasslands and Sonora desert scrub on alluvial bajadas (lower slopes of mountains characterized by loose alluvial sediments and poor soil development) and slopes of less than 10 percent grade at elevations between 701 to 1,402 meters (2,300 to 4,600 feet).</td>
<td>July–August</td>
</tr>
</tbody>
</table>

Table 2. Threatened and Endangered Bird Species Suitable Habitat and Nesting Season

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Suitable Habitat</th>
<th>Nesting Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masked bobwhite quail</td>
<td>Savannah grassland within Buenos Aires NWR</td>
<td>Jul 1–Nov 30</td>
</tr>
<tr>
<td>Mexican spotted owl</td>
<td>Closed-canopy forests [riparian, mixed conifer, pine-oak, and pinyon juniper woodland] and steep, narrow, entrenched, rocky canyons and cliffs within designated critical habitat</td>
<td>Mar 1–Jun 30</td>
</tr>
<tr>
<td>Southwestern willow flycatcher</td>
<td>Dense riparian habitat along streams, rivers, lakesides, and other wetland</td>
<td>Mar 15–Sep 15</td>
</tr>
<tr>
<td>Yuma clapper rail</td>
<td>Freshwater marshes generally dominated by cattail [Typha spp.] and bulrush [Scirpus ssp.] with a mix of riparian trees and shrubs</td>
<td>Mar 15–Jul 15</td>
</tr>
</tbody>
</table>
Table 3. Summary of Population Estimates for Sonoran Pronghorn in the U.S.

<table>
<thead>
<tr>
<th>Date</th>
<th>Population estimate</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1925</td>
<td>105^a</td>
<td>Nelson 1925</td>
</tr>
<tr>
<td>1941b</td>
<td>60^a</td>
<td>Nicol 1941</td>
</tr>
<tr>
<td>1957</td>
<td><100^a</td>
<td>Halloran 1957</td>
</tr>
<tr>
<td>1968</td>
<td>50^a</td>
<td>Monson 1968</td>
</tr>
<tr>
<td>1968-1974</td>
<td>20-150^a</td>
<td>Carr 1974</td>
</tr>
<tr>
<td>1981</td>
<td>100-150^a</td>
<td>Arizona Game and Fish Department 1981</td>
</tr>
<tr>
<td>1984</td>
<td>85-100^a</td>
<td>Arizona Game and Fish Department 1986</td>
</tr>
<tr>
<td>1992</td>
<td>179 (145-234)^a</td>
<td>Bright et al. 1999</td>
</tr>
<tr>
<td>1994</td>
<td>282 (205-489)^a</td>
<td>Bright et al. 1999</td>
</tr>
<tr>
<td>1996</td>
<td>130 (114-154)^a</td>
<td>Bright et al. 1999</td>
</tr>
<tr>
<td>1998</td>
<td>142 (125-167)^a</td>
<td>Bright et al. 1999</td>
</tr>
<tr>
<td>2000</td>
<td>99 (69-392)^a</td>
<td>Bright et al. 1999</td>
</tr>
<tr>
<td>2002</td>
<td>21 (18-33)^a</td>
<td>Bright and Hervert 2003</td>
</tr>
<tr>
<td>2004</td>
<td>58 (40-175)^a</td>
<td>Bright and Hervert 2005</td>
</tr>
<tr>
<td>2006</td>
<td>68 (52-116)^a</td>
<td>Unpublished data</td>
</tr>
<tr>
<td>2008</td>
<td>68</td>
<td>Unpublished data</td>
</tr>
<tr>
<td>2010</td>
<td>85^c</td>
<td>Unpublished data</td>
</tr>
</tbody>
</table>

^a95% Confidence interval. There is a 5% chance that the population total falls outside this range.

^bPopulation estimate for southwestern Arizona, excluding Organ Pipe National Monument.

^cDoes not include 17 pronghorn released from breeding pen in December 2010.
Table 4. Comparison of U.S. Sonoran Pronghorn Population Surveys

<table>
<thead>
<tr>
<th>Date</th>
<th>Pronghorn Observed</th>
<th>Population Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On transect</td>
<td>Total observed</td>
</tr>
<tr>
<td>Dec 1992</td>
<td>99</td>
<td>121</td>
</tr>
<tr>
<td>Mar 1994</td>
<td>100</td>
<td>109</td>
</tr>
<tr>
<td>Dec 1996</td>
<td>71</td>
<td>82 (95(^b))</td>
</tr>
<tr>
<td>Dec 1998</td>
<td>74</td>
<td>86 (98(^b))</td>
</tr>
<tr>
<td>Dec 2000</td>
<td>67</td>
<td>69 (95(^b))</td>
</tr>
<tr>
<td>Dec 2002</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Dec 2004</td>
<td>39</td>
<td>51</td>
</tr>
<tr>
<td>Dec 2006</td>
<td>51</td>
<td>59</td>
</tr>
<tr>
<td>Dec 2008</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dec 2010</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

\(^a\) 95% Confidence interval. There is a 5% chance that the population total falls outside this range.

\(^b\) Includes animals missed on survey, but located using radio telemetry.

\(^c\) Jill Bright, Arizona Game and Fish Department, pers. comm. 2003.

\(^d\) Due to poor visibility and low pronghorn sighting rate (some radio-collared pronghorn were detected from their transmitter signals but not seen during the surveys) caused by inclement weather during the surveys and having do resurvey some areas during better weather, the usual survey estimator was not used because it would have lacked accuracy. The estimate of 68 was based on individual seen and missed on the survey and on several recent telemetry flights.

Table 5. Comparison of Mexico Sonoran Pronghorn Surveys, 2000-2011.

<table>
<thead>
<tr>
<th>Date</th>
<th>Pronghorn Observed</th>
<th>Population Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>West of Hwy 8</td>
<td>Southeast of Hwy 8</td>
</tr>
<tr>
<td>Dec 2000</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Dec 2002</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Dec 2004/Feb 2005</td>
<td>30</td>
<td>439</td>
</tr>
<tr>
<td>Jan 2006</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Dec 2007</td>
<td>35</td>
<td>325</td>
</tr>
<tr>
<td>Dec 2009</td>
<td>53</td>
<td>258</td>
</tr>
<tr>
<td>Dec 2011</td>
<td>30</td>
<td>167</td>
</tr>
</tbody>
</table>
Table 6. CBV Apprehensions by Location

<table>
<thead>
<tr>
<th>Location</th>
<th>1999</th>
<th>2006</th>
<th>FY2009</th>
<th>FY2010</th>
<th>FY2011</th>
<th>FY2012*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajo Station AOR</td>
<td>21,300</td>
<td>22,504</td>
<td>15,456</td>
<td>20,448</td>
<td>17,385</td>
<td>--</td>
</tr>
<tr>
<td>Wellton Station AOR</td>
<td>--</td>
<td>--</td>
<td>1,889</td>
<td>1,758</td>
<td>1,678</td>
<td>--</td>
</tr>
<tr>
<td>OPCNM and CPNWR</td>
<td>--</td>
<td>--</td>
<td>N/A</td>
<td>3,265</td>
<td>7,282</td>
<td>5,187</td>
</tr>
</tbody>
</table>

*Data as of August 30, 2012

Table 7. The eight Chiricahua leopard frog RUs as identified in the Recovery Plan and the current status of the delisting criteria in each RU.

<table>
<thead>
<tr>
<th>Recovery Unit</th>
<th>RU#</th>
<th>Recovery Criteria 1</th>
<th>Recovery Criteria 2</th>
<th>Recovery Criteria 3</th>
<th>Recovery Criteria 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumacacori-Atascosa-Pajarito Mountains, Arizona and Mexico</td>
<td>1</td>
<td>Met</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
</tr>
<tr>
<td>Santa Rita-Huachuca-Ajos Bavispe, Arizona and Mexico</td>
<td>2</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
</tr>
<tr>
<td>Chiricahua Mountains-Malpai Borderlands-Sierra Madre, Arizona, New Mexico, and Mexico</td>
<td>3</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
</tr>
<tr>
<td>Pinaleno-Galiuro-Dragoon Mountains, Arizona</td>
<td>4</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
</tr>
<tr>
<td>Mogollon Rim-Verde River, Arizona</td>
<td>5</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
</tr>
<tr>
<td>White Mountains-Upper Gila, Arizona and New Mexico</td>
<td>6</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
</tr>
<tr>
<td>Upper Gila-Blue River, Arizona and New Mexico</td>
<td>7</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
</tr>
<tr>
<td>Black-Mimbres-Rio Grande, New Mexico</td>
<td>8</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
<td>Not Met</td>
</tr>
</tbody>
</table>
Table 8. Formal consultations and incidental take anticipated for the Chiricahua leopard frog in the Action Area.

<table>
<thead>
<tr>
<th>Consultation #</th>
<th>Date of Final BO</th>
<th>Project</th>
<th>Anticipated Take</th>
<th>Locations</th>
<th>Form of Take</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-21-00-F-344</td>
<td>6/6/2001</td>
<td>Livestock grazing management on the Montana allotment</td>
<td>Mortality of all frogs at one livestock tank; mortality of recently metamorphosed frogs at one locality; and an unquantified number from trampling, destruction, lost productivity</td>
<td>California Gulch, Warsaw Spring, Japanese Tank, and Holden Canyon</td>
<td>Mortality, harm, and harass</td>
</tr>
<tr>
<td>2-21-98-F-399-R1</td>
<td>10/24/2002</td>
<td>Livestock Grazing on the Coronado National Forest</td>
<td>All frogs at all livestock tanks; frogs at one locality (livestock tank, stream, or spring); and an unquantified number at three frog sites, three tanks, and three livestock tanks</td>
<td>Coronado National Forest</td>
<td>Direct mortality and harm</td>
</tr>
<tr>
<td>02-21-02-F-0148</td>
<td>1/13/2003</td>
<td>Reintroduction of Tarahumara frog into South Central Arizona</td>
<td>4 frogs</td>
<td>Sycamore Canyon and Penasco Canyon; possibly Big Casa Blanca, Walker, Adobe, and Gardner canyons</td>
<td>Mortality or harm</td>
</tr>
<tr>
<td>02-21-98-F-0399-R2</td>
<td>1/2/2004</td>
<td>Livestock grazing on the Kunde and Papago allotments</td>
<td>Unquantified number of eggs, tadpoles, and frogs</td>
<td>O’Donnell Creek in the Papago allotment</td>
<td>Direct mortality, harm</td>
</tr>
<tr>
<td>02-21-02-F-0157</td>
<td>1/16/2004</td>
<td>Ryan Fire in the Coronado National Forest</td>
<td>2 frogs</td>
<td>Flower Tank, possibly Meadow Valley and other tanks and ponds</td>
<td>Direct mortality and injury</td>
</tr>
<tr>
<td>02-21-03-F-0210</td>
<td>9/3/2004</td>
<td>BLM Arizona Statewide Land Use Plan Amendment for Fire, Fuels, and Air Quality Management</td>
<td>Undetermined number at one site without extirpation, and during emergency salvage at one site.</td>
<td>Cienega Creek/Empire Cienega, Guadalupe Canyon-Peloncillo Mountains, and Leslie Canyon</td>
<td>Harassment, harm, or mortality</td>
</tr>
<tr>
<td>02-21-05-F-0847</td>
<td>5/11/2006</td>
<td>10-year allotment management plans for</td>
<td>No take anticipated</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Consultation #</td>
<td>Date of Final BO</td>
<td>Project</td>
<td>Anticipated Take</td>
<td>Locations</td>
<td>Form of Take</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>02-21-03-F-0083</td>
<td>9/27/2006</td>
<td>Incidental Take Permit (TE-123062-0) and Safe Harbor Agreement to AGFD for Chiricahua leopard frog</td>
<td>Up to all individuals in all population sites established under the Agreement (above baseline conditions)</td>
<td>non-Federal lands in Arizona</td>
<td>Not specified (assume harass, harm, and mortality)</td>
</tr>
<tr>
<td>22410-2007-F-0360</td>
<td>8/30/2007</td>
<td>Wildland fire use management areas within the BLM Safford Field Office management area</td>
<td>No take anticipated</td>
<td>Guadalupe Canyon Fire Use Management Area</td>
<td>n/a</td>
</tr>
<tr>
<td>22410-2003-F-0022</td>
<td>2/11/2008</td>
<td>Enhancement of Survival Permit (TE-083686-0) to AGFD</td>
<td>50 frogs and their eggs</td>
<td>Habitats occurring on non-Federal land within the historical ranges of topminnow and pupfish in Arizona</td>
<td>Harass, harm, and mortality</td>
</tr>
<tr>
<td>22410-2008-F-0029</td>
<td>6/13/2008</td>
<td>Redrock Canyon fish barrier</td>
<td>20 frogs</td>
<td>Redrock Canyon drainage and Oak Tank</td>
<td>Harm</td>
</tr>
<tr>
<td>22410-2006-F-0408</td>
<td>8/12/2008</td>
<td>Malpai Borderlands Habitat Conservation Plan</td>
<td>Not quantified, but no extirpation of the known breeding sites. Livestock related take of one population site every 5 years</td>
<td>Silver Creek; Black Draw; Astin Spring; Guadalupe Canyon; Clanton Draw; Playas Creek; Cloverdale Canyon; Animas Creek; and San Simon Creek.</td>
<td>Harm, harass, and mortality</td>
</tr>
<tr>
<td>22410-2008-F-0373</td>
<td>9/4/2008</td>
<td>(SBI\text{net} Tucson West Tower Project, Ajo, Tucson, Casa Grande, Nogales, and Sonoita Stations Area of Operation, USBP, Tucson Sector)</td>
<td>2 frogs/yr (direct), and ½ of metamorphosed frogs (indirect)</td>
<td>Upper Turner Tank</td>
<td>Direct and indirect mortality</td>
</tr>
<tr>
<td>22410-2005-F-0002</td>
<td>12/15/2008</td>
<td>Altar Valley Fire Management Plan</td>
<td>Not quantified</td>
<td>Buenos Aires NWR, two permanent population sites on the west side of Altar Valley, various new and proposed aquatic</td>
<td>Harm and mortality</td>
</tr>
<tr>
<td>Consultation #</td>
<td>Date of Final BO</td>
<td>Project</td>
<td>Anticipated Take</td>
<td>Locations</td>
<td>Form of Take</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>---------</td>
<td>------------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>22410-2008-F-0103</td>
<td>12/31/2008</td>
<td>Aquatic species conservation at the San Pedro Riparian and Las Cienegas National Conservation Areas</td>
<td>Up to 100%</td>
<td>San Pedro Riparian and Las Cienegas National Conservation Areas</td>
<td>Harm, harass, direct mortality, and pursuit</td>
</tr>
<tr>
<td>22410-2010-F-0279</td>
<td>3/16/2010</td>
<td>Stocking of trout at Peña Blanca Lake, Santa Cruz County</td>
<td>100% of tadpoles in the lake during the residence time of the stocked rainbow trout</td>
<td>Peña Blanca Lake</td>
<td>Direct mortality</td>
</tr>
<tr>
<td>22410-2010-F-0279R1</td>
<td>10/27/2010</td>
<td>Stocking of trout at Peña Blanca Lake, Santa Cruz County</td>
<td>100% of tadpoles in the lake during the residence time of the stocked rainbow trout</td>
<td>Peña Blanca Lake</td>
<td>Direct mortality</td>
</tr>
<tr>
<td>22410-F-2010-0495</td>
<td>12/23/2010</td>
<td>Cloverdale Ciénega restoration project</td>
<td>100% loss of frogs*</td>
<td>Middle and lower reaches of Cloverdale Creek</td>
<td>Harm and harass</td>
</tr>
<tr>
<td>22410-2010-F-0330</td>
<td>5/10/2011</td>
<td>Stocking of Warmwater Fish at Peña Blanca Lake, Santa Cruz County</td>
<td>Unquantified, up to 100% of all life stages (from egg to adult)</td>
<td>In and below Peña Blanca Lake</td>
<td>Direct mortality, harm, and, harass</td>
</tr>
<tr>
<td>22410-2008-F0486</td>
<td>8/26/2011</td>
<td>AGFD’s WSFR-funded sportfish stocking program</td>
<td>Unknown number tadpoles each year, up to 100%</td>
<td>Peña Blanca Lake</td>
<td>Harm</td>
</tr>
<tr>
<td>22410-2008-F-0149-R001</td>
<td>12/6/2011</td>
<td>Effects to Listed Species from U.S. USFS Aerial Application of Fire Retardants on NFS Lands</td>
<td>Six drops in occupied frog habitat on the Coronado National Forest affecting 32.7 miles or 3 acres of nonfluvial, standing water.</td>
<td>Coronado NF</td>
<td>Direct mortality, harm, and harass</td>
</tr>
<tr>
<td>22410-2011-F-</td>
<td>12/20/2011</td>
<td>Aquatic Inventory,</td>
<td>3 frogs/yr from</td>
<td>All aquatic</td>
<td>Direct</td>
</tr>
<tr>
<td>Consultation #</td>
<td>Date of Final BO</td>
<td>Project</td>
<td>Anticipated Take</td>
<td>Locations</td>
<td>Form of Take</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>0290</td>
<td></td>
<td>Survey, and Monitoring Activities, and Conservation Activities for Aquatic Species by AGFD, 2011-2020</td>
<td>sportfish survey and monitoring; 3 frogs/yr from other species surveys and monitoring; unspecified/unlimited “safe” numbers for recovery purposes</td>
<td>habitats in Arizona where AGFD activities will take place</td>
<td>mortality, harass</td>
</tr>
<tr>
<td>22410-2002-F-0162-R001</td>
<td>2/1/2012</td>
<td>Las Cienegas National Conservation Area Resource Management Plan</td>
<td>Up to 100% loss at each site</td>
<td>Las Cienegas National Conservation Area</td>
<td>Direct mortality, pursuit, harm and harass</td>
</tr>
<tr>
<td>2012-F-0005</td>
<td>4/30/2012</td>
<td>The continued implementation of the Land and Resource Management Plan for the Coronado National Forest</td>
<td>Not quantified</td>
<td>Coronado NF</td>
<td>Direct mortality, harm, and harass</td>
</tr>
<tr>
<td>02AAZ00-2012-F-0165</td>
<td>4/30/2012</td>
<td>Multi-Unit Burn Plan for the 2012-2017 Burn Seasons</td>
<td>Not quantified</td>
<td>Buenos Aires National Wildlife Refuge</td>
<td>Harm, harass, or indirect mortality</td>
</tr>
</tbody>
</table>

* Cloverdale Cienega is an ephemeral site that can be utilized as a dispersal corridor for Chiricahua leopard frogs in the Peloncillo Mountains.
APPENDIX A.

Concurrence for Riparian/Aquatic Species including Canelo Hills ladies’-tresses (*Spiranthes delitescens*), Huachuca water umbel (*Lilaeopsis schaffneriana* var. *recurva*) and critical habitat, Southwestern willow flycatcher (*Empidonax traillii extimus*) and proposed critical habitat, and Yuma clapper rail (*Rallus longirostris yumanensis*)

Environmental Baseline

Four listed species occur within the TIMR action area that are dependent on riparian and/or aquatic resources for their conservation and recovery. These four species include two plant species (Canelo Hills ladies’-tresses and the Huachuca water umbel) and two bird species (southwestern willow flycatcher and Yuma clapper rail). The riparian and aquatic resources, upon which these species depend, include perennial streams and ponds, marshes and cienegas, as well as intermittent or ephemeral drainages. A number of these resources are found within the action area for the TIMR Program, and could potentially be impacted by the proposed action.

A slender, erect, terrestrial member of the orchid family, Canelo Hills ladies’ tresses typically has five to ten grass-like leaves arising from the base of the stem. Flower stalks extend above the leaves, with up to 40 white flowers in a spiral arrangement. This species blooms July through August, but is otherwise difficult to observe as its leaves blend with other grasses and sedges. Canelo Hills ladies’ tresses are short-lived perennials, surviving for only 4 to 5 years (Rice 2010a). Canelo Hills ladies’ tresses was listed as a Federal endangered species without critical habitat on January 6, 1997 (62 Federal Register [FR] 665). Canelo Hills ladies’ tresses are rare and in decline. The limited number of locations and small populations at these locations makes this species particularly vulnerable to extinction. Direct threats include livestock grazing, improper fire management, competition with invasive plant species, water diversion and impoundments, stream channelization, sand and gravel mining, and groundwater pumping (FWS 2010a, 62 FR 665–689).

Huachuca water umbel is a semi-aquatic to aquatic, herbaceous, perennial plant with slender erect leaves. The leaves are segmented, hollow cylinders. The flat-topped, rounded flower cluster is composed of 3 to 10 flowers that arise from the root nodes (FWS 1999). Huachuca water umbel was listed as a Federal endangered species on January 6, 1997 (62 FR 665), with critical habitat subsequently designated in 1999 (64 FR 37441, July 12, 1999). Threats to Huachuca water umbel include watershed degradation due to livestock grazing and development, trampling by livestock, diversion of water and dewatering of habitats, and flash flooding (FWS 2001a).

The southwestern willow flycatcher is a small bird, typically less than 15 cm (6 inches) in length with conspicuous light-colored wing bars (FWS 2002). Southwestern willow flycatcher was listed as federally endangered on February 27, 1995 (60 FR 10694,) with critical habitat designation on October 19, 2005 (50 CFR 60886). The USFWS announced a proposed revision to southwestern willow flycatcher designated critical habitat on August 15, 2011. The habitat requirements of the southwestern willow flycatcher include areas of dense riparian foliage and nesting habitat with trees and shrubs that include willows (*Salix* spp.) and box elder (FWS 2002). The breeding period for this species is April through September (FWS 2002). This species is threatened by the loss and
degradation of cottonwood-willow riparian habitat and structurally similar riparian habitats. Increased irrigated agriculture and livestock grazing have aided brown-headed cowbird populations that, in turn, impact the southwestern willow flycatcher by parasitizing their nests. The current population exists in small, fragmented subpopulations, which increases the risk of local extirpation (NatureServe 2010).

The Yuma clapper rail is a small marsh bird with an average height of 20 cm (8 inches). This species begins breeding in February and will nest from March through June, with a peak in mid-May. Nests are made on stable substrates and are typically near shore in shallow water or in the interior of marshes over deeper water (FWS 1983). Yuma clapper rail was listed as federally endangered without critical habitat on March 11, 1967 (32 FR 4001). Populations of the Yuma clapper rail are threatened by destruction, modification, and curtailment of its habitat and range. Increased development along the Lower Colorado River and interior Arizona rivers could have direct and indirect effects on clapper rail habitat through water management regimes (FWS 1983). In addition, the presence and increase of selenium in clapper rail habitat has been identified as a potential threat to the survival and recovery of the clapper rail (FWS 2006).

Effects of the Proposed Action

There are a number of potential effects to these riparian/aquatic species from the proposed action. However, CBP has also included a number of BMPs to reduce the potential for these effects.

Potential direct impacts to the two riparian/aquatic plant species from maintenance and repair activities include direct injury and fatality from trampling or crushing by equipment, alteration of the plant seed bank, and habitat degradation from disturbance of soils. To avoid these effects and habitat degradation from removal of canopy cover, vegetation clearing (i.e., removal of vegetation to maintain line of sight or remove hiding locations from areas where vegetation has not been previously cleared) will not be conducted within suitable or critical habitat of any threatened or endangered plant species. Additionally, clearing of riparian vegetation will not occur within 100 feet of aquatic habitats.

Potential indirect impacts on these species include increased erosion and sedimentation from alterations in hydrology, and increased potential for invasive species and fire. Erosion and sedimentation BMPs include silt fencing and floating silt curtains to prevent movement of soil and sediment and to minimize turbidity increases in water. Clearing of riparian vegetation will not occur within 100 feet of aquatic habitats, which will provide a buffer area to protect the habitat from sedimentation. Based on the implementation of BMPs designed to avoid or reduce impacts on these species, these indirect impacts would be unlikely to occur.

Maintenance activities that compact soils and change water infiltration could alter local hydrology by increasing sedimentation and runoff in suitable perennial plant species habitat. BMPs would be implemented to reduce sedimentation and runoff from roads and other infrastructure and minimize other potential indirect effects to these species. For example, cleaning or modification of culverts and other work within drainages that could cause sedimentation or otherwise affect water quality or quantity will not occur within critical habitat, or within 0.5 miles upstream of critical habitat or other
suitable habitat of aquatic plant species (i.e., Huachuca water umbel and Canelo Hills ladies’ tresses) without further consultation with the FWS. Also, no ground disturbance will occur outside the existing footprint in suitable habitat or designated critical habitat of these species, and areas within 0.25 miles upstream of suitable habitat or critical habitat, without further consultation with the FWS. Multiple water resources BMPs will be implemented to avoid contamination and reduce erosion and sedimentation. In addition, a Storm Water Pollution Prevention Plan (SWPPP) will be prepared and implemented prior to applicable maintenance activities (i.e., disturbances greater than 1 acre of exposed dirt or as required by the property owners or land manager). BMPs described in the SWPPP to reduce erosion will be implemented. The CBP environmental SME will consider areas with highly erodible soils when planning the maintenance activities and will require the use of measures such as waddles, aggregate materials, and wetting compounds where appropriate. Tactical infrastructure will be periodically inspected for the presence of erosion, and repair and maintenance will be implemented as necessary.

Potential direct impacts on threatened and endangered avian species (i.e., Yuma clapper rail and southwestern willow flycatcher) include noise disturbances from increased human presence, injury or fatality from collisions with maintenance vehicles and during maintenance activities, and habitat degradation from vegetation removal. As described, maintenance and repair activities would occur infrequently. For example, inspections and routine maintenance of access roads would occur up to four times per year, and routine maintenance of other tactical infrastructure would occur less often. These maintenance activities would include trips by vehicles ranging in size from pickup trucks to heavy equipment such as dump trucks and road graders. Measures discussed above to avoid or reduce impacts in riparian habitat would reduce these impacts on southwestern willow flycatcher and Yuma clapper rail. If vegetation clearing is to be conducted adjacent to suitable riparian habitat of these bird species, qualified personnel with experience identifying suitable habitat of that species will delineate and clearly mark the suitable habitat to be avoided. For all other maintenance activities to be conducted within suitable habitat of a threatened or endangered bird species during the nesting season, a qualified biologist will conduct a survey for threatened and endangered birds prior to initiating maintenance activities. If a threatened or endangered bird is present, a qualified biologist will survey for nests approximately once per week within 500 feet of the maintenance area for the duration of the activity. If an active nest is found, no maintenance will be conducted within 300 feet of the nest until the young have fledged.

Noise effects associated with maintenance activities are expected to occur at any given location for one to a few days in duration. Noise and visual disturbance associated with maintenance and repair activities could disrupt breeding and foraging behaviors of threatened and endangered avian species. Birds may be exposed to noise arising from maintenance and repair activities; however, the level of noise will be reduced through Noise BMP #1. Additional protection for avian species is provided through specific migratory bird BMPs.

Indirect impacts on avian species are not expected because BMPs designed to minimize sedimentation, prevent fires, reduce the spread of nonnative invasive plant species, and otherwise avoid indirect impacts would be implemented.
Conclusion

The Service concurs with the CBP determination that the proposed action may affect, but is not likely to adversely affect the riparian/aquatic species named above, based upon the following:

- Maintenance and repair activities would occur infrequently.
- Clearing of riparian vegetation will not occur within 100 feet of aquatic habitats.
- CBP will implement BMPs to protect water resources as outlined in Appendix A of the BA.
- BMPs will be implemented to reduce sedimentation and runoff, and to reduce the potential for invasive species and fire.
- BMPs will be implemented that will avoid impacts during the nesting season for threatened and endangered avian species.
- No in-water work will occur within streams or other waterbodies with known occurrences or designated critical habitat without further consultation with the FWS.
- Use of herbicides will not occur in streams or other waterbodies with known occurrences within the range or designated critical habitat unless approved by the FWS.
- CBP would conduct additional consultation with the FWS if maintenance and repair activities that would cause sedimentation or otherwise affect water quality or quantity are required less than 0.5 miles upstream of threatened and endangered riparian/aquatic plant species.
- Maintenance and repair activities will be not conducted outside of the existing footprint in known habitat or designated critical habitat, or within 0.25 miles upstream of known habitat or critical habitat of threatened and endangered riparian/aquatic plant species.
- Vegetation clearing will not occur in suitable habitat within the range of threatened and endangered species. If a threatened or endangered species or other indicators of suitable habitat occur within the action area and vegetation clearing is necessary, then further consultation with FWS will be required.
- If vegetation clearing is to be conducted adjacent to suitable riparian habitat of a threatened or endangered bird species, qualified personnel with experience identifying suitable habitat of that species will delineate and clearly mark the suitable habitat to be avoided.
- A qualified biologist will conduct a survey during nesting season for threatened and endangered birds prior to initiating maintenance activities. If a threatened or endangered bird is present, a qualified biologist will survey for nests approximately once per week within 152 meters (500 feet) of the maintenance area for the duration of the activity. If an active nest is found, no maintenance will be conducted within 91 meters (300 feet) of the nest until the young have fledged.

Critical Habitat

Critical habitat for the Huachuca water umbel and the southwestern willow flycatcher has been designated or proposed. We have also evaluated potential effects to the critical habitat for these two species that may result from the proposed action.

Critical habitat was designated for the Huachuca water umbel on July 12, 1999, in the Arizona counties of Cochise and Santa Cruz. As presented in 64 FR 37441–37453, the primary consistent
elements (PCEs) of critical habitat for this species include the habitat components that provide the following:

1. “Sufficient perennial base flows to provide a permanently or nearly permanently wetted substrate for growth and reproduction of Huachuca water umbel;”

2. “A stream channel that is relatively stable, but subject to periodic flooding that provides for rejuvenation of the riparian plant community and produces open microsites for Huachuca water umbel expansion;”

3. “A riparian plant community that is relatively stable over time and in which nonnative species do not exist or are at a density that has little or no adverse effect on resources available for Huachuca water umbel growth and reproduction; and”

4. “In streams and rivers, refugial sites in each watershed and in each reach, including but not limited to springs or backwaters of mainstream rivers that allow each population to survive catastrophic floods and recolonize larger areas.”

Critical habitat areas were selected to provide for the conservation of Huachuca water umbel throughout the remaining portion of its geographic range in the United States. At least one segment of critical habitat is designated in each watershed containing the species, with the exception of the Rio Yaqui watershed where the plants are found on the San Bernardino NWR. Critical habitat for Huachuca water umbel occurs in the action area. There currently is no tactical infrastructure to be maintained within Huachuca water umbel critical habitat. The proposed action would not result in direct, indirect, or cumulative effects that would appreciably diminish the value of PCEs within Huachuca water umbel critical habitat or result in destruction or adverse modification of that critical habitat. All activities would be restricted to within and immediately adjacent to the footprint of existing tactical infrastructure within designated critical habitat, and vegetation clearing would not occur in designated critical habitat of Huachuca water umbel. Thus, TIMR Program activities are not likely to adversely affect critical habitat of the Huachuca water umbel.

Critical habitat was designated for southwestern willow flycatcher on October 19, 2005, and included approximately 120,824 acres (48,896 hectares) of habitat in Apache, Cochise, Gila, Graham, Greenlee, Maricopa, Mohave, Pinal, Pima, and Yavapai counties, Arizona; and Kern, Santa Barbara, San Bernardino, and San Diego counties, California (70 FR 60885). As presented in 70 FR 60885, the PCEs for southwestern willow flycatcher critical habitat include the following:

1. “Riparian habitat in a dynamic successional riverine environment (for nesting, foraging, migration, dispersal, and shelter) that comprises:

a. Trees and shrubs that include Goodding’s willow (Salix gooddingii), coyote willow (Salix exigua), Geyer’s willow (Salix geyerana), arroyo willow (Salix lasiolepis), red willow (Salix laevigata), yewleaf willow (Salix taxifolia), pacific willow (Salix lasiandra), boxelder (Acer negundo), tamarisk (Tamarix ramosissima), Russian olive (Eleagnus angustifolia), buttonbush (Cephalanthus occidentalis), cottonwood (Populus fremontii), stinging nettle (Urtica dioica), alder
(Alnus rhombifolia, Alnus oblongifolia, Alnus tenuifolia), velvet ash (Fraxinus velutina), poison hemlock (Conium maculatum), blackberry (Rubus ursinus), seep willow (Baccharis salicifolia, Baccharis glutinosa), oak (Quercus agrifolia, Quercus chrysolepis), rose (Rosa californica, Rosa arizonica, Rosa multiflora), sycamore (Platanus wrightii), false indigo (Amorpha californica), Pacific poison ivy (Toxicodendron diversilobum), grape (Vitus arizonica), Virginia creeper (Parthenocissus quinquefolia), Siberian elm (Ulmus pumila), and walnut (Juglans hindsii).

b. Dense riparian vegetation with thickets of trees and shrubs ranging in height from 2 m to 30 m (6 to 98 ft). Lower-stature thickets (2 to 4 m or 6 to 13 ft tall) are found at higher elevation riparian forests and tall-stature thickets are found at middle- and lower elevation riparian forests;

c. Areas of dense riparian foliage at least from the ground level up to approximately 4 m (13 ft) above ground or dense foliage only at the shrub level, or as a low, dense tree canopy;

d. Sites for nesting that contain a dense tree and/or shrub canopy (the amount of cover provided by tree and shrub branches measured from the ground) (i.e., a tree or shrub canopy with densities ranging from 50 percent to 100 percent);

e. Dense patches of riparian forests that are interspersed with small openings of open water or marsh, or shorter/sparser vegetation that creates a mosaic that is not uniformly dense. Patch size may be as small as 0.1 ha (0.25 ac) or as large as 70 ha (175 ac);” and

2. “A variety of insect prey populations found within or adjacent to riparian floodplains or moist environments, including: flying ants, wasps, and bees (Hymenoptera); dragonflies (Odonata); flies (Diptera); true bugs (Hemiptera); beetles (Coleoptera); butterflies/moths and caterpillars (Lepidoptera); and spittlebugs (Homoptera).”

As described in 70 FR 60885–1009, the 120,824 acres of critical habitat are located in Arizona, Nevada, New Mexico, Utah, and California. No portion of the designated critical habitat occurs in the Arizona Action Area.

The FWS announced a proposed revision to southwestern willow flycatcher designated critical habitat on August 15, 2011. This revision would increase the total designated critical habitat by approximately 3,364 stream kilometers (2,090 stream miles) in several counties in Arizona, California, Utah, Colorado, and New Mexico. Within the action area, the proposed critical habitat areas are located in Yuma County along and near the Colorado River and Santa Cruz County along the Santa Cruz River (76 FR 50542). The PCEs described in the proposed revision are very similar to those listed in the current designation and described above.

The Service also concurs with the CBP determination that the proposed action may affect, but is not likely to adversely affect, destroy, or adversely modify critical habitat for the Huachuca water umbel, nor existing or proposed critical habitat for the southwestern willow flycatcher, based upon the following:
• Vegetation clearing will not occur in designated critical habitat of threatened and endangered species. If primary constituent elements (PCE) of threatened or endangered species critical habitat occur within the action area, then further consultation with FWS will be required.
• All activities would be restricted to within and immediately adjacent to the footprint of existing tactical infrastructure within designated critical habitat.
• There currently is no tactical infrastructure to be maintained within Huachuca water umbel critical habitat.
• There is no critical habitat designated for the southwestern willow flycatcher within or near the action area; therefore, the TIMR Program (proposed action) would have no effect on critical habitat of this species. However, FWS announced a proposed revision to southwestern willow flycatcher designated critical habitat on August 15, 2011. This revision would increase the total designated critical habitat by approximately 3,364 stream kilometers (2,090 stream miles) in several counties in Arizona, California, Utah, Colorado, and New Mexico. Within the action area, proposed critical habitat is located in Yuma and Santa Cruz Counties, Arizona (76 FR 50542–50629). There currently is no tactical infrastructure to be maintained within southwestern willow flycatcher proposed critical habitat.

Concurrence for Fish Species including Desert pupfish (Cyprinodon macularius) and critical habitat, Quitobaquito pupfish (C.m. macularius = Cyprinodon eremus) and critical habitat, Gila chub (Gila intermedia) and critical habitat, Gila topminnow (Poeciliopsis occidentalis occidentalis), and Sonora chub (Gila ditaenia) and critical habitat

Environmental Baseline

Five fish species, including critical habitat designations for four of those species, occur within the proposed TIMR action area. These fish species and their critical habitats are dependent on reliable aquatic habitats for their survival and recovery. The proposed action may result in some impacts to these fish species and their habitats.

The desert pupfish is a small fish, approximately 8 cm (3 inches) in length with narrow dark vertical bars on a silvery background. Its diet is varied and consists of plants, algae, detritus, and invertebrates. Males are larger than females and take on a bright blue body color with orange-tipped fins during the breeding season. The spawning season lasts from spring through autumn, although local conditions might allow for reproduction at any time of the year (FWS 2010b). Desert pupfish was listed as federally endangered with critical habitat on March 31, 1986 (51 FR 10842). Critical habitat for desert pupfish occurs in California. An area of critical habitat at Quitobaquito Springs, Arizona, that was designated as critical habitat for this species is occupied by the Quitobaquito pupfish, which is now considered a separate species (see below). Desert pupfish are declining due to dewatering of habitats such as springs, some headwaters, and lower reaches of streams and marshes; alteration of its habitat, including stream diversion, channelization, impoundment, and discharge regulation; other watershed impacts including domestic livestock grazing, timber harvest, mining, road construction, and water pollution; and competition or predation with nonnative species. Numerous historic habitats have dried up as a result of groundwater pumping, channel erosion, and water impoundment (FWS 1993a).
The Gila chub is a chunky, small-finned minnow with a dark olive-green to silvery coloration, fading to lighter on the belly. Males tend to be smaller with adults reaching 15 cm (6 inches), while females can reach 20 cm (8 inches) (FWS 2008a). Gila chub was listed as federally endangered with critical habitat on November 2, 2005 (70 FR 66664). Critical habitat for Gila chub occurs in the action area. The majority of Gila chub habitat has been destroyed or degraded to a point that it is not recoverable. What remains of native habitat is under heavy grazing pressure and is threatened by active mining operations. Increased recreational use has contributed to degradation of habitat, as has the introduction of nonnative species (FWS 2008a).

The Sonora chub is a moderately chubby, dark-colored fish less than 12.5 cm (5 inches) long; it has two prominent black lateral bands on the sides and a dark oval spot at the base of the tail. Breeding males have red lower fins and a somewhat orange belly. The Sonora chub can be described as a tenacious, desert-adapted species, adept at exploiting small marginal habitats that can survive under severe environmental conditions. It is thought to be an opportunistic feeder that takes advantage of seasonally available food resources (FWS 1992). Sonora chub was listed as federally-threatened with critical habitat on April 30, 1986 (51 FR 16042). Critical habitat for Sonora chub occurs in the action area. The major threat to the Sonora chub is the modification of suitable habitat by human activities including grazing, mining, recreation, and the introduction of exotic species (FWS 1992). Absent a standardized, repeatable population or habitat, it is difficult to determine if there have been appreciable changes in the species’ distribution; present-day distribution data are primarily anecdotal. The Arizona Game and Fish Department (AGFD) (1995) discovered that Sonora chub also occurs in California Gulch, a stream located approximately 3 miles west of Sycamore Canyon; this is most likely a metapopulation. California Gulch has been surveyed infrequently since the initial discovery, and Sonora chub are reliably present in suitable habitat from the International Boundary upstream to the tinaja. In 2002, Sonora chub were detected in three new locations within the Sycamore Canyon watershed: one site was within an unnamed side canyon, one in Sycamore Canyon proper, and the third was in Atascosa Canyon (FWS 2002). Hendrickson and Romero (1990) surveyed Sonora chub in the Río de La Concepción basin in Sonóra, México and posited that threatened status was appropriate for the peripheral and geographically isolated population of Sonora chub in Arizona while rangewide, the species’ status was secure. The current status of Sonora chub in Mexico is unknown, but it is presumed that predatory and competitive nonnative fishes noted by these authors are still present within the species’ range there and that drought has affected Sonóra to an extent similar to Arizona. In May 2006, USFWS staff confirmed the continued presence of Sonora chub in the headwaters of the Río Cocóspera at Rancho el Aribabi in Sonora (Duncan 2006).

The Gila topminnow is a small, guppy-like, live-bearing fish that is 2.5 to 5 cm (1 to 2 inches) long (FWS 2008b). Males and females are both characterized by a tan- to olive-colored body and usually display a white belly (FWS 1998). Gila topminnow was listed as federally endangered without critical habitat on March 11, 1967 (32 FR 4001). The primary threats to Gila topminnow are habitat destruction, competition, and predation from invasive nonnative species (FWS 1998, FWS 2008b). Land use practices such as livestock grazing, mining, timber cutting, road maintenance, and recreation can result in increased erosion, intensified flood events, and decreased groundwater storage, potentially affecting existing populations and suitable habitats for future reintroductions. Urban and suburban population growth and development and associated increased groundwater
pumping, alteration of streams and rivers, and increased water pollution also threaten the recovery efforts of the species (FWS 1998).

Originally described as a subspecies of the desert pupfish, recent taxonomic studies indicate that the Quitobaquito pupfish is a distinct species. As a result, the FWS is in the process of updating the listed species in the Code of Federal Regulations (CFR) (50 CFR 17.11) to reflect this taxonomic relationship (FWS 2010c). The Quitobaquito pupfish differs from the desert pupfish by having a slightly deeper and broader body and head. The dorsal fin originates further toward the tail than on the desert pupfish in both male and female Quitobaquito pupfish. The pelvic fins are also reduced in comparison with desert pupfish. The Quitobaquito pupfish is known to occur in only two U.S. locations, in Quitobaquito Spring just north of the U.S./Mexico international border in Organ Pipe Cactus National Monument in Arizona, and in a recently established population as part of an introduction program at the Visitors Center at Cabeza Prieta National Wildlife Refuge (ISDA 2005). The Quitobaquito pupfish was threatened by the introduction of nonnative golden shiner in 1968 or 1969; however, this species was eradicated and the Quitobaquito pupfish population was reestablished (FWS 1993a). Additional threats to this species include destruction or curtailment of habitat from groundwater pumping and water diversion, soil erosion and impacts on watershed health, and livestock grazing (FWS 2010c).

Effects of the Proposed Action

There are a number of potential effects to these riparian/aquatic species from the proposed action. However, CBP has also included a number of BMPs and incorporated measures into the proposed action to reduce the potential for these effects. No in-water work will occur within streams or other waterbodies with known occurrences or designated critical habitat of these species without further consultation with the FWS, and, therefore, no protected fish will be harmed or otherwise directly affected by the proposed action.

Potential indirect impacts on these native fish species include increased potential for erosion and sedimentation, changes in hydrology from groundwater pumping and water diversion, and the introduction of nonnative invasive species.

Maintenance activities could alter the quality of surface water within and downstream of maintenance areas. However, impacts on water quality would be localized and temporary, and BMPs would be implemented to reduce sedimentation and runoff from roads and other infrastructure and minimize other potential indirect effects on these species. Clearing of riparian vegetation will not occur within 30 meters (100 feet) of aquatic habitats to provide a buffer area to protect the habitat from sedimentation. In addition, cleaning or modification of culverts and other work within drainages that could cause sedimentation or otherwise affect water quality or quantity will not occur within, or within 0.25 miles upstream of, critical habitat or other suitable habitat without further consultation with the FWS. Equipment staging areas shall be located at previously used staging areas or at least 0.3 miles away from known, occupied sites of listed aquatic species. CBP will implement BMPs to avoid erosion, sedimentation, and runoff. Other general BMPs listed in this BO to protect water resources also will be implemented as part of the proposed action.
The introduction of nonnative invasive species can impact threatened and endangered fish species. However, the proposed action does not include any activities that would result in the introduction of nonnative invasive aquatic species. Contamination of ground and surface waters should be avoided by ensuring that water tankers that convey untreated surface water do not discard unused water where it has the potential to enter any aquatic or wetland habitat. In addition, CBP will not use surface water from aquatic or marsh habitats for maintenance and repair projects if that site supports aquatic federally-listed species, or if it contains non-native invasive species or disease vectors based on the best available information provided by FWS. CBP also will not use surface water from untreated sources, including water used for irrigation purposes, for maintenance and repair projects located within one mile of aquatic habitat for federally-listed aquatic species. Groundwater or surface water from a treated municipal source will be used when within one mile of such habitats.

Conclusion

The Service concurs with the CBP determination that the proposed action may affect, but is not likely to adversely affect the fish species named above, based upon the following:

- No in-water work will occur within streams or other waterbodies with known occurrences of the listed fish species described above or within designated critical habitat without further consultation with the FWS.

- Cleaning or modification of culverts and other work within drainages that could cause sedimentation or otherwise affect water quality or quantity will not occur within, or within 0.25 miles upstream of, critical habitat or other suitable habitat without further consultation with the FWS.

- Use of herbicides will not occur in streams or other waterbodies with known occurrences within the range or designated critical habitat of listed fish unless approved by the FWS.

Critical Habitat

Critical habitat for the Gila chub, desert pupfish (including the Quitobaquito pupfish), and the Sonoran chub has been designated. We have also evaluated potential effects to the critical habitat for these four species that may result from the proposed action.

Critical habitat was designated for the Gila chub (*Gila intermedia*), on November 2, 2005. As presented in 70 FR 66664–66721, the PCEs of critical habitat for Gila chub include the habitat components that provide the following:

1. “Perennial pools, areas of higher velocity between pool areas, and areas of shallow water among plants or eddies all found in small segments of headwaters, springs, or cienegas of smaller tributaries.”

2. “Water temperatures for spawning ranging from 17 to 24 degrees Celsius (62.6 to 75.2 degrees Fahrenheit) and seasonally appropriate temperatures for all life states, from 10-30 degrees Celsius.”
Critical habitat areas were designated to provide for the conservation of the Gila chub throughout the remaining portion of its geographic range in the United States. Several areas of critical habitat have been proposed in Arizona and New Mexico; however, only one of these areas is located in the action area. That area of critical habitat includes two tributaries of the Babocomori River, O’Donnel Canyon and Turkey Creek, and a buffer zone adjacent to those reaches. The tributaries are located about 13 and 17 miles north of the international border, respectively. There currently is no tactical infrastructure to be maintained within these critical habitat units. These units are located primarily on Coronado National Forest, but also on private land and land managed by the Bureau of Land Management. The proposed action would not result in direct, indirect, or cumulative effects that would appreciably diminish the value of constituent elements within this critical habitat. All activities would occur within and immediately adjacent to the footprint of existing tactical infrastructure, and BMPs designed to avoid impacts on critical habitat of this species will be implemented. For example, no in-water work will occur within designated critical habitat without further consultation with the FWS, riparian vegetation within 30 meters (100 feet) of aquatic habitat will not be cleared, and use of herbicides within critical habitat will not occur without approval from the FWS. In addition, clearing of vegetation will not occur in designated critical habitat without further consultation with the FWS. Thus, TIMR Program activities are not likely to adversely affect, adversely modify or destroy critical habitat of the Gila chub.

Critical habitat was designated for the desert pupfish, including the Quitobaquito pupfish, on March 21, 1986. As presented in 51 FR 10842–10851, the PCEs of critical habitat for desert pupfish include the habitat components that provide the following:

1. “Clean unpolluted water that is relatively free of exotic organisms, especially exotic fishes.”

2. “Small slow-moving desert streams spring pools with marshy backwater areas.”

Critical habitat areas were selected to provide for the conservation of the desert pupfish, including
the Quitobaquito pupfish, throughout its geographic range in the United States. Four areas of critical habitat were designated for the desert pupfish, including Quitobaquito Spring (and the immediately adjacent riparian zone), located on Federal lands in Organ Pipe Cactus National Monument in Pima County, Arizona. There currently is no tactical infrastructure to be maintained within this critical habitat unit, although CBP does need to maintain the access road to Quitobaquito Springs. The proposed action would not result in direct, indirect, or cumulative effects that would cause that critical habitat to be destroyed or adversely modified. CBP would coordinate maintenance and repair of the access road to Quitobaquito Spring and other all TIMR Program activities conducted in the vicinity of that spring with the U.S. Park Service, and BMPs would be implemented for all maintenance and repair conducted in the area to prevent direct or indirect impacts on that habitat. Thus, critical habitat of the desert pupfish, including the Quitobaquito pupfish, would not be destroyed or adversely modified.

Critical habitat was designated for the Sonora chub on April 30, 1986. As presented in 51 FR 16042–16047, the PCEs of critical habitat for Sonora chub include the habitat components that provide the following:

1. “Clean permanent water with pools and intermediate riffle areas.”
2. “Intermittent pools maintained by bedrock or by subsurface flow in areas shaded by canyon walls.”

Critical habitat areas were selected to provide for the conservation of the Sonora chub throughout the remaining portion of its geographic range in the United States. The designated critical habitat for this species consists of several stream reaches and associated riparian areas in Santa Cruz County, Arizona. These streams include portions of Sycamore Creek (and an unnamed tributary), Penasco Creek, and Yank’s Spring (51 FR 16042–16047). All of the critical habitat areas, except for Yank’s Spring, are within designated wilderness areas. All critical habitat for the Sonora chub occurs within the action area. This habitat is entirely within Coronado National Forest. There currently is no tactical infrastructure to be maintained within these critical habitat units. The proposed action should not result in direct, indirect, or cumulative effects that would appreciably diminish the value of constituent elements within this critical habitat. All activities will occur within and immediately adjacent to the footprint of existing tactical infrastructure, and BMPs designed to avoid impacts on critical habitat of this species will be implemented.

The Service also concurs with the CBP determination that the proposed action may affect, but is not likely to adversely affect, destroy, or adversely modify critical habitat for the Gila chub, Quitobaquito pupfish (desert pupfish), and the Sonora chub, based upon the following:

- There currently is no tactical infrastructure to be maintained within these critical habitat units.
- The TIMR Program should not result in direct, indirect, or cumulative effects that would appreciably diminish the value of constituent elements within this critical habitat. All activities will occur within and immediately adjacent to the footprint of existing tactical infrastructure, and BMPs designed to avoid impacts on critical habitat of these species will be implemented. For example, no in-water work will occur within designated critical habitat without further
consultation with the FWS, riparian vegetation within 30 meters (100 feet) of aquatic habitat will not be cleared, and use of herbicides within critical habitat will not occur without approval from the USFWS. In addition, clearing of vegetation will not occur in designated critical habitat without further consultation with the FWS.

- CBP will coordinate maintenance and repair of the access road to Quitobaquito Spring and other all TIMR Program activities conducted in the vicinity of that spring with the U.S. Park Service and BMPs will be implemented for all maintenance and repair conducted in the area to prevent direct or indirect impacts on that habitat.

Concurrence for Upland Species including Jaguar (Panthera onca), Lesser long-nosed bat (Leptonycteris curasoae yerbabuenae), Mexican spotted owl (Strix occidentalis lucida) and critical habitat, New Mexico ridge-nosed rattlesnake (Crotalus willardi obscurus), Ocelot (Leopardus pardalis), Masked bobwhite (Colinus virginianus ridgwayi), and Cochise pincushion cactus (Coryphantha robbinsorum)

Environmental Baseline

A number of listed species occur in the upland ecosystems of the action area. These species include two terrestrial mammals, two birds, a bat species, a snake, and a cactus. Effects to these upland species from the proposed action occur in somewhat different areas than those described for other species groups as described above.

The jaguar is the largest species of cat native to the western hemisphere. It has a cinnamon-buff color with many black spots and has a muscular, deep-chested body with relatively short, massive limbs. Its weight ranges widely from 40 to 135 kilograms (90 to 300 pounds) and its length is typically 2.4 meters (7.8 feet) from head to tail tip (FWS 2000). The U.S. population of jaguar was listed as federally-endangered without critical habitat on July 22, 1997 (62 FR 39147). The non-U.S. population of jaguar was listed as federally-endangered on March 30, 1972 (37 FR 6476). Critical habitat has recently been proposed (77 FR 50214) for the portion of the jaguar’s range within the U.S. in Arizona and New Mexico. In Arizona, the species was historically found in mountainous parts of eastern Arizona to the Grand Canyon. The current range includes central Mexico and into central South America as far south as northern Argentina. While a number of documented occurrences have occurred in Arizona and New Mexico since the mid-1990s, there are no currently known breeding populations in the United States (USFWS 2000b). In Arizona, potential habitat includes areas of forest, woodland, and grassland vegetation in the Baboquivari Mountains, the southern portion of the Altar Valley, a portion of the southern Santa Cruz River basin, and the San Pedro River basin south of Arivapa Creek. The recent jaguar observations in south-central Arizona near the Mexican border have primarily occurred in Madrean oak woodland communities; however, jaguars were also documented in open mesquite grasslands and desert scrub/grasslands on the desert valley floor (USFWS 2007c).

The lesser long-nosed bat is a yellow-brown or cinnamon gray bat, with a total head and body measurement of approximately 8 cm (3 inches). The tongue measures approximately the same length as the body. This species also has a small nose leaf (FWS 2001b). Lesser long-nosed bat was listed as federally endangered without critical habitat on September 30, 1988 (53 FR 38456). The species
historically ranged from southern Arizona in the Picacho Mountains, the Agua Dulce Mountains, and the Chiricahua Mountains to southwestern New Mexico in the Animas and Peloncillo Mountains through much of Baja California, Mexico (FWS 1994). These bats are seasonal (April to September) residents of southeastern Arizona, and possibly extreme western Arizona (i.e., Cochise, Pima, Santa Cruz, Graham, Pinal and Maricopa Counties, Arizona) (FWS 2001b, 2005). Within the action area for the TIMR Program, there are at least two maternity roost sites: Bluebird Mine and Copper Mountain Mine; and five post-maternity roost sites: Patagonia Bat Cave, Manila Mine, Coal Mine Springs, Cabeza Prieta NWR, and the State of Texas Mine (FWS 1994, FWS 1997). A sixth post-maternity roost site, the Cave of the Bells, occurs immediately adjacent to the action area (FWS 1994). Habitat for the species includes mainly desert scrub habitat in the U.S. portion of its range. In Mexico, the species occurs up into high elevation pine-oak and ponderosa pine forests. Within the United States, this species forages at night on nectar, pollen from columnar cacti (such as saguaros), and agaves with branched flower clusters (FWS 2001b). Considerable evidence exists for the interdependence of *Leptonycteris* bat species and certain agaves and cacti (FWS 2001b). During daylight, lesser long-nosed bats roost in caves or abandoned mines. Impacts to foraging resources have been identified as a threat to this species. Impacts to forage resources, including the conversion of habitat for agricultural uses, livestock grazing, woodcutting, urbanization, and other development might contribute to the decline of long-nosed bat populations. In addition, occupancy of communal roost sites by illegal border crossers and recreational users is a potential threat. These bats are particularly vulnerable due to many individuals using only a small number of communal roosts (FWS 2001b). In general, the trend in overall number of lesser long-nosed bats has been stable or increasing in both the United States and Mexico. In part, for this reason, the FWS recommended reclassifying the status of this species as threatened (FWS 2007a).

The Mexican spotted owl has large, dark eyes, an overall dark to chestnut brown coloring, whitish spots on the head and neck, and white mottling on the abdomen and breast (FWS 1995a). Mexican spotted owl was listed as federally-threatened on March 16, 1993 (58 FR 14248), with critical habitat designated on August 31, 2004 (69 FR 53182). Critical habitat for Mexican spotted owl occurs in the action area for the proposed project. The Mexican spotted owl inhabits canyon and forest habitats across its range and is frequently associated with mature mixed-conifer, pine-oak, and riparian forests. Owls are usually found in areas with some type of water source such as perennial streams, creeks, and springs. Mexican spotted owls use a variety of habitats for foraging, including multi-layered forests with many potential patches. In areas within Arizona and New Mexico, forests used for roosting and nesting often contain mature or old-growth stands with complex structure. The breeding period for Mexican spotted owls is March through June (FWS 1995a). The primary threats to the Mexican spotted owl are even-aged timber harvest and the threat of catastrophic wildfire. Additional threats include development from oil, gas, and mining; and recreation (FWS 1995a).

The New Mexico ridge-nosed rattlesnake is a small (30- to 60-cm- [12 to 24-inch] long), montane, grayish-brown rattlesnake with a distinct ridge on the tip of its snout. The diet of the New Mexico ridge-nosed rattlesnake consists of a broad range of prey including small mammals, birds, lizards, arthropods, and other snakes. Reproduction and birthing periods generally occur between early August and mid-October, with the majority of births occurring in mid-September. This species is active during periods of moderate temperatures, both daily and seasonally. New Mexico ridge-nosed rattlesnakes are active from April to October. The greatest periods of activity coincide with the rainy
season in the Animas Mountains (July to September) (FWS 1985). New Mexico ridge-nosed rattlesnake was listed as federally-threatened with critical habitat on August 4, 1978 (43 FR 34479). Critical habitat for New Mexico ridge-nosed rattlesnake does not occur in the action area. Natural threats to the New Mexico ridge-nosed rattlesnake include predation, starvation, and pathogenic-related diseases that remain poorly understood (FWS 1985). Other threats, more important to the decline in population numbers include over-collecting by the pet trade, and the alteration of habitat by fire suppression, climate change, grazing, mining, and development (FWS 1985).

The ocelot is a medium-sized nocturnal cat, measuring up to 3 feet in body length and weighing twice as much as a large domestic cat. It is slender and covered with attractive, irregular-shaped rosettes and spots that run the length of its body. The ocelot’s background coloration can range from light yellow to reddish gray, to gold, and to a grayish gold color. The ocelot is divided into as many as 11 subspecies; 2 subspecies occur in the United States: the Texas/Tamaulipas ocelot (L.p. albescens) and the Arizona/Sonora ocelot (L.p. sonoriensis) (FWS 2010c). The U.S. population of ocelot was listed as federally-endangered without critical habitat on August 20, 1982 (47 FR 31670). The Arizona/Sonora ocelot subspecies is known to occur in southern Arizona and northwestern Mexico. The first live Arizona/Sonora ocelot seen in Arizona since the 1960s was documented in Cochise County, Arizona, in November 2009. In April 2010, an ocelot was found dead on a road near Globe, Arizona. In February 2011, the Arizona Game and Fish Department reported that an ocelot was observed in the Huachuca Mountains of southern Arizona. This individual has been subsequently detected by trail cameras a number of times in the Huachuca Mountains, including as recently as spring 2012. A possible fourth ocelot was also detected in the Huachuca Mountains in spring 2012. In addition, a number of sightings of ocelot have been documented directly south of the U.S. border in Sonora, Mexico, including more than four ocelots in the Sierra Azul, 30 to 35 miles southeast of Nogales since 2007; and one ocelot in 2009 in the Sierra de Los Ajos, 30 miles south of Naco, Mexico (FWS 2010c). A female with a kitten was reportedly photographed at Rancho El Aribabi, in the Sierra Azul, in February 2011. In Arizona, little is known about habitat use. Some studies suggest that Arizona/Sonora ocelots are most often associated with tropical or subtropical habitat, including subtropical thornscrub, tropical deciduous forest, and tropical thornscrub (FWS 2010c). Threats to the ocelot include destruction, modification, and curtailment of its habitat and range; collection for commercial, recreational, scientific, and educational purposes; and disease and predation (FWS 2010c).

The adult male masked bobwhite has a deep cinnamon-colored breast, black head and throat, and crown feathers that darken with age. The female masked bobwhite has plumage that is mottled brown, black, and white, with a pale cinnamon-colored throat (FWS 1995b). The masked bobwhite was listed as federally-endangered without critical habitat on June 2, 1970 (35 FR 8495). The distribution of the masked bobwhite includes south-central Arizona and Sonora, Mexico. The northern limit of historic range is defined by the Altar and Santa Cruz valleys in Arizona. It was extirpated from the United States by about 1900 and reintroduced at the Buenos Aires NWR in southern Arizona (NatureServe 2010). The masked bobwhite was listed as endangered as a result of habitat loss due to overgrazing and possibly due to competition with other native species of quail (NatureServe 2010). Current threats include factors related to their extremely small population size, vulnerability of the captive flock, ongoing drought, and climate change.
The Cochise pincushion cactus is a small unbranched cactus, 1.4 to 6 centimeters (cm) (0.5 to 2.4 inches) in diameter and covered by white, cottony areoles (i.e., spine-bearing structures), overlapped by radial spines within the areoles. This species has a whitish appearance with pale yellow to light beige flowers that bloom in March. Flowers are followed by orange-red to scarlet fruits that dry to a brown color rather quickly and can contain up to 20 seeds (FWS 1993b). Cochise pincushion cactus was listed as a Federal threatened species without critical habitat on January 9, 1986 (51 FR 952). Threats to the Cochise pincushion cactus include habitat degradation from cattle, wildlife, feral animals, illegal border activities, minerals exploration, development (FWS 1993b), and competition from invasive plant species, especially grasses (FWS 2007b). Survival and reproduction of the Cochise pincushion cactus could be affected by prolonged periods of severe drought (FWS 1993b).

Effects of the Proposed Action

There are a number of potential effects to these upland species from the proposed action. However, maintenance and repair activities would occur infrequently, and CBP has included a number of BMPs and other measures to reduce the potential for these effects.

Potential direct impacts to the upland plant species from maintenance and repair activities include direct injury and fatality from trampling or crushing by equipment, alteration of the plant seed bank, and habitat degradation from disturbance of soils. To avoid these effects and habitat degradation from removal of canopy cover, vegetation clearing will not occur in suitable habitat within the range or designated critical habitat of these threatened and endangered species. If a threatened or endangered species, PCE, or other indicators of suitable habitat occur within the project area, then further consultation with FWS will be required.

Potential direct impacts to jaguar and ocelot include the risk of direct injury and fatality from maintenance vehicles accessing tactical infrastructure and changes in behavior resulting from noise and other disturbances associated with human presence during maintenance and repair activities. Occurrences of jaguar and ocelot in Arizona are extremely rare, and as previously mentioned, maintenance and repair activities would occur infrequently. Maintenance and repair activities would occur within or immediately adjacent to existing tactical infrastructure, and would, therefore, result in no measureable degradation, modification, or habitat fragmentation of undisturbed areas where jaguars and ocelots potentially occur. The presence of maintenance crews and equipment, and their associated noise, could cause jaguars and ocelots to move away from an area or otherwise modify their behavior. Because most repair and maintenance activities would be completed within an area in less than 1 day, and almost all would be completed within a few days, any displacement or other associated adverse effects would be temporary and minor. Additionally, because jaguars and ocelots are so rare in the action area, the potential for an individual jaguars or ocelots to encounter maintenance activities is extremely unlikely to occur, and such effects therefore are discountable.

The potential direct impacts on lesser long-nosed bat include disruption of normal roosting and foraging behavior due to noise and lighting associated with maintenance and repair activities, and degradation of foraging habitat from vegetation removal. Maintenance activities that occur at night have the potential to interfere with a bat’s ability to locate and find food (Schaub et al. 2008), and bats might avoid areas where maintenance noise is present. Maintenance and security lighting have
the potential to impact bat behavior, altering commuting routes to foraging habitat (Stone et al. 2009). However, work at night within 5 miles of any known roost sites of the lesser long-nosed bat will be minimized from mid-April through mid-September. If night lighting is unavoidable, light will shine directly onto the work area to ensure worker safety and efficiency, and light will not exceed 1.5 foot-candles in lesser long-nosed bat habitat. Considerable evidence exists for the interdependence of *Leptonycteris* bat species and certain agaves and cacti (FWS 2001b). To avoid affecting the availability of these important forage species, removal of columnar cacti (i.e., saguaro and organ pipe) and agave within the range of the lesser long-nosed bat will be limited to the minimum necessary to maintain drivable access roads and to maintain the functionality of other tactical infrastructure. Prior to conducting any maintenance or repair activity outside of the existing disturbed footprint of tactical infrastructure within the range of this species, a qualified biologist will conduct a survey to identify and flag all columnar cactus and agave to be avoided. In addition, CBP will comply with all requirements of land management agencies for the protection and replacement of cacti and yucca. By implementing these BMPs, the proposed action would cause very little or no habitat degradation and would not harm or otherwise directly adversely affect lesser long-nosed bats; therefore, the potential for adverse direct effects would be discountable and any effects that might occur would be insignificant.

Potential direct impacts to masked bobwhite and Mexican spotted owl include the risk of direct injury and fatality from maintenance activities, and habitat degradation from vegetation removal. Avian species are particularly susceptible to adverse affects during the breeding and nesting season. Masked bobwhites nest on the ground, increasing the potential for nest destruction, fatality of incubating hens, or loss of very young, less mobile chicks during the nesting season (FWS 1995b, FWS 2009). Removal of vegetation could affect threatened and endangered avian species by reducing suitability of habitat if enough vegetation is removed that it fragments the habitat and alters its structure. Vegetation removal will be limited to the minimum necessary to maintain drivable access roads and to maintain the functionality of other tactical infrastructure and will be confined to the existing disturbed footprint. This limited vegetation control will be conducted outside of the nesting season. If vegetation clearing is to be conducted adjacent to suitable habitat of a threatened or endangered bird species (i.e., savannah grassland within Buenos Aires NWR for masked bobwhite, and closed-canopy forests [riparian, mixed conifer, pine-oak, and pinyon juniper woodland] and steep, narrow, entrenched, rocky canyons and cliffs within designated critical habitat for Mexican spotted owl), qualified personnel with experience identifying suitable habitat of that species will delineate and clearly mark the suitable habitat to be avoided. In addition to the vegetation clearing restrictions previously mentioned, no maintenance and repair activities will be conducted within areas classified as protected activity centers of Mexican spotted owls during the nesting season. For all other maintenance activities to be conducted within suitable habitat of a threatened or endangered bird species during the nesting season, the following avoidance measures will apply: A qualified biologist will conduct a survey for threatened and endangered birds prior to initiating maintenance activities. If a threatened or endangered bird is present, a qualified biologist will survey for nests approximately once per week within 396 meters (1,300 feet, Mexican spotted owl) or 152 meters (500 feet, all other species) of the maintenance area for the duration of the activity. If an active nest is found, no maintenance will be conducted within 396 meters (1,300 feet, Mexican spotted owl) or 91 meters (300 feet, all other species) of the nest until the young have fledged. By implementing these BMPs, the potential for direct and indirect effects from the proposed action will be minimal and discountable.
and any effects that might occur would be negligible. In addition, all maintenance vehicles will be limited to a maximum speed of 35 mph on major unpaved roads (i.e., graded with ditches on both sides) and 25 mph on all other unpaved roads. Based on these considerations, injury to threatened and endangered avian species from striking a CBP maintenance vehicle is extremely unlikely to occur.

Potential direct impacts to New Mexico ridge-nosed rattlesnake include the risk of direct injury and fatality from maintenance activities. This species is limited to a very small area within the action area, and maintenance and repair within that area would be limited to within and immediately adjacent to existing tactical infrastructure. Maintenance activities would be avoided within defined New Mexico ridge-nosed rattlesnake habitat when the rattlesnakes are active from April to October. New Mexico ridge-nosed rattlesnake habitat is defined as occupied habitat, critical habitat, and suitable habitat (i.e., pine-oak woodlands at high elevations of 1,700 to 2,750 meters [5,500 to 9,000 feet]) in the Peloncillo Mountains. If maintenance and repair activities cannot be avoided within the activity period, maintenance and repair vehicles would not exceed a speed of 15 to 20 miles per hour (mph) during periods of elevated roaming and foraging activities from July through August within defined New Mexico ridge-nosed rattlesnake habitat. Wildlife BMPs will prevent entrapment of this species in excavated, steep-walled holes or trenches. Visible space underneath all vehicles and heavy equipment will be checked for listed species and other wildlife prior to moving vehicles and equipment at the beginning of each workday and after vehicles have idled for more than 15 minutes. Indirect effects to New Mexico ridge-nosed rattlesnakes could occur from increased raptor predation, facilitated by project infrastructure. This will be avoided because temporary light poles and other pole-like structures used for maintenance activities will have anti-perch devices to discourage roosting by birds. BMPs and measures within the proposed action designed to minimize or avoid impacts on New Mexico ridge-nosed rattlesnakes will be implemented and the potential for effects is discountable, and any effects that might occur would be insignificant.

Potential direct impacts to Cochise pincushion cactus include the risk of direct injury and habitat loss from maintenance activities. To avoid direct impacts on Cochise pincushion cactus, no ground disturbance will occur outside the existing TIMR footprint within known habitat for this species (i.e., high-calcium Permian limestone, at elevations from 1,280 to 1,433 meters [4,200 to 4,700 feet] where Chihuahuan desert scrub transitions to semi-desert grassland). By avoiding suitable habitat where these protected plants occur, the proposed action would not harm individual plants, cause habitat degradation, or otherwise directly adversely affect Cochise pincushion cactus. Potential indirect impacts on this species include increased erosion and increased potential for invasive species and fire. Recently disturbed soils can have an increased potential for invasive species such as Lehman’s lovegrass (Eragrostis lehmannian) and Boer lovegrass (Eragrostis chloromelas) to become established. These and other invasive species tend to form dense stands that promote higher intensity fires that occur more often. However, coordination with the CBP environmental SME will be conducted in order to determine if the maintenance activities occur in a highly sensitive area or an area that poses an unacceptable risk of transmitting invasive species. If it is determined that maintenance activities occur in such an area, the CBP cleaning protocol will be followed. In addition, a fire prevention and suppression plan will be developed and implemented for all maintenance and repair activities that require welding or otherwise have a risk of starting a wildfire. Based on the implementation of BMPs designed to avoid or reduce these types of impacts, these impacts would be unlikely to occur.
Potential direct impacts to the upland wildlife species discussed above also include noise disturbances from increased human presence, injury or fatality from collisions with maintenance vehicles and during maintenance activities, and habitat degradation from vegetation removal. As described within the proposed action, maintenance and repair activities would occur infrequently. For example, inspections and routine maintenance of access roads would occur up to four times per year, and routine maintenance of other tactical infrastructure would occur less often. These maintenance activities will include trips by vehicles ranging in size from pickup trucks to heavy equipment such as dump trucks and road graders. Noise levels from pickup trucks are anticipated to be similar to noise levels of most vehicles currently using the roadways. Noise levels from multiple pieces of heavy equipment, such as backhoes, construction trucks, and front-end loaders are anticipated to temporarily increase ambient sound levels. Noise effects associated with maintenance activities are expected to occur at any given location for one to a few days in duration. The distance and levels at which noise is likely to disturb these upland species is dependent on the sensitivity of individual species. Threatened and endangered wildlife may be exposed to noise arising from maintenance and repair activities; however, the level of noise will be reduced through noise BMPs.

Noise and visual disturbance associated with maintenance and repair activities could disrupt breeding and foraging behaviors of these upland wildlife species. For example, such disturbances could cause adult Mexican spotted owls and masked bobwhite quail to flush from roosts or nests. However, no TIMR Program activities will occur within the nesting season of these species or surveys will be conducted to locate nesting areas so that they can be avoided. As described above, BMPs will be implemented that will avoid impacts during the nesting season and measures will be taken to ensure that no maintenance activities will occur within the vicinity of nesting spotted owls or bobwhite quail. Noise and disturbance associated with the proposed action could also result in the disturbance of roosting bats, if such disturbance occurs in proximity to roosts while bats are present. However, CBP will not conduct maintenance activities within or at the entrance to caves or mineshafts, and no maintenance and repair activities will be conducted within 0.5 miles of any known lesser long-nosed bat roost between mid-April through mid-September. Effects from noise and disturbance to jaguar, ocelot, and masked bobwhite quail are discountable because these species are rare in the action area, and the potential for an individual to encounter maintenance activities is extremely unlikely to occur.

Conclusion

The Service concurs with the CBP determination that the proposed action may affect, but is not likely to adversely affect the upland species named above, based upon the following:

- Maintenance and repair activities will occur infrequently.
- Most maintenance and repair will occur within the existing, disturbed footprint of the tactical infrastructure. As a result, impacts to the habitat of these upland species will be insignificant in most instances.
- For cases where CBP may need to conduct maintenance and repair activities outside of the existing infrastructure footprint, no ground disturbance will occur in species habitat or critical habitat without further consultation with the FWS.
• The presence of maintenance crews and equipment, and their associated noise, could cause these upland species to move away from or avoid an area or otherwise modify their behavior. Because most repair and maintenance activities will be completed within an area in less than one day, and almost all will be completed within a few days, any displacement or other associated adverse effects would be temporary and minor.
• CBP will conduct additional consultation with the FWS if herbicides must be used in habitat where the species’ presence is documented.
• Maintenance vehicles will not exceed a speed of 15 to 20 mph during periods of elevated roaming and foraging activities from July through August within New Mexico ridge-nosed rattlesnake habitat (i.e., pine-oak woodlands at high elevations of 1,475 and 2,800 meters [5,600 to 9,000 feet]).
• Wildlife BMPs will prevent entrapment of New Mexico ridge-nosed rattlesnake in excavated, steep-walled holes or trenches.
• Visible space underneath all vehicles and heavy equipment will be checked for listed species and other wildlife prior to moving vehicles and equipment at the beginning of each workday and after vehicles have idled for more than 15 minutes.
• Temporary light poles and other pole-like structures used for maintenance activities will have anti-perch devices to discourage roosting by birds.
• No maintenance and repair activities will be conducted within areas classified as protected activity centers of Mexican spotted owls during the nesting season (see Table 2).
• Vegetation clearing will not occur in suitable habitat within the range or designated critical habitat of threatened and endangered species. If a threatened or endangered species, primary constituent element (PCE), or other indicators of suitable habitat occur within the project area, then further consultation with FWS will be required.
• Vegetation control in suitable habitat of threatened or endangered bird species (see Table 2) will be limited to the minimum necessary to maintain drivable access roads and to maintain the functionality of other tactical infrastructure. This limited vegetation control will be conducted outside of the nesting season. This restriction does not apply to areas where protocol surveys have been conducted and it has been determined that the area is not occupied and does not contain PCEs.
• If vegetation clearing is to be conducted adjacent to suitable habitat of a threatened or endangered bird species, qualified personnel with experience identifying suitable habitat of that species will delineate and clearly mark the suitable habitat to be avoided.
• For all other maintenance activities to be conducted within suitable habitat of a threatened or endangered bird species during the nesting season, the following avoidance measures will apply. A qualified biologist will conduct a survey for threatened and endangered birds prior to initiating maintenance activities. If a threatened or endangered bird is present, a qualified biologist will conduct a survey for nests approximately once per week within 1,300 feet (Mexican spotted owl) or 500 feet (all other species) of the maintenance area for the duration of the activity. If an active nest is found, no maintenance will be conducted within 1,300 feet (Mexican spotted owl) or 300 feet (all other species) of the nest until the young have fledged.
• Removal of columnar cacti (i.e., saguaro and organ pipe) and agave will be limited to the minimum necessary to maintain drivable access roads and to maintain the functionality of other tactical infrastructure. Prior to conducting any maintenance or repair activity outside of the
existing disturbed footprint of tactical infrastructure within the range of this species, a qualified biologist will conduct a survey to identify and flag all columnar cactus (i.e., saguaro and organ pipe) and agave to be avoided.

- No maintenance and repair activities will be conducted within 0.5 miles of any known lesser long-nosed bat roost between mid-April through mid-September.
- For maintenance and repair activities that will take place greater than 0.5 miles and less than 5 miles of any known lesser long-nosed bat roost, limit activities to daylight hours only from mid-April through mid-September to avoid effects on bats in bat roosts. If night lighting is unavoidable: (1) minimize the number of lights used; (2) place lights on poles pointed down toward the ground, with shields on lights to prevent light from going up into sky, or out laterally into landscape; and (3) selectively place lights so they are directed away from native vegetation.
- Jaguars, ocelots, and masked bobwhite quail are so rare in the action area that the potential for individuals of these species to encounter maintenance activities is extremely unlikely to occur, and such effects therefore are discountable.

Critical Habitat

Critical habitat for the Mexican spotted owl and the New Mexico ridge-nosed rattlesnake has been designated. Critical habitat has recently been proposed (77 FR 50214) for the portion of the jaguar’s range within the U.S. in Arizona and New Mexico, but CBP has determined that the activities associated with the TIMR Program will have no effect on proposed jaguar critical habitat. We have evaluated potential effects to the critical habitat for the Mexican spotted owl and the New Mexico ridge-nosed rattlesnake that may result from the proposed action.

Critical habitat was designated for the Mexican spotted owl on August 31, 2004, in 69 FR 53182–53230. The primary constituent elements of critical habitat for this species include the habitat components that provide the following:

PCEs related to forest structure are as follows:

- "A range of tree species, including mixed conifer, pine-oak, and riparian forest types, composed of different tree sizes reflecting different ages of trees, 30 percent to 45 percent of which are large trees with a trunk diameter of 12 inches (0.3 meters) or more when measured at 1.4 meters (1.4 meters 4.5 feet) from the ground”

- “A shade canopy created by the tree branches covering 40 percent or more of the ground”

- “Large dead trees (snags) with a trunk diameter of at least 12 inches (0.3 meters) when measured at 1.4 meters (1.4 meters 4.5 feet) from the ground.”

PCEs related to maintenance of adequate prey species are as follows:

1. “High volumes of fallen trees and other woody debris”
2. “A wide range of tree and plant species, including hardwoods”

3. “Adequate levels of residual plant cover to maintain fruits, seeds, and allow plant regeneration.”

PCEs related to canyon habitat include one or more of the following:

1. “Presence of water (often providing cooler and often higher humidity than the surrounding areas)”

2. “Clumps or stringers of mixed conifer, pine-oak, pinyon-juniper, and/or riparian vegetation”

3. “Canyon wall containing crevices, ledges, or caves;”

4. “High percent of ground litter and woody debris."

Critical habitat areas were selected to provide for the conservation of the Mexican spotted owl throughout the remaining portion of its geographic range in the United States. The designated critical habitat for this species consists of 8.6 million acres in Arizona, Colorado, New Mexico, and Utah, all of which are located on Federal lands. There are five designated critical habitat units for the Mexican spotted owl within the action area in Arizona. These units are located within and near the Santa Rita Mountains, Atascosa and Pajarito Mountains, Patagonia Mountains, Huachuca Mountains, and Chiricahua Mountains, and are all primarily within Coronado National Forest.

The TIMR Program within these critical habitat units includes continued maintenance of 35 miles of existing road, 5 culverts, 5 low water crossings, and 5 towers. Limited management of vegetation adjacent to existing tactical infrastructure will continue (e.g., trimming of branches and other vegetation removal where vegetation encroaches on road shoulders, and removal of understory vegetation within 3 meters [10 feet] of culverts to permit clearing of pipes). However, other vegetation clearing and control will not occur in Mexican spotted owl critical habitat. If a Mexican spotted owl or PCEs are observed within the project area, then CBP will conduct further consultation with FWS to avoid impacts. The maintenance and repair of tactical infrastructure, including continued management of vegetation adjacent to roads and other infrastructure, is not anticipated to measurably diminish the value of PCEs that are essential to conservation of the Mexican spotted owl within the aforementioned critical habitat units.

Critical habitat was designated for the New Mexico ridge-nosed rattlesnake on August 4, 1978. As presented in 43 FR 34476–34480, the PCEs of critical habitat for this species include, but are not limited to, the following: “Dens to provide winter and summer retreats, vegetation to provide cover, and an abundance of lizards and rodents to provide an adequate source of food items.”

The designated critical habitat for this species is in Hidalgo County New Mexico, and consists of an area between 1,890 and 2,600 meters (6,200 and 8,532 feet) in elevation in Bear, Mountain, and Spring canyons in the Animas Mountains (43 FR 34476–34480). Critical habitat for the New Mexico ridge-nosed rattlesnake does not occur in the Arizona action area.

The Service also concurs with the CBP determination that the proposed action may affect, but is not likely to adversely affect, destroy, or adversely modify critical habitat for the Mexican spotted owl or
the New Mexico ridge-nosed rattlesnake based upon the following:

- All TIMR Program activities within critical habitat will occur within and immediately adjacent to the footprint of existing tactical infrastructure.
- BMPs designed to avoid impacts on critical habitat of this species will be implemented.
- Vegetation clearing and control beyond that described above will not occur in Mexican spotted owl critical habitat (i.e., closed-canopy forests [riparian, mixed conifer, pine-oak, and pinyon juniper woodland] and steep, narrow entrenched rocky-canyons and cliffs). If vegetation clearing is to be conducted adjacent to suitable habitat of a threatened or endangered bird species, qualified personnel with experience identifying suitable habitat of that species will delineate and clearly mark the suitable habitat to be avoided. That vegetation clearing or control will be conducted from July through February, outside of the nesting season.
- If a Mexican spotted owl or PCEs are observed within the action area, then CBP will conduct further consultation with FWS to avoid impacts. The maintenance and repair of tactical infrastructure, including continued management of vegetation adjacent to roads and other infrastructure, is not anticipated to measurably diminish the value of PCEs that are essential to conservation of the Mexican spotted owl within the aforementioned critical habitat units.
LITERATURE CITED

APPENDIX B. FIELD WORK AMPHIBIAN DISEASE PREVENTION PROTOCOL

All resource and land management agencies, researchers, and others conducting aquatic monitoring or research are encouraged to follow this protocol to prevent or reduce the spread of amphibian and other aquatic borne diseases. This protocol for working in wetland habitats is adapted from the Declining Amphibian Populations Task Force Fieldwork Code of Practice, which provides guidelines for use by anyone conducting fieldwork in amphibian or other aquatic habitats. Chytrid fungus, iridoviruses, and other highly contagious and deadly diseases are being reported worldwide, and may be a significant cause of amphibian population declines. Pathogens such as chytrid fungus can easily be transferred between habitats on equipment and footwear of fieldworkers, spreading to new locations containing species that have little or no resistance to the organisms. It is vitally important for anyone involved in amphibian research and other types of wetland studies, including those on fish, bats, invertebrates and plants, to take steps to prevent the introduction of disease agents and parasites. For further Declining Amphibian Populations Task Force information, see http://www.open.ac.uk/daptf/index.htm (website current as of March 2004).

Requirements for Working in Wetland and Aquatic Systems

• Dedicated equipment will be used by staff, crews, and permitees frequently working in springs occupied by Chiricahua leopard frogs. This includes footwear. Dedicated equipment will be cleaned and stored separately.
• Equipment which cannot be duplicated or can be easily cleaned must be disinfected between visits to springs. Equipment will be rinsed and all debris removed. Surfaces, which should appear clean, will be scrubbed with one of the following solutions:
 o 1) rinsing with 1 percent sodium hypochlorite (household bleach);
 o 2) 20-second exposure to 70 percent ethanol or 1 mg/ml benzalkonium chloride;
 o 3) desiccation and exposure to 50-60°C heat for 30 minutes;
 o 4) 0.012 percent Path-X™ or 0.008 percent quaternary ammonium compound 128 (both containing DDAC, didecyl dimethyl ammonium chloride as active ingredient)
• Following disinfection, equipment should be rinsed copiously with tap water.
• Footwear belonging to occasional users must be completely cleaned before and between visiting spring sites, with special attention paid to grips, cleats, and laces. Felt-bottomed wader boots are very difficult to clean completely and should be avoided whenever possible.

To further reduce the risk of disease transfer, all equipment will be completely dried before re-use. Bat and bird netting which has remained out of the water does not have to be wetted. Poles and stakes need to be completely cleaned as above. Trowels used to collect plants need to be dedicated or completely disinfected between springs.
• In remote locations, clean all equipment as described above upon return to the lab or base camp. If disinfecting in the field is necessary, sanitize all items before arriving at the next location. Do not use solutions in the immediate vicinity of the springs or in other habitats. Used cleaning materials (including liquids) must be disposed of safely and if necessary taken back to the lab for proper disposal.

• When animals are collected, separation of specimens from different sites will be ensured and great care taken to avoid indirect contact between them (e.g. via handling, reuse of containers) or with other captive animals. Isolation from unsterilized plants or soils that have been taken from other sites is also essential.

• Amphibians that are headstarted for release into refugia will be grown using clean lab methods (i.e., quarantine) and disinfected prior to release.
Mr. Christopher Colacicco

Figure 2a. Project Implementation

<table>
<thead>
<tr>
<th>Step 1:</th>
<th>Sector BPFTI PMs and personnel identify M&R needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2:</td>
<td>CBP BPFTI PMO team identifies technical approach and design specifications</td>
</tr>
<tr>
<td>Step 3a:</td>
<td>Sector BPFTI PMs</td>
</tr>
<tr>
<td></td>
<td>1. Prioritize activities</td>
</tr>
<tr>
<td></td>
<td>2. Specify interval</td>
</tr>
<tr>
<td>Step 3b:</td>
<td>Sector BPFTI PMs determine species-specific BMPs (see separate process detail)</td>
</tr>
<tr>
<td>Step 3c:</td>
<td>Sector BPFTI PMs coordinate with landowners</td>
</tr>
<tr>
<td></td>
<td>1. Scheduling</td>
</tr>
<tr>
<td></td>
<td>2. BMPs</td>
</tr>
<tr>
<td>Step 4:</td>
<td>Sector BPFTI PMs</td>
</tr>
<tr>
<td></td>
<td>1. Develop cost estimate</td>
</tr>
<tr>
<td></td>
<td>2. Vet through Sector, including Environmental SME approval</td>
</tr>
<tr>
<td></td>
<td>3. Acquire BPFTI PMO approval</td>
</tr>
<tr>
<td>Step 5:</td>
<td>CBP BPFTI M&R team member inspects work, including documentation of BMPs</td>
</tr>
<tr>
<td>Step 6:</td>
<td>CBP BPFTI M&R team members suggest improvements for future M&R activities</td>
</tr>
<tr>
<td>Step 7:</td>
<td>CBP BPFTI M&R team members suggest improvements for future M&R activities</td>
</tr>
</tbody>
</table>

Feedback (continuous improvements)

Acronyms
- BMP = Best Management Practice
- BPFTI = Border Patrol Facilities Tactical Infrastructure
- CBP = U.S. Customs and Border Protection
- M&R = Maintenance and Repair
- PM = Program Manager
- PMO = Program Management Office
- SME = Subject Matter Expert
Figure 2b. Step 3b Process Detail for the Sector Environmental SMEs
Figure 3a. Action Area for Proposed Tactical Infrastructure Maintenance and Repair Areas in Arizona
Mr. Christopher Colacicco

Figure 3b. Action Area for Proposed Tactical Infrastructure Maintenance and Repair Areas in Arizona
Figure 4. Current occupied range of the Sonoran pronghorn in Arizona and Sonora, Mexico.
Figure 5. Current Sonoran pronghorn distribution in the United State: Records from 1994-2001.
Figure 6. Historical range of Sonoran pronghorn in the United States and Mexico
Figure 7. TIMR within Sonoran Pronghorn Range
Figure 8. Known range of the Chiricahua leopard frog as of 2007. The map covers areas in Arizona, New Mexico, and Mexico. All eight recovery units are delineated by number.
Figure 9. TIMR within Sonoran Tiger Salamander Range
Figure 10. TIMR within Pina Pineapple Cactus Range
Hi

I just wanted to make sure that you were able to open the link sent you for the TIMR BO which includes our concurrence for TIMR on TON.

Please let us know if you have any questions on this.

Thank you,

Fish and Wildlife Biologist/Mexico Program Coordinator
U.S. Fish and Wildlife Service
Arizona Ecological Services Office
201 North Bonita Avenue, Suite 141
Tucson, Arizona 85745
http://www.fws.gov/southwest/es/arizona/

On Tue, Feb 28, 2017 at 12:54 PM, wrote:

Hi

Below are the links that you requested for the TIMR information. Also can you provide me with a date that you will be completed with the comments? We need to complete the EA ASAP as to move forward with the resolution process. The goal is to move this for a special session to council in March. We need some lead time on our end for signature and
Morning

The 2016 AZ TON TIMR BO is 29.2 MB which I don’t know if I can send to you as email attachment.

And aren’t the emails at the Nation allow only 5 MB?
I can send the file to you via AMRDEC?

OR follow the FWS links below directly to their web page and download directly to your desktop and hopefully can do the same.

https://www.fws.gov/southwest/es/arizona/reading.htm

https://www.fws.gov/southwest/es/arizona/Biological.htm

29.2 MB

(b) (6)

Environmental Planning & Real Estate Branch
Office of Acquisition
US Customs & Border Protection

Office: (b) (6)
Cell: (b) (6)
FAX: (b) (6)

1901 S. Bell St. Ste. 700
Arlington, VA 20598
Hi Team,

Sorry to do this, while incorporating updates from Sector feedback this morning I came across an incorrect classification of data in TCA for the maps below. I've updated it and the attached map series should be used in lieu of those downloaded with the link below.

Thanks,

From: (b) (6)
Sent: Friday, February 03, 2017 1:25 PM
To: (b) (6)
Cc: (b) (6)
Subject: RE: Waiver Map - MR386

Updated:

(b) (5)

(b) (5)

this is the full map series.

Thanks,

(b) (6)

(b) (6) | Associate | GIS Specialist | Michael Baker International
100 Airside Drive | Moon Township, PA 15108 | [O] 7 (b) (6)
All-

Thank you all for your comments on the first draft of the project-specific Programmatic Agreement for Tactical Infrastructure Maintenance and Repair (TIMR) activities in Counties and your participation in the January consultation meeting. CBP has revised the document in response to your comments and a revised draft is attached for your review. We have provided both a clean version and one with Track Changes to help with your review.

The ACHP has notified CBP that they will not be participating in this agreement. The Hopi Tribe has declined to participate, though they wish to be informed of any inadvertent discoveries. CBP is following up with the remaining tribes to see if they wish to participate.

CBP requests that you review the draft agreement and provide either written comments or an email confirming that you have no comments by **April 19, 2017**. We would like to have a consulting party call the following week to discuss any major issues you have and the next steps.

Regards,

Environmental Protection Specialist
Border Patrol & Air and Marine Program Management Office
U.S. Customs and Border Protection
Office:
Mobile:
We get the draft letter for the other sector projects drafted by next week and have them circulated by the end of the week.

I’m good with the letter and with sharing it with the Sector. Also, I believe the IPT wanted to see it too, can confirm.

Is there a timeline for a similar letter for San Diego?

Thanks,

Hi –

I just chatted with Sector and they asked if they can see a copy of the letter and the initial list of recipients. They will add input on other stakeholders that might have interest in seeing the letter.

Below are the NGOs that attended the meeting a few weeks ago.

May I share the attached with Sector? I think has some comments, but I think this version for their awareness will suffice. OFAM would like to see the final copy too for awareness.

Thanks,
No. It sounded like [b](6) would engage with BIA once he had the letter and the list.

Sounds good [b](6). Do you have a POC at BIA that you have been working with that I can share with [b](6)?
The plan was for [REDACTED] to share the letter and the list with BIA.

From: [REDACTED]
Sent: Friday, August 18, 2017 1:00 PM
To: [REDACTED]
Cc: [REDACTED]
Subject: RE: Draft Consultation Letters for Forst RGV Segment

Thanks [REDACTED] Did [REDACTED] offer to provide BIA a copy of the letter and list of tribes or do you want to do that? I don’t have any concerns with sharing the draft letter and list with BIA.

From: [REDACTED]
Sent: Friday, August 18, 2017 9:57:35 AM
To: [REDACTED]
Cc: [REDACTED]
Subject: RE: Draft Consultation Letters for Forst RGV Segment

Looking at it now. Thanks [REDACTED]

On a related note, IPL had the follow-up call with DOI/BIA on Tuesday re: tribal engagement. BIA asked to see the scoping letter – not for approval, but for awareness. They also offered to look at the list of tribes we plan to send the letter to and offer suggestions (knowing that our plan is to engage with those tribes with a nexus to the specific projects). [REDACTED] said that you and he are routinely in touch on these things.

From: [REDACTED]
Sent: Friday, August 18, 2017 12:31 PM
To: [REDACTED]
Cc: [REDACTED]
Subject: RE: Draft Consultation Letters for Forst RGV Segment

Sounds good. Thank you [REDACTED]

[REDACTED] – Please let me know if you have any other edits/comments.
Yes, we would generate similar letters for SDC, ELC, EPT, and LRT.

Thanks. Will there be similar letters for San Diego, El Centro, El Paso, and Laredo?
I received a couple of comments from DOI that need to be incorporated into the letters. The only remaining question is whether we want to include the group of NGOs that sector met with a couple of weeks ago on the distribution list. I recommend we include the NGOs.

Can you remind me of the date of your meeting with tribes and BIA, is that meeting scheduled for this week?

Hi All,

Just checking back on this . . . not sure where we stand in advance of the call tomorrow with DOI.

Thanks,

Hi All,

In advance of tomorrow’s call with DOI/BIA, I just want to check in on the status of the scoping letter and the list of tribes who would receive it. I’ve attached the last draft that I reviewed. Happy to get on a call today to discuss, if needed.

Thanks,
All-

Very much appreciate everyone’s time and effort to get the Programmatic Agreement to the point where it is ready for signature. All comments received on the Check Final version of the Agreement have been incorporated into the Final—minor comments were received from NMSHPO and NMSLO.

The following are the steps for completing the signature process:

1.) Print a hard copy of the relevant signature page and sign the document.

2.) Once signed, please scan the signed signature page and send a PDF copy to

3.) Please mail the hard copy of the signature page to:

 Customs and Border Protection
 ATTN: (b) (6)
 24000 Avila Road – Suite 5020
 Laguna Niguel, CA 92677

Once all signature pages have been received, CBP will distribute a fully executed copy of the Agreement. The goal would be to complete the signature process by the end of July.

If there are any questions, please do not hesitate to contact me.

Thanks,

Environmental Protection Specialist
Border Patrol & Air and Marine PMO
U.S. Customs and Border Protection
Office: (b) (6)
Mobile: (b) (6)
PROGRAMMATIC AGREEMENT BETWEEN
U.S. CUSTOMS AND BORDER PROTECTION,
THE NEW MEXICO STATE HISTORIC PRESERVATION OFFICE,
NEW MEXICO STATE LAND OFFICE,
AND
NEW MEXICO OFFICE OF THE BUREAU OF LAND MANAGEMENT
REGARDING TACTICAL INFRASTRUCTURE MAINTENANCE AND REPAIR
(TIMR) PROJECT, (b) (7)(E) and Counties, New Mexico

WHEREAS, U.S. Customs and Border Protection (CBP), pursuant to various authorizing statutes, including the Homeland Security Act of 2002, Pub. L. 107-296, codified at 6 U.S.C. Parts 101 et seq., and other Acts amendatory thereof and supplementary thereto, is statutorily mandated to control and guard the borders and boundaries of the United States, including the Nation’s southwest border, through the enforcement of customs, immigration, and agriculture laws and regulations, while at the same time facilitating legitimate trade and travel; and

WHEREAS, in carrying out its statutory mandate to control and guard the southwest border of the United States, CBP proposes to conduct maintenance and repair activities consisting of grading existing roads, re-establishing the road crown for proper drainage where required, compaction of caliche or other flexible road base, as needed, and vegetation control to establish a clearance using large bush hogs, or side deck mowers on existing roads in Counties managed by the New Mexico State Land Office (NMSLO) and the New Mexico Office of the Bureau of Land Management (BLM), which is an Undertaking subject to review under Section 106 of the National Historic Preservation Act (NHPA), 16 U.S.C. 470f (now 54 U.S.C. § 306108) (referred to herein as “Section 106”), and its implementing regulations, 36 CFR Part 800 (referred to herein as Undertaking); and

WHEREAS, this work shall occur only on public lands under the control of a state or federal land managing agency; and

WHEREAS, CBP has conducted a series of surveys within the Area of Potential Effects (APE) and have identified 58 sites, of which 21 are eligible for the National Register of Historic Places (National Register), 27 are of undetermined eligibility, and 10 are not eligible for the National Register as listed in Appendix B, attached hereto and incorporated by reference; and

WHEREAS, CBP intends for maintenance to occur on an as needed basis in discrete areas within this road network subject to the availability of funding over several years; and

WHEREAS, CBP has determined that the full implementation of the Undertaking may affect historic properties that are eligible for listing in the National Register; and
WHEREAS, CBP must conclude its responsibilities under 36 CFR Part 800 in order to perform maintenance and repair on NMSLO and BLM roads; and

WHEREAS, CBP has determined that the Undertaking does not meet Stipulation VI.C of the March 2015 Programmatic Agreement Regarding CBP Undertakings in States Located Along the Southwest Border of the United States due to the presence of undetermined and National Register eligible historic properties within the APE; and

WHEREAS, CBP has consulted with the New Mexico State Historic Preservation Office (SHPO) pursuant to 36 CFR Part 800; and

WHEREAS, CBP has consulted with the NMSLO regarding this Undertaking and has invited this agency to be a signatory to this Agreement due to the Undertaking potentially occurring on lands and properties under their management; and

WHEREAS, CBP has consulted with the BLM regarding this Undertaking and has invited this agency to be signatory to this Agreement due to the Undertaking potentially occurring on lands and properties under their management; and

WHEREAS, CBP is the lead federal agency for this project; and

WHEREAS, CBP has invited the Tribal governments and Tribal Historic Preservation Officers (THPOs) of Fort Sill Apache Tribe of Oklahoma, Ysleta del Sur Pueblo, Mescalero Apache Tribe, Hopi Tribe, and the White Mountain Apache Tribe (referred to herein as the Tribes) to be a Signatory to this Agreement due to demonstrated historical interests in the APE; and

WHEREAS, the Hopi Tribe has declined to participate in this Agreement; and

WHEREAS, Fort Sill Apache Tribe of Oklahoma, Ysleta del Sur Pueblo, Mescalero Apache Tribe, and the White Mountain Apache Tribe have not responded and it is assumed they decline to participate in this Agreement; and

WHEREAS, CBP has afforded the public an opportunity to comment on this Undertaking and its potential to affect historic properties through TIMR public notices in March and December of 2015 and no comments were received from the public regarding CBP’s Section 106 compliance; and

WHEREAS, CBP has notified the ACHP of the development of this Agreement in accordance with 36 CFR § 800.14(b)(3), they have declined to participate, and the ACHP is not a Signatory to this Agreement pursuant to 36 CFR § 800.14(b)(2)(iii); and

WHEREAS, CBP; the SHPO; the NMSLO; and the New Mexico BLM are the signatories to this Agreement (collectively the Signatories); and
WHEREAS, The Signatories acknowledge that implementation of this Undertaking will be more efficient if a Programmatic Agreement, pursuant to 36 CFR § 800.14(b)(1)(ii), is in place to streamline CBP’s Section 106 compliance process by identifying historic properties that may be adversely effected in the future by CBP’s maintenance activities and establishing treatment measures to minimize and resolve adverse effects; and

NOW, THEREFORE, CBP; the SHPO; the NMSLO; and the New Mexico BLM agree that CBP activities related to the maintenance and repair of roads in Counties, New Mexico shall be carried out in accordance with the following Stipulations to satisfy CBP’s Section 106 responsibilities, and any corresponding responsibilities for the Signatories to this agreement, for its Undertakings.

STIPULATIONS

To the extent of its legal authority, CBP, in coordination with the Signatories, shall ensure that the following measures are carried out:

I. APPLICABILITY

A. This Agreement is applicable to CBP Undertakings related to the maintenance and repair of existing roads located on land managed by the New Mexico BLM and existing roads located on land managed by the NMSLO in Counties. Maps showing the locations of these roads are located in Appendix A.

B. For any matter regarding Section 106 compliance not addressed in this Agreement, the provisions of Section 106 of the NHPA and its implementing regulations (36 CFR §§ 800.3 thru 800.7) shall apply.

C. This Agreement does not terminate, supersede, or modify the terms of the March 2015 PA Regarding CBP Undertakings in States Located Along the Southwest Border of the United States (2015 PA); March 2006 Memorandum of Understanding Among U.S. Department of Homeland Security and U.S. Department of the Interior and U.S. Department of Agriculture Regarding Cooperative National Security and Counterterrorism Efforts on Federal Lands along the United States’ Borders (2006 MOU); or any other individual land access or use agreements.
II. GENERAL

A. Definitions: The definitions set forth in 36 CFR § 800.16 are incorporated herein by reference and apply throughout this Agreement. The following terms are specific to this Agreement and are hereby defined:

1. Existing Road: Existing roads, paved or unpaved, on which members of the general public operate motor vehicles on non-federal lands. On Federal or Tribal land, existing roads are defined as or those existing roads/trails, paved or unpaved, on which a Federal or Tribal land management agency allows members of the general public with specially authorized access to operate motor vehicles. This definition also includes existing administrative roads/trails on which the Federal or Tribal land management agency allows access to persons specially authorized but not members of the general public. These roads may be used by CBP, another Federal agency, or a Tribe’s personnel, their agents, or contractors for the purposes of law enforcement patrols, land management activities, infrastructure and facilities access, or other mission related activities. These roads may be owned and/or maintained by CBP, another Federal agency, a Tribe, or another party, including private landowners. This definition is not intended to include temporary roads created by law enforcement personnel acting under exigent circumstances or other roads created as a result of unauthorized or illegal activity.

2. Land Manager: Individual designated by their Department or Agency with primary management authority over a land unit.

3. Party: Any current or future signatory or concurring party to this Agreement, which shall be collectively referred to herein as the “Parties.”

B. Professional Qualifications: All work done in conjunction with this Agreement shall be carried out by Federal or contractor staff whose qualifications meet the Secretary of the Interior’s Archeology and Historic Preservation: Secretary of the Interior's Standards and Guidelines, Professional Qualifications Standards in the appropriate areas of expertise, as determined by CBP’s Federal Preservation Officer (FPO) or the Director of the Energy and Environmental Management Division (EEMD).

C. Permits: CBP or its contractors shall acquire all appropriate permits from BLM, and/or the New Mexico Cultural Properties Review Committee (CPRC), as appropriate, prior to beginning work and will adhere to all permit stipulations. All survey work, including field survey and report preparation, shall be conducted under the direct supervision of personnel listed on the SHPO Directory.
D. Consultation Communications: Consultation communications, including the exchange of letters, reports, and supporting materials, will be carried out between CBP and the Signatories with draft materials submitted via electronic mail and final documents submitted via U.S. Mail. If the Signatory requires a hard copy of any of the draft materials, the Signatory will request a hard copy within two working (2) days of receipt of the draft materials by electronic mail. Each agency is responsible for making sure contact information in Appendix D, attached hereto and incorporated by reference, is current and notifying all parties within 30 days of a change to either their designated Point of Contact or contact information.

E. Timeframes: All timeframes are in calendar days unless otherwise specified.

F. Access to State Lands: The parties acknowledge and agree that CBP access to state trust lands for the purposes of performing maintenance and repair of existing roadways requires and will be governed by a separate easement or right of entry issued by the Commissioner of Public Lands and that this Agreement does not provide an independent right of access to state trust lands.

III. PROJECT REVIEW PROCESS

A. When CBP has an Undertaking that meets Stipulation I.A of this agreement, it shall review the road(s) and/or road segment(s) to determine if any of the previously identified historic properties are located within 1,000 feet of the proposed Undertaking. A table of all identified sites and their eligibility determination as of the execution date of this agreement is located in Appendix B.

1. For sites that have undetermined eligibility, a determination of eligibility will be made in accordance with Stipulation IV, below, prior to any work proceeding within 1,000 feet of the site.

2. For sites that are not eligible for the National Register, CBP has no further obligations and work may proceed with no treatment measures required.

3. For sites that are eligible for the National Register, CBP will implement treatment measures in accordance with Stipulation V, below.
B. CBP will submit written notification to the appropriate land manager(s) and SHPO of the Undertaking prior to conducting any field work or non-administrative construction activities that will occur within 1,000 feet of a known archeological site listed in Appendix B. The notification will include the road(s) and/or road segment(s) where the work will occur; a map showing the location of the road; which sites are located along the road; if CBP will be revisiting any undetermined sites and evaluating their eligibility in accordance with Stipulation IV, below; and if CBP will be implementing treatment measures for any sites listed in Appendix C. The letter will be reviewed by the land manager(s), Tribes, and SHPO within 10 days of receipt. If CBP does not receive a response, it can assume concurrence and proceed with its field work and construction activities.

IV. EVALUATION OF SITES WITH UNDETERMINED ELIGIBILITY

A. CBP, or its designee, shall revisit sites and conduct evaluative testing to determine site eligibility when CBP proposes Undertakings that will be located within 1,000 feet of a known site with undetermined eligibility. CBP will only be required to evaluate the National Register eligibility of undetermined sites listed in Appendix B.

B. CBP will submit a testing plan to the appropriate land manager and SHPO prior to conducting any field work. The plan will be prepared in accordance with BLM Manual 8110, Identifying and Evaluating Cultural Resources, and BLM Manual Supplement H-8110-1, Procedures for Performing Cultural Resources Fieldwork on Public Lands in the Area of New Mexico BLM Responsibilities and SHPO standards and guidelines in Title 4 (Cultural Resources) and Chapter 10 (Cultural Properties and Historic Preservation) of the New Mexico Administrative Code (NMAC), as appropriate. Testing plans will be reviewed concurrently by the land manager and SHPO within 30 days of receipt. If CBP does not receive a response, it can assume concurrence with the plan and proceed with the field work.

C. No artifacts will be collected during evaluative testing. All analysis will be conducted in field in conjunction with surface recordation, shovel testing, and/or auguring. All artifacts analyzed during shovel testing and auguring will be returned to the test units and immediately reburied upon completion of field analysis.
D. A draft report shall be prepared in accordance with SHPO and/or BLM standards and guidelines and shall discuss and analyze the findings. The report shall contain maps, photos, tables, site forms, and an artifact inventory. Each site will have a determination of National Register eligibility. Draft reports will be reviewed by the land manager and SHPO within 30 days of receipt. If CBP does not receive a response, it can assume concurrence with findings in the draft report and proceed with issuance of the final report and archeological site records.

V. ASSESSMENT OF EFFECTS

A. Effects to historic properties are classified as Level I (no adverse effect), Level II (potential for adverse effects), and Level III (adverse effect) based upon the historic property and its proximity to the road and right-of-way.

1. Level I (No Adverse Effect): These sites are not located within the road way or immediately adjacent to it. CBP’s Undertaking will not have an adverse effect on these properties.

2. Level II (Potential for Adverse Effects): These sites are located adjacent to the road way or in an identified staging area. CBP’s Undertaking could have an adverse effect on these properties depending on the final design.

3. Level III (Adverse Effects): These sites are located within the road way. CBP’s Undertaking will have an adverse effect on these properties.

B. For sites that have been determined eligible prior to the date of execution of this agreement, the effects have been assessed by CBP and their impact levels agreed upon by the Signatories. A table of all eligible sites and their impact level is located in Appendix C, attached hereto and incorporated by reference.

C. For sites that are determined eligible in accordance with Stipulation IV, above, CBP will assess effects and propose an impact level as part of the draft report. The land manager and SHPO will review and comment on this during the draft report review period discussed in Stipulation IV.D, above. If CBP does not receive a timely response, it can assume concurrence with its impact level and proceed with treatment measures.
VI. TREATMENT MEASURES

A. Treatment measures are to be selected by CBP based on the potential for impacts to the historic property due to the CBP Undertaking. At least one treatment measure must be selected for each eligible site that will be affected, though CBP may elect to do multiple treatment measures at its discretion. Treatment measures will only be done if CBP has an Undertaking within 1,000 feet of an eligible property.

B. Treatment Measures- Level I (No Adverse Effect)

1. Monitoring for implementation of site avoidance and protection measures: CBP, or its designee, shall conduct archeological site monitoring to ensure that construction activities in the area avoid the historic property. Monitoring will involve the close inspection of excavations and other activities to ensure a 500 foot buffer is maintained from the site boundary line and that there are no intrusions of equipment into the site. Monitoring will not occur within site boundaries. The monitor will have the authority to slow or halt the construction process at any time if potentially sensitive archeological materials are encountered. Artifacts will not be collected. Complete field records will be maintained throughout the monitoring, and include daily field notes and photographs. A report will be submitted to the land manager and SHPO at the conclusion of the monitoring activities in accordance with state and/or BLM guidelines.

C. Treatment Measures- Level II (Potential for Adverse Effects)

1. Temporary Fencing: CBP will place temporary construction fencing along the road and right-of-way to create a suitable 500 foot buffer from the site’s boundary line to ensure that construction activities in the area avoid the historic property. The width of the buffer may vary depending on the site’s proximity to the road, however the fencing shall be kept a minimum of 50 feet between any maintenance activities and the site. The construction crew will receive a field briefing that vehicles and personnel are not to cross into the areas marked by the fencing. The fencing will be removed within 15 days of completion of all construction along the road or road segment.
2. Design Elements: CBP will add design elements to the project to ensure that maintenance activities do not disturb the historic property. This may include adding turnouts/passing areas in non-sensitive areas within the existing right-of-way, adding natural rock or vegetative barriers, or other design solutions. CBP will notify the land manager and SHPO about the nature and extent of the proposed design modification when submitting its notification letter as required in Stipulation III.B, above.

3. Design Modifications: CBP will revise the project design to ensure that construction activities in the area avoid the historic property. This may include reducing the width of the road shoulder, realigning the road within the existing right-of-way, reducing the size of a staging area, or other design solutions. CBP will notify the land manager and SHPO about the location, nature, and extent of the proposed design modification when submitting its notification letter as required in Stipulation III.B, above.

D. Treatment Measures- Level III (Adverse Effect)

1. Data Recovery: CBP, or its designee, shall conduct archeological data recovery within the portion of the site that will be impacted by the Undertaking.

 a) CBP will submit a research design to the appropriate land manager and SHPO prior to conducting any field work. The plan will be prepared in accordance with BLM Manual 8110, Identifying and Evaluating Cultural Resources, and BLM Manual Supplement H-8110-1, Procedures for Performing Cultural Resources Fieldwork on Public Lands in the Area of New Mexico BLM Responsibilities and SHPO standards and guidelines in Title 4 (Cultural Resources) and Chapter 10 (Cultural Properties and Historic Preservation) of the NMAC, as appropriate. Plans will be reviewed by the land manager and SHPO within 30 days of receipt. If CBP does not receive a response, it can assume concurrence with the plan and proceed with the field work.

 b) Artifacts collected shall be analyzed and discussed in the draft and final report. All collected artifacts will be cleaned, analyzed, labeled, and packaged in archival materials in accordance with 36 CFR Part 79.
c) A draft report shall be prepared in accordance with SHPO and/or BLM standards and guidelines and shall discuss and analyze the findings. The report shall contain maps, photos, tables, updated site forms, and an artifact inventory. Draft reports will be reviewed by the land manager and SHPO within 30 days of receipt. If CBP does not receive a response, it can assume concurrence with findings in the draft report and proceed with issuance of the final report and updated archeological site records.

d) Artifacts recovered from BLM lands are held by and the responsibility of BLM. Artifacts recovered from NMSLO lands are held by and the responsibility of the State of New Mexico. Upon land manager and SHPO approval of the final report and archeological site records, the artifacts shall be submitted to the Museum of Indian Arts and Culture-Laboratory of Anthropology (MIAC) for curation in accordance with BLM and SHPO permit requirements. CBP shall be responsible for MIAC curation costs and initial curation efforts. BLM and the State of New Mexico shall be responsible for long term management and care of the artifacts including monitoring of their condition; ensuring public access; and any costs incurred after they are curated at MIAC.

VII. POST REVIEW DISCOVERY

A. If historic properties are discovered or unanticipated adverse effects on historic properties located within an individual Undertaking’s APE occur after the Undertaking has been approved, CBP shall immediately cease all operations for the portion of the Undertaking with the potential to adversely affect a historic property. CBP shall notify the appropriate land manager and SHPO of the post-review discovery via letter or electronic correspondence within two (2) business days.

1. If the historic property has or could have tribal components, CBP shall notify Tribes of the post-review discovery via letter or electronic correspondence within two (2) business days. The tribes will be provided the opportunity to comment on the post-review discovery, its eligibility, and any proposed treatment measures within the timeframes provided within this Agreement.

B. CBP shall determine the National Register eligibility of the historic property and determine if an existing treatment measure from Stipulation V, above, will avoid or minimize further impacts to the historic property. If CBP determines that an existing treatment measure is insufficient, a treatment plan will be developed. CBP’s eligibility determination and treatment measure/treatment plan shall be provided to the land manager and SHPO within four (4) business days of notification of the discovery.
C. The land manager and SHPO shall have three (3) business days to respond to CBP’s eligibility determination and treatment measure/treatment plan. If no response is received, CBP shall assume concurrence with its eligibility determination and treatment measure/treatment plan and may proceed. If either the land manager or SHPO objects to CBP’s eligibility determination and/or treatment measure/treatment plan, the parties shall attempt to resolve the dispute within an agreed upon timeframe, not to exceed 15 days.

1. If CBP is unable to resolve the dispute, CBP shall seek ACHP comment. The ACHP shall provide any comments within seven (7) days after receipt of CBP’s request.

2. CBP shall consider any timely advice from the ACHP before making a final decision on resolving the dispute and providing copies of the resolution to the land manager and SHPO.

D. CBP shall make every effort to avoid or minimize further impacts to the historic property.

E. All burial sites, human remains and funerary objects will be treated with dignity and respect at all times.

1. If unmarked human remains are discovered on BLM land, consistent with NAGPRA (25 U.S.C. § 3001 et seq.; 43 C.F.R. Part 10), CBP shall cease activity in the area of the discovery and immediately notify BLM. Upon notification by CBP, BLM will immediately assume all responsibilities for notifying other parties of the discovery, including the medical investigator or coroner, SHPO, tribes, and any other parties it deems appropriate and assume responsibility for repatriation activities pursuant to NAGPRA.

2. If the unmarked human remains are discovered on State land or private land, CBP will cease any activity in the area of the discovery and immediately notify both the NMSLO and, as required by the New Mexico Cultural Properties Act (§18-6-11.2 NMSA 1978; 4.10.11 NMAC), the local law enforcement agency having jurisdiction over the area, who is responsible for notifying SHPO and the medical investigator. Upon notification by CBP, any further obligations under the New Mexico Cultural Properties Act, as set forth by said statute and its implementing regulations, shall be carried out by the medical examiner and SHPO.
VIII. CONFIDENTIALITY

A. Consistent with 54 U.S.C. § 307103, 36 CFR § 800.11(c), the Archeological Resources Protection Act (ARPA), the New Mexico Cultural Properties Act (§18-6-11.1 NMSA 1978) and other applicable laws, CBP, after consultation with the Secretary of the Interior, shall withhold from public disclosure information about the location, character, or ownership of a historic property when disclosure may cause significant invasion of privacy; risk harm to a historic property; or impede the use of a traditional religious site by practitioners.

1. Access to sensitive data, as defined in Section 304 of NHPA (now 16 U.S.C. 470w—3), will be limited within CBP to individuals designated by the FPO or Director of EEMD.

2. Should CBP receive a request for access to sensitive data from an external party, CBP will, prior to any determination regarding the releases of such data, consult with and seek concurrence from the Secretary of the Interior and any affected Parties, as appropriate. Any and all disputes as to the release of sensitive data will be resolved in accordance with IX.A.3, below.

3. All Parties shall attempt to resolve disputes regarding access to sensitive data in a timely manner, not to exceed 60 days. If a dispute regarding access to sensitive data cannot be resolved, CBP will, after giving due consideration to the views of any affected Parties, and taking into account any legal obligations imposed on CBP by statute or regulation, make a final decision regarding access to the sensitive data at issue.

IX. DISPUTE RESOLUTION

A. All Parties shall attempt to resolve disputes over eligibility determinations in a timely manner, not to exceed 60 days.

1. If a dispute regarding any finding of no historic properties affected cannot be resolved, CBP shall obtain ACHP comments pursuant to 36 CFR § 800.4(d)(1)(ii).

2. If a dispute regarding eligibility findings cannot be resolved, CBP shall obtain a determination of eligibility from the Keeper of the National Register pursuant to 36 CFR Part 63.
B. Should any Signatory to this Agreement object at any time to any actions proposed or the manner in which the terms of this Agreement are implemented, CBP shall consult with the Signatory to resolve the objection. CBP shall notify other Signatories to this Agreement if it believes that the objection requires additional parties to achieve resolution. If CBP determines that such objection cannot be resolved, it will:

1. Forward all documentation relevant to the dispute, including the CBP’s proposed resolution, to the ACHP. The ACHP shall provide CBP with any advice on the resolution of the objection within 30 days of receiving adequate documentation. Prior to reaching a final decision on the dispute, CBP shall prepare a written response that takes into account any timely advice or comments regarding the dispute from the ACHP and any Signatories to the Agreement, and provide them with a copy of this written response. CBP will then proceed according to its final decision.

2. If the ACHP does not provide its advice regarding the dispute within the 30 day time period, CBP may make a final decision on the dispute and proceed accordingly. Prior to reaching such a final decision, CBP shall prepare a written response that takes into account any timely comments regarding the dispute from any Signatories to the Agreement, and provide them and the ACHP with a copy of such written response.

C. CBP’s responsibilities to carry out all other actions subject to the terms of this Agreement that are not the subject of the dispute remain unchanged.

X. AMENDMENTS

A. This Agreement may be amended when such an amendment is agreed to in writing by all Signatories to this Agreement. The amendment will be effective on the date a copy signed by all of the Signatories is filed with the ACHP.

B. Appendix D may be updated at any time by CBP. The updated Appendix will be effective on the date a copy is transmitted by CBP to all of the Signatories.

XI. DURATION OF AGREEMENT

A. This Agreement will be valid for seven (7) years from the date of execution.

B. At the conclusion of seven (7) years from the date of execution, the Signatories to the Agreement may carry out a review of the Agreement in order to determine if the Agreement needs to be extended.
XII. WITHDRAWAL AND TERMINATION OF AGREEMENT

A. If any Signatory to this Agreement determines that its terms will not or cannot be carried out, the Signatory may terminate their involvement in this Agreement by providing 30 days written notice to the other parties, provided that the parties will consult during this period to attempt to develop an amendment per Stipulation X, above, or reach agreement on other actions that would avoid termination. If within 30 days (or another time period agreed to by all signatories) an amendment cannot be reached, any signatory may withdraw from the Agreement, which will no longer be applicable to that signatory. After such a termination, all undertakings involving the previous Signatory will be reviewed in accordance with 36 CFR §§ 800.3 through 800.7. These withdrawals do not terminate the Agreement with regard to other Signatories.

B. This Agreement may be terminated without further consultation by the execution of a subsequent Agreement that explicitly terminates or supersedes its terms.

XIII. EXECUTION OF AGREEMENT

A. This Agreement shall be executed in counterparts, with a separate page for each Signatory to this Agreement, and CBP shall ensure that each Signatory is provided with a fully executed copy. This Agreement will become effective on the date it is signed by the last party.

EXECUTION AND IMPLEMENTATION of this Agreement by the Signatories evidences that CBP has satisfied its Section 106 responsibilities for the Undertaking.
PROGRAMMATIC AGREEMENT BETWEEN
U.S. CUSTOMS AND BORDER PROTECTION,
THE NEW MEXICO STATE HISTORIC PRESERVATION OFFICE,
NEW MEXICO STATE LAND OFFICE,
AND
NEW MEXICO BUREAU OF LAND MANAGEMENT
REGARDING TACTICAL INFRASTRUCTURE MAINTENANCE AND REPAIR
(TIMR) PROJECT, (b)(7)(E) AND (b)(7)(E) COUNTIES, NEW MEXICO

Signatory:

(b)(6)
Federal Preservation Officer
U.S. Customs and Border Protection

Date
PROGRAMMATIC AGREEMENT BETWEEN
U.S. CUSTOMS AND BORDER PROTECTION,
THE NEW MEXICO STATE HISTORIC PRESERVATION OFFICE,
NEW MEXICO STATE LAND OFFICE,
AND
NEW MEXICO BUREAU OF LAND MANAGEMENT
REGARDING TACTICAL INFRASTRUCTURE MAINTENANCE AND REPAIR
(TIMR) PROJECT, and COUNTIES, NEW MEXICO

Signatory:

Jeff Pappas, Ph.D.
State Historic Preservation Officer
New Mexico State Historic Preservation Office
PROGRAMMATIC AGREEMENT BETWEEN
U.S. CUSTOMS AND BORDER PROTECTION,
THE NEW MEXICO STATE HISTORIC PRESERVATION OFFICE,
NEW MEXICO STATE LAND OFFICE,
AND
NEW MEXICO BUREAU OF LAND MANAGEMENT
REGARDING TACTICAL INFRASTRUCTURE MAINTENANCE AND REPAIR
(TIMR) PROJECT, (b)(7)(E) AND (b)(7)(E) COUNTIES, NEW MEXICO

Signatory:

Aubrey Dunn
State Land Commissioner
New Mexico State Land Office

Date
PROGRAMMATIC AGREEMENT BETWEEN
U.S. CUSTOMS AND BORDER PROTECTION,
THE NEW MEXICO STATE HISTORIC PRESERVATION OFFICE,
NEW MEXICO STATE LAND OFFICE,
AND
NEW MEXICO BUREAU OF LAND MANAGEMENT
REGARDING TACTICAL INFRASTRUCTURE MAINTENANCE AND REPAIR
(TIMR) PROJECT, (b) (7)(E) AND (b) (7)(E) COUNTIES, NEW MEXICO

Signatory:

__ ________________
Bill Childress Date
District Manager
Bureau of Land Management, Las Cruces District
PROGRAMMATIC AGREEMENT BETWEEN
U.S. CUSTOMS AND BORDER PROTECTION,
THE NEW MEXICO STATE HISTORIC PRESERVATION OFFICE,
NEW MEXICO STATE LAND OFFICE,
AND
NEW MEXICO BUREAU OF LAND MANAGEMENT
REGARDING TACTICAL INFRASTRUCTURE MAINTENANCE AND REPAIR
(TIMR) PROJECT, (b) (7)(E) AND (b) (7)(E) COUNTIES, NEW MEXICO

Appendix A:
APE Maps