
The Hyperion System:
Cybersecurity through

Software Behavior Computation
“What does your software do?”

Rick Linger, Stacy Prowell, Stephen Lindberg
Cyber Security and Information Intelligence Research Group

Oak Ridge National Laboratory
202-701-6257, lingerr@ornl.gov

Customer Need:
Assure Software

Function and Security

• Software vulnerability
announcements cost
vendors $860M in
market value.1

• Average cost of security
incident: $300K among
surveyed firms.2

1. R. Telang and S. Wattal, “An Empirical Analysis of the Impact of
Software Vulnerability Announcements on Firm Stock Prices,” IEEE
Transactions on Software Engineering, 33(8):544-557, August 2007.

2. Aberdeen Group, “Securing Your Applications: Three Ways to Play,”
August 31, 2010, quoted on http://blogs.aberdeen.com/it-
security/quantifying-business-value-of-application-security-cost-
avoidance-cost-savings/ (retrieved on 10/2/2012).

source: Verizon Data Breach Investigation
Report 2012

The Value of Assured Software

http://blogs.aberdeen.com/it-security/quantifying-business-value-of-application-security-cost-avoidance-cost-savings/
http://blogs.aberdeen.com/it-security/quantifying-business-value-of-application-security-cost-avoidance-cost-savings/
http://blogs.aberdeen.com/it-security/quantifying-business-value-of-application-security-cost-avoidance-cost-savings/

• Our adversaries are students of our software

– Study and execute our code

– Accumulate and share knowledge

– Know more than we do

– Discover and exploit behavior unknown to us

• Behavior discovery is a big business

Attacks Depend on Knowledge of Behavior

• Most software is out of intellectual control
– Full behavior is not known by us

• Attack and defense
– All about understanding and exploiting behavior

• Software is complex
– That’s no excuse – our adversaries figure it out

Software Realities I

• Unknown behavior means unknown …
– Errors

– Vulnerabilities

– Security properties

– Risks

– Opportunities for adversaries

• At the core of the cyber security problem

Software Realities II

• Set security standards
• Install security tools
• Scan code using signatures
• Train security personnel
• Conduct risk management

• Analyze supply chains

• All good, but we’re losing the battle

Today’s Response

Technical Approach:
Compute the Behavior of Software

The Idea of Behavior Computation

• New technology for understanding software (malware)

• What is computed behavior?
– What a program does in all circumstances of use
– The “as-built” specification

• What are key properties?
– Operates on program semantics, not syntax
– Analyzes binaries to approach ground truth
– Mathematical precision, no heuristics
– Doesn’t look for things in code
– Zero day makes no difference – just more behavior

Key Concept: Program Structuring

if x > y

then

 t := x;

 x := y;

 y := t

else

 x := x + y;

 y := x – y;

 x := x – y

endif;

t := x;

x := y;

y := t

Transformation to
structured form:

if x > y goto A

goto B

C: t := x;

 x := y;

 y := t

 goto D

A: t := x;

 x := y;

 y := t;

 goto C

B: x := x + y;

 y := x – y;

 x := x – y

 goto C

D:

Unstructured (obfuscated)
spaghetti logic:

Structure
Theorem

Defines transformation from
complex logic into function-
equivalent structured form

expressed in sequence, ifthenelse,
and whiledo control structures.

Coelesces and aggregates related code into a systematic structure

Key Concept: Behavior Computation
 Program:

 do
 x := x + y;
 y := x - y;
 x := x - y
 enddo

Computation:

 assignment x y

1 x := x + y x1 = x0 + y0 y1 = y0
2 y := x - y x2 = x1 y2 = x1 - y1
3 x := x - y x3 = x2 - y2 y3 = y2

 Derivations:
 x3 = x2 - y2 y3 = y2
 = x1 - (x1 - y1) = x1 - y1
 = y1 = x0 + y0 - y0
 = y0 = x0

 true 
 x := y
 y := x

 (swaps values of x and y)

 Computed behavior:

Conditional
concurrent
assignment
(CCA)

(x, y integers;
machine precision aside)

Correctness
Theorem

Defines mathematical transformations from
procedural logic expressed in sequence, ifthenelse,
and whiledo forms into behaviorally-equivalent,
functional forms.

Transforms procedural logic into non-procedural as-built specification

The Behavior Computation Process

Input: software/
malware binaries

Transform instructions
to semantic form

Transform code to
structured form

Compute code
behavior

Analyze behavior
functionality

Output: program
behavior and analysis

Instruction semantics
repository

Behavior Specification
Unit (BSU) repository

Defines functional
effect of instructions

Defines precise
behavior abstractions

Behavior expressed as
Conditional Current
Assignments (CCAs)

Behavior abstracted to
Behavior Specification

Units (BSUs)

An Example Behavior Computation

Input code Structured code

Computed behavior
expressed as a

Conditional Concurrent
Assignment (CCA)

Customer Benefits:
Understanding What

Software Does

• Understand behavior at machine speeds
– Intellectual control over software

• Cheap, repeated validation
– Confidence in mission readiness

• Know more than our adversaries
– We understand behavior before they do

What is the Value Proposition?

What are the Markets?

• Malware detection and analysis

• Vulnerability detection

• Mobile device validation

• Rigorous software development

• Supply chain, anti-tamper analysis

• Forensic investigation

• Hardware analysis

• …

Competition:
The Behavior Computation

Advantage

• Human review:
– Expensive, fallible

• Execution testing
– Expensive, inconclusive

• Syntactic scanning
– Cheap, inconclusive

• No good means for understanding full behavior

How is Software Analyzed Today?

Comparing Technologies

Program

Population of executions:
Dots are test cases,

area not covered is untested
executions in the population.

Population of behaviors:
Disjoint partitions are
behavior cases that

cover the entire population.

Code
Testing

Program

Behavior
Computation

Program

Population of instructions:
Dots are recognized

signatures, squares are
problems that do not have

signatures or are obfuscated.

Syntactic
Scanning

Status: Evolving the Technology

• Next-generation Hyperion system under development

– More powerful semantic processing

– HPC potential for parallel computation

– Addressing scale-up for larger programs

– Currently Intel x86, other languages can be supported

– Can customize for sponsor requirements

Demonstration:
 Behavior computation for malicious code that attacked ORNL

	The Hyperion System: �Cybersecurity through �Software Behavior Computation
	Slide Number 2
	The Value of Assured Software
	Attacks Depend on Knowledge of Behavior
	Software Realities I
	Software Realities II
	Today’s Response
	Slide Number 8
	The Idea of Behavior Computation
	Key Concept: Program Structuring
	Key Concept: Behavior Computation
	The Behavior Computation Process
	An Example Behavior Computation
	Slide Number 14
	What is the Value Proposition?
	What are the Markets?
	Slide Number 17
	How is Software Analyzed Today?
	Comparing Technologies
	Status: Evolving the Technology

