Using Moving Target Defense for Secure Hardware Design

Princeton University
Ruby B. Lee

September 16-18, 2013.
Team Profile

• **Princeton University (prime contractor)**
 – Prof. Ruby Lee, the PI, is known for her expertise in Hardware Security and Computer Architecture.
 • Princeton Architecture Lab for Multimedia and Security (PALMS) has designed architectures for secure processors, secure caches, secure cloud servers, secure embedded systems, etc.
 – Princeton team responsible for the behavioral model and simulation of the proposed secure cache, system performance, security assessment and overall design of the test-chips.

• **Carnegie Mellon University (sub-contractor)**
 – Prof. Ken Mai is known for his circuit design expertise.
 – CMU team responsible for the circuit design, layout, fabrication and testing of the secure cache test-chips.
Customer Need

- Customers need security
- Industry security solutions like TPM, ARM Trustzone, Intel SGX (emerging) can be defeated by side-channel attacks!
- Problem: Hardware optimization features, e.g., caches, can inadvertently leak secret information to attackers
 - Caches are essential for performance: they bridge the performance gap between fast processors and slow memories.
- But caches leak information through cache side-channel attacks, e.g., secret keys for encryption/decryption
- They nullify security provided by strong cryptography, or by software isolation techniques
- Easy to perform – locally or remotely.
Approach

• Our approach: re-design caches to thwart cache side-channel attacks, without impacting performance.

• Works for all cryptographic algorithms for all platforms, whether smartphones or cloud servers
 – i.e., any computing device that has a processor with a cache

• Holistic Moving Target Defense solution for hardware
 – Replace current fixed memory-to-cache mapping with a dynamic, randomized memory-to-cache mapping, so attacker cannot get information about which cache lines are used by the victim process

• Only hardware change required is in the address decoder, a small part of the cache structure
Current Status and Accomplishments

1. Behavior model of Newcache in gem5 simulator (completed)
2. Security evaluation of Newcache
 - Unmodified real attacks (completed on gem5)
 - Attacks specifically targeting Newcache (completed)
 - Improved Newcache (completed – new result)
3. Performance evaluation of Newcache
 - Smartphone benchmarks (completed)
4. Test chip of Newcache – Physical characteristics
 - First test-chip taped out (in fabrication, parts back in Oct 2013)
 - On target for all milestones, deliverables and schedule.
Security Testing: attacks succeed on current caches, but fail on Newcache

Evict and Time attack

8-way set associative cache

Prime and Probe attack

8-way set associative cache

2^{20} samples
Key = all zero bytes

Newcache
We designed new attacks specially crafted for Newcache

- Very smart Attacker can still occupy a specific cache slot before victim process
- Minor change in Newcache design thwarts even this specially-crafted attack
- Similar result for Prime and Probe attacks
Improved Newcache defeats even specially-crafted attacks

- Move P-bit from tag to LNregs
Performance on Smartphone benchmarks: no degradation in performance

- Oxbench is a comprehensive Open-source Android benchmark suite, available on the Android Market (e.g. Google Play)
- Overall performance, in Instructions Per Cycle (IPC) same for Newcache (k = 4, 5, 6) and conventional caches (Set-Associative) – Newcache sometimes better!
- 32kB Newcache
- 65nm 7-metal bulk CMOS
- STMicroelectronics via CMP

- 2mm x 1.3mm die
- Taped out June 2013
- Chips expected Oct 2013
Benefits

• Built-in security
• Performance transparent
• Software transparent
• Cost transparent, once implemented in core
• Either lower power or faster than conventional caches
• Can be used for all types of caches
 – D-cache, I-cache, L2 cache, etc.
• Reusable for all future caches
• Fits in current ecosystem
Competition

• No hardware competition to date.
 – All existing hardware caches are insecure – they leak information through cache side-channel attacks
• Software solutions to mitigate cache side channel attacks incur huge performance degradation of 3X to 10X slowdown.
 – Furthermore, not completely secure since software cannot control hardware caches
 – Different changes (ad-hoc) required for each cryptographic program
• Separate hardware crypto module for each cipher
 • Does not prevent non-crypto information leaks
Next Steps

• Behavioral model simulation
 – Enhance gem5 to do dual-system simulation for server benchmarks
 – Model Newcache variations and other secure caches
• Performance
 – Performance of Newcache for L2 caches, I-cache
 – server benchmarks
• Security
 – Consider new attacks, and improve secure cache designs
• Physical Characteristics
 – Measure test-chip 1: access time and power consumption
 – Design and fabricate test-chips 2 and 3
 – Evaluate design tradeoffs
• Publish papers and write full Report
• Technology Transfer
 – Find DoD customers and potential commercial customers
Contact Information

• Technology is available for experimentation, implementation and licensing

• Contact:
 Professor Ruby B. Lee
 Department of Electrical Engineering
 Princeton University
 Princeton, NJ 08544
 rblee@princeton.edu
 609-258-1426