
www.ContinuousAssurance.org

The Vision
Software Assurance Marketplace
A Transformative Force in the Software Ecosystem

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g2

3-5 6-7 9 19

The Vision &

Our Team

The Problem &

Solution

Initial Operating
Capabilities

Future
Capabilities

Initial Operating
Capabilities and
Beyond

Providing continuous assurance services to the marketplace

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 3

The vision
The SWAMP will become a national resource for software assurance (SwA) technologies, used
across research institutions, non-governmental organizations and civilian agencies and their
communities as both a research platform and a core component in the software development
life-cycle.

It is our vision that widespread adoption of the SWAMP services will lead to a more secure and
safer software ecosystem.

THE SWAMP CHANNELS THE DHS MISSION
The Software Assurance Marketplace (SWAMP) channels the mission of the Department of
Homeland Security Science and Technology Directorate’s (DHS S&T) Cyber Security Division by:

•	 Developing and leveraging technologies, tools and techniques to defend and secure current
systems to better protect critical infrastructures against attacks from our adversaries,

•	 Facilitating technology transition through a marketplace approach where a collection of
innovative technologies can be harnessed by the community, and

•	 Providing a collaborative research environment by which DHS customers, agencies of the U.S.
government, academia, private industry and international partners can exchange technical
and research ideas to help advance software security and quality improvements.

Software has become such an essential component of our nation’s critical infrastructure. It has
grown in size, capability and complexity at a rate that exceeds our ability to keep pace with
assuring its quality. The SWAMP provides opportunities through continuous assurance services
to help narrow the gap that exists in the way software is tested and evaluated for security
weaknesses and vulnerabilities. We expect that the marketplace will enable advancements and
breakthroughs that will form new paradigms for software development activities. Closing the
existing gap not only requires innovative technologies, but also more research in software analysis
techniques and methods, as well as better awareness and education about security in the software
development process.

”The Software Assurance Marketplace has been carefully constructed, developed and
implemented with community feedback. It is with this approach we expect the SWAMP to be
a revolutionizing force in the software assurance community for years to come. A software
assurance marketplace is a great place for the community to meet for research collaboration
and technical exchange. The concept of the marketplace has influenced and shaped the vision
outlined in this document – ideally the vision is to provide a unique set of services and capabilities
that can be leveraged by the community, creating a collaborative marketplace for continuous
assurance.” Kevin E. Greene, DHS S&T --Software Assurance Program Manager

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g4

background
The SWAMP research infrastructure currently under construction
in Madison, Wisc. introduces a transformative element into the
expanding fabric of national and international efforts to advance
the state of the art and to increase the impact of Software
Assurance technologies. The concept of this novel infrastructure
was first introduced in a Broad Agency Announcement (BAA)
published by the DHS S&T Directorate in January 2011 (02-11). The
desired research infrastructure was presented in the BAA as “… a
software assurance facility and the associated services that will be
made available to both software analysis researchers and software
developers, both open source and proprietary. Software analysis
researchers will have access to services allowing them to test
new algorithms for static, dynamic, and binary analysis against a

variety of software in a multi-platform environment. Software developers will gain maximum value
through access and use of many software analysis tools, including those funded by DHS S&T, open
source analysis tools, and potentially commercial tools, without having to acquire licenses or learn
how to use each one individually. The SWAMP will become a national level resource in software
assurance for open security technologies, used across civilian agencies and their communities as
both a research platform and core component supporting US Government supported software
development activities.”

Within the defined 5-year workplan, the SWAMP will achieve Initial Operating Capability (IOC) in
January 2014. It is designed, implemented and operated by a team (page 5) led by the Morgridge
Institute for Research (MIR) and includes the Indiana University, the University of Illinois at Urbana-
Champaign and the University of Wisconsin-Madison. In a proposal submitted in July 2011, the
team put forth the vision that “… By offering SwA tool researchers, tool users and the educators
who train our workforce, a rich suite of secure and dependable services for continuous assurance,
the proposed SwA marketplace (SWAMP) will reduce the number of vulnerabilities in deployed
software. Researchers who develop new SwA tools and methodologies will use the repositories
and cyberinfrastructure offered by the SWAMP to improve their technologies and tools, while
software developers and adopters will use the same services to hunt for vulnerabilities in their
software. Educators will use these services to offer hands-on experience in SwA techniques to their
students. By facilitating the sharing of tools, techniques, information, experiences and resources,
the SWAMP will: 1) help advance the quality and adoption rate of SwA tools, 2) lower the threshold
for using them, and 3) make it easier to interpret and use their output.”

Miron Livny, Director and
Chief Technology Officer

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 5

meet the team
The SWAMP staff and trusted advisors are thought leaders in their respective fields
and bring resources from major academic institutions.

SWAMP is housed in and led by the Mor-

gridge Insitute for Research and includes

Indiana University, the University of

Illinois-Champaign/Urbana and the Uni-

versity of Wisconsin-Madison. MIR will

lead software development, infrastructu-

re management, and facility operations.

The University of Indiana focuses on

security and 24x7 monitoring and user

support. The University of Illinois heads

identity management and Wisconsin

handles SwA tool and software package

integration.

From left: Von Welch, Security Officer; Jim Basney, Identity Management Lead; Barton Miller, Chief Scientist

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g6

”There’s no perfect solution right now. The point and click security tools don’t enable customization.
And the tools that can be customized are either expensive or often, out of date.”
Peyton Engel, JD, Security Assessment Team Leader for CDW, Inc.

”The nation’s critical infrastructure (energy, transportation, telecommunications, banking and finance,

and more), businesses and services are extensively and increasingly controlled and enabled by soft-

ware. However, vulnerabilities in that software put those resources at risk. This risk is compounded

by software size and complexity, the ways in which software is developed and maintained, the use

of software produced by non-vetted suppliers and the interdependence of software systems. The Presi-

dent’s “National Strategy to Secure Cyberspace (2003)” clearly states the need to “reduce and remediate

software vulnerabilities. ” http://www.dhs.gov/topic/software-quality-assurance

Department of Homeland Security states....

Risks abound in our connected world
The rapid pace of software development has meant that in the last 20 years, nearly every facet of our
lives is organized and controlled by billions of lines of code. No industry remains untouched by the
pace of this evolution. Banking, healthcare and government entities all use software (both proprietary
and open source) to create efficiencies and actionable data. The world has a network of connected
ideas, services and products.

Along with the benefits included with this level of connectivity, there come a wide variety of hidden
risks, ranging from the unintentional to the malicious exploitation of weaknesses. A new approach
is necessary to mitigate the risk that untested software poses to businesses, organizations and our
national security.

The Software Assurance Marketplace will address this problem by building a physical and virtual
facility to help improve the quality of software that is being designed, both proprietary and open-
source. This platform democratizes the SwA environment by providing a free, virtual market where
the user community can come to share tools, techniques, resources and experiences with the goal
of improving software assurance (reducing software vulnerabilities). The SWAMP will attract SwA
tool developers, software developers, SwA researchers, educators and students and infrastructure
providers.

The SWAMP will address these problems by: 1) helping advance the quality and
adoption rate of SwA tools, 2) lowering the bar for using them for all communities, and
3) making it easier to interpret and apply their output.

Th
e

PRO

BLE
M

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 7

SWAMP is located at MIR in Madison, Wisc.
continuousassurance.org/about-us/

Open source SwA platform advances tools, access
To address the risk of inadvertant or malicious events in software, our team from four academic
institutions, with funding from the Department of Homeland Security Science and Technology
Directorate, is building an open source SwA marketplace that is uniquely designed to vet and report
on software weaknesses and vulnerabilities.

This five year project is led by the Morgridge Institute for Research in Madison, Wisc., which also
provides a state-of-the-art, secure hosting facility.
SWAMP’s key collaborators from the University of
Illinois-Champaign/Urbana, the University of Indiana
and the University of Wisconsin-Madison contribute
their expertise in software assurance, security,
identity management, and community building. This
unique collaboration will launch Initial Operating
Capacity (IOC) in January 2014, followed by the
rolling deployment of additional software, tools and
capabilities scheduled through June 2017.

The design and implementation of the SWAMP will facilitate the exchange of knowledge within five
target user groups: SwA tool developers, SwA researchers, software developers, educators and facility
operators. Using the services provided by the SwA marketplace, these users will have access to a no
cost, secure research facility in which they can test their methodologies and software, improve their
technologies and analyze the results of assessment runs.

 SWAMP’s essential services, predicated upon the concepts of universal access, sharing and
collaboration, will be a central element of the SwA and landscape.

TH
e

so
lu

ti
o

n

Continuous Assurance (CoA)

Driven by this vision, the SWAMP has been designed to enable reliable, reproducible, and
automated assessments of software packages by SwA tools. As a national research facility, the
SWAMP aims to maximize the adoption of the services it provides to the following five groups
of users: software assurance tool developers, software developers, educators and students,
infrastructure operators and software assurance researchers (figure below).

Continuous Assurance (CoA) takes the software engineering practice of Continuous Integration
to a new level. CoA incorporates SwA tools into the frequent process of building and testing the
software throughout its life cycle. CoA also applies the principal of frequent quality control to the
development of SwA tools. CoA facilitates evaluation of the impact of incremental changes in a
SwA tool on its ability to identify software defects.

This two-prong vision and implementation of the CoA practice address the key two challenges
of the SwA community: improve the quality of SwA tools and expand the adoption of SwA tools.

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g8

SwA Tool
Developers

Infrastructure
Operators

SwA
Researchers

Software
Developers

Educators
& Students

COA

5 targeted

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 9

Initial Operating Capabilties
At the time of IOC, SWAMP will provide SwA tools, software packages and computing platforms
to support software static analysis. To stay up to date on our latest selected packages and tools,
visit www.continuousassurance.org/technical-resources. For hardware, our facilities currently host
700 cores, 5 TB of RAM, 104 TB of HDD and 12 teraFLOPS which processes 12 trillion floating-point
operations per second.

Source Code Analysis Tools
To help guide the selection of the five initial static SwA tools, a ranked list of common and critical
weakness classes that are related to serious vulnerabilities was composed. This list was synthesized
from published studies, such as the “CWE/SANS Top 25 Most Dangerous Software Errors,” personal
communications with practitioners in the field and the experiences of the team in performing in-
depth, analyst driven software vulnerability assessments of a broad range of software packages.

The classes of weaknesses on which the SWAMP will initially concentrate are injections, buffer
handling, information leaks, number handling and web deceptions. These classes were selected to try
to satisfy several goals. First, they rate prominently on lists of most frequently occurring weaknesses.
Second, they are ones that within the capabilities of the current best open source SwA tools. Third,
they will provide a strong demonstration of the SWAMP’s capabilities at IOC. As examples, specific
types of weaknesses in these classes are:

Injections
•	 Command injections
•	 SQL injections
•	 Use of inherently dangerous operating system interfaces
•	 Buffer handling

Buffer overruns
•	 Resource leaks (allocated but not freed resources)
•	 Pointer usage errors (e.g., NULL pointer usage, double freeing, use after free)
•	 Format string attacks
•	 Integer overflow/truncation errors
•	 Cross-site scripting/Cross-site request forgery
•	 URL redirection (Open Redirect)

These weaknesses were selected to represent a few basic sources of common vulnerabilities:
interfaces to systems external to the program, such as the operating system or a database system;
basic coding errors; and web programming.

TH
e

Ro
adma

p

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g10

Guided by this list of weakness classes and by publicly available information about the capabilities and
adoption of the various open source tools, the following five open source tools will initially be offered:

•	 FindBugs is the most widely used and accepted tool for Java source code analysis. In addition to its
standalone use, many commercial tools incorporate FindBugs to enable Java code analysis. FindBugs
addresses Java coding errors, and from the above list, injection and web attacks.

•	 PMD is a static analysis tool for Java, JavaScript, XML and JSP. It is a community wide tool under
active development, hosted on sourceforge.net. The primary functionality of PMD is targeted
towards web programming errors. While focusing on correctness and quality issues, PMD has an
increasing number of security checks added to its functionality. PMD’s main focus is Java, with
limited support for JavaScript, XML and JSP.

•	 Cppcheck is a community-wide open source tool (hosted at sourceforce.net) that works for C and
C++. It checks for common coding errors, problems using common class libraries and catching use
of dangerous functions. Cppcheck should address weaknesses from the above list.

•	 Clang and the Clang Static Analyzer are part of the LLVM project and receives contributions
from a wide community, including active participation from Apple and Google. Clang and the Clang
Static Analyzer work on C and C++ (also Objective-C, used in Mac OS X and Apple iOS development).
Clang and Clang Static Analyzer are targeted at basic coding errors.

•	 Oink is a static analysis tools for C and C++ that uses CQual++ to do its basic analysis. It is hosted
on appspots.com. Oink is reputed to be quite solid and has strong whole program analysis abilities.
The checks are based on what was done in its predecessor tool, CQual. It is designed to detect
the potential use of dangerous user inputs and type errors. Oink should be able to find common
programmer errors, especially those related to use of OS functions and some memory errors.

Together, these five SwA tools target a broad range of weaknesses and cover a diverse set of use
cases. When used as group, they have the potential to serve as a valuable SwA instrument. They also
offer a rich reference set for tool developers and researchers as well as an easy to use training tool for
educators.

Software Packages
The availability of a rich set of software packages, including test suites, such as the National Institute of
Standards and Technology’s (NIST) Software Assurance Metrics and Tool Evaluation (SAMATE) Reference
Dataset (SRD) or packages used in a NIST Static Assessment Tool Exposition (SATE), will provide a broad
testing environment for tool developers. The developers of these packages are expected to become
active users of the of SWAMP’s services. The IOC target is to host at least 100 packages.

The current package selection includes Java, C and C++ packages. Currently, 25 Java Packages will be

TH
E

ro
a

d
m

a
p

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 11

assessed with two tools - FindBugs and PMD. Next, we will add C and C++ capabilities.
Package selection through the five-phase process can be tracked at - https://continuousassurance.org/
technicalresources

Result Viewers
While most commercial analysis tools come with their own interface to view the results of the weakness
analyses in a GUI or web interface, open source tools typically output their results in text form. The open
source tool results, through plug-ins, can be viewed with an integrated development environment
(IDE) to display the results alongside the source code. FindBugs, PMD, Cppcheck and the Clang Static
Analyzer, can integrate with the Eclipse open source IDE, and the Clang Static Analyzer can integrate
with Apple’s Xcode IDE.

In addition, there are a couple of new tools for viewing integrated reports of weaknesses from multiple
analysis tools. These viewing tools include CodeDX from Secure Decisions, TOIF (tool output integrated
framework) from KDM Analytics and Data Access Technologies funded through DHS S&T Small Business
Innovation Research (SBIR) program.

The SWAMP is designed to support a suite of such viewers to meet the needs and preferences of the
different groups of users. In addition to viewers developed by the SwA community, the SWAMP will
provide a simple result viewer. The output produced by the five tools will be parsed to individual
weaknesses with location (filename and line number). A single software package can be assessed
multiple times, using different tools and OS platforms. The multiple results can be merged, filtered and
sorted in a common result viewer interface. The result viewer will support a tabular view or viewing the
weaknesses alongside the source code.

Capacity
At IOC the SWAMP will have the capacity needed to analyze over 275 million lines of code per day,
sufficient to analyze 100 software packages with over 5 tools on 8 different OS platforms. The SWAMP
infrastructure is designed to scale this capacity as additional demand is generated through the addition
of CPU cores and storage capacity.

Core Services
The core services needed to harness the capabilities of the SWAMP are:

 Manage Accounts, Projects and Access Control. Secure access to the SWAMP is accomplished
through the use of user accounts and an associated credential. In the SWAMP a project is used to
group users working on a set of software packages or tools. An application to establish a project is
subject to approval by the SWAMP. Once approved, the requestor becomes the project administrator
and approves additional users to join the project.

Permission to perform operations is restricted by access controls. Initial access controls are course-

th
e

ro
a

d
m

a
p

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g12

grained with access permitted to all members of the project, or all users of the SWAMP.

Manage Software Packages and SwA Tools. A core function is to bring software, including
SwA tools, into the SWAMP and build the software. The user describes how to acquire the software
(uploaded by the user, or fetched by the SWAMP from a remote server such as a web server or a
version control system), how to build the software, and the OS platforms to perform the build(s). The
SWAMP manages the acquisition and building of software on the selected OS platforms. The SWAMP
also supports importing of assessment results that were generated on external resources.

In the case of a SwA tool, the user must also specify how to create an installer that is usable by the
SWAMP to place the tool on the assessment OS platform to perform the assessment. After a SwA
tool successfully builds and an installer is created, the tool developer can make the tool available to
other members of the SWAMP.

If the build fails, the software developer is able to debug the failure using the output files or through
interactive access to the virtual host environment where the build failed.

Assess a Software Package with a SwA Tool. To establish a new automated assessment, a
user selects a combination of software packages, tools and OS platforms to use, and the SWAMP
manages the execution of the requested assessment(s).

The user is able to start the assessment(s) immediately, or to schedule assessments as a one time
or recurring task (supporting continuous assurance). The SWAMP manages placing the software
package and installing the SwA tool on the OS platform and running the assessment. After the
assessment completes, the results are stored in the SWAMP’s results repository for review. When an
assessment completes, a notification can be sent.

View Assessment Results and the Dashboard. After an assessment completes, the assessment
is added to a list of assessments available for viewing. For each assessment the user can download or
view the output produced during the run; data about the assessment including software package,
tool, OS platform, time, duration, resource usage and summary results such as the number of
weaknesses; and the weaknesses identified.

The user can select multiple assessments and view the merged results with viewers like CodeDX.
The user can filter and sort the results to facilitate analyzing the results. The user can also select a
weakness and view the source code at the location where the weakness occurred. The source code
viewer will also mark other weaknesses found in the same file.

The users can view the status of their upcoming, ongoing and completed assessment runs along
with summary results of successfully completed assessments through a dashboard display. The

IO
C

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 13

dashboard also facilitates periodic and large volume continuous assurance runs.

Future Capabilities
Following IOC, new capabilities and services will be added in a multistage process to the SWAMP. These
new capabilities will leverage advances in SwA technologies and will address gaps in the needs and
expectations of the five target users groups. These new capabilities and future services will offer a richer
marketplace experience where ideas and results can be exchanged to improve software tools and
software development activities. This will be a gradual process that will be guided by experience with
the existing capabilities, advances in SwA technologies and community input. New tools and software
packages will be added to the repositories, services and platforms will be expanded and the computing
power will be increased. The portability of the software stack that powers the SWAMP will also be

Has access to all typing
and semantic information

Tools are language
speci�c.

Sees all possible
program paths.

Over approximates
program behavior, i.e.,
subject to false
positives

Based on actual
program executions;
i.e., if a behavior
appears, then it is real.

Analysis is only as
complete at the test
input.

C/C++/Objective-C: Clang
Static Analyzer, Cppcheck,
Oink, OCLint, CxSuite
Java: PMD, Android Lint
Multi-Language: Coverity
SAVE, Fortify Static Code
Analyzer, CodeSonar,
Klocwork Solo

Java: FindBugs, Find
Security Bugs

Android: Comdroid,
SCanDroid, Stowaway,
BAP, �ndbugs-for-android

CodeSurfer/X86,
Veracode, BAP,
Bugscam/IDAPro

Memory: Valgrind, Purify,
dmalloc, C/C++ Test,
BoundChecker.

Threading: Helgrind, DRD,
Thread Checker, Parallel
Inspector

Memory: JTest

Threading: JTest

Sees all the code and the
results of optimization
and linking.

Needs to derive program
semantic information
from code.

Sees all the code and the
results of optimization
and linking.

Needs to derive program
semantic information
from code.

Source Bytecode Binary Code

Figure 1: The SwA Tools Landscape
A representation of the types of tools used in software assurance and examples of such tools.

IO
C

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g14

addressed so that organizations that are interested in operating “private” instances of the SWAMP and
the different repositories can easily do so. All the software needed to build and manage such an instance
will be available under an open source license.

Expanding the Tools Repository
The power and diversity of the SwA tools in the SWAMP repository are key to the success of the SWAMP.
As shown in Figure 1, SwA tools can be classified into five categories determined by two dimensions:
using just the artifacts of the software (static) or observing the software’s execution (dynamic), and the
type of artifact used (source code, Java bytecode binaries, or native binaries). As previously described,
the initial capabilities of the SWAMP will offer tools for the static analysis of source code and (in the case
of Java tools) bytecode. This capability is the first step on a progression of tool technologies that will
be added to the SWAMP following IOC. The road map for this progression is presented in Figure 2 that
captures the introduction time and sustained enhancement of the different technologies. A detailed
description of these technologies and currently identified gaps are presented on pages 19-22.

We will expand the space of tools in the SWAMP in several ways. First, we will increase the number of
source code analysis tools to support new languages; second, we will add new platforms such as mobile;
third, we will add dynamic analysis tools that operate by monitoring program behavior; and fourth,
we will add static analysis tools that operate on binary programs. These new capabilities will be added
during the first and second years of SWAMP operation.

Mobile Platforms
Mobile computing devices now outnumber the conventional computers (desktop and laptop). The most
important of these mobile platforms are Google’s Android, Apple’s iOS and Microsoft’s Windows Mobile.
Recent numbers from Kantar Worldpanel Comtech report that in the U.S. market for phones, Android
has 52% of the market to iOS’s 43%; for tablets, Android has 54% of the market to iOS’s 43%. Worldwide,
the numbers are even more skewed in favor of Android.

Applications for Android are written in Java, using standard class libraries augmented by a substantial
collection of Android-specific libraries for mobile use. The Java code is compiled conventionally into Java
bytecode and then translated to an Android-specific bytecode called DEX that runs on the Dalvik virtual
machine. Existing SwA tools provided by the SWAMP that support analysis of Java software can be
used immediately on Android applications. However, most Java tools operate on bytecode, so require
building the applications. As a result, the SWAMP will need to be able to support the Android build
environment to run the majority of Java tools. Some tools like FindBugs, PMD, Klocwork, Lint, Parasoft
and Veracode have specific modules or versions for Android. In addition, there are tools developed
specifically for Android applications such as SCan-Droid, Stowaway, ComDroid, Androguard and Dexter.
Use of these tools in the SWAMP will require the full Android application build environment.

Applications for iOS are written in Objective-C, an object oriented programming language that takes
many of its features from the Smalltalk programming language. This language is also used heavily

Th
e

Ro
a

d
m

a
p

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 15

within Apple for system development. Unlike Android, iOS applications are compiled directly to binary
code, usually for an ARM processor. Similar to Android, the SWAMP would need to support the iOS
development environment. There is the additional complexity that this environment runs only on
Apple computers. Although few, there are source code analysis tools that assess Objective-C such as
Clang Static Analyzer, CheckMarx and OCLint. While several projects are promising future support for
analyzing ARM binaries, there are few current tools available. The current tools include BAP Binary Code
Analysis, and zynamics’ BinNavi.

Dynamic Analysis
Tools that monitor a program’s execution (dynamic analysis tools) are an important complement to
tools that statically analyze a program. Dynamic analysis tools have the strength that their results are
based on the actual behavior of a program, not potential or speculated behavior. However, they only see
behaviors of the program that are exercised by the input data. While static analysis tools naturally over
approximate program semantics (so are subject to false positives), dynamic analysis tools can under
approximate program semantics (so are subject to false negatives). The SWAMP is strengthened by the
presence of both types of tools.

Dynamic analysis tools require the additional ability to have a controlled and monitored execution
of the dynamic analysis tool and the application package. Given a successful build of the package, it
must be launched in the correct execution environment with the necessary options and input data.
The results of the dynamic analysis tool are collected, processed, and stored in the results database. The
team’s experience with the University of Wisconsin’s Build and Test Lab, that provides infrastructure for
supporting dynamic analysis tools, will be valuable as we add these capabilities to the SWAMP.

Some of the dynamic analysis tools considered include: Borland DevPartner (for detecting memory
errors), Dmalloc (for detecting heap memory misuse), Helgrind (for detecting races and thread errors),
Intel’s Thread Checker (for detecting races and thread errors), JTest (a tools for detecting memory,
threading, exception, resource and security vulnerabilities in Java programs), Parallel Inspector (for
detecting thread errors), Parasoft Purify (for detecting memory errors) and Valgrind’s Memcheck (for
detecting memory errors).

Binary Code Analysis
While source code analysis tools have the advantage of access to the full semantics of the program
expressed in a high-level programming language, there are many transformations done to a program
while compiling, optimizing and linking. As such, the binary code may have subtle (and sometimes
not-so-subtle) semantic differences from the source code. The binary code is the final product of the
build process, so all ambiguity about compiling and linkage options have been resolved at this point.
Tools that operate on binary code have a more difficult job in analyzing the semantics of the program
but produce a more complete and authoritative result. In addition, binary code analysis tools have the
advantage that they usually are independent of the source code programming language (though, of
course, they are dependent on the processor architecture of the binary code). Another advantage they

TH
e

ro
adma

p

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g16

have is the ability to analyze software where the source code is not available.

Supporting binary code analysis requires that the user provides an executable or that the software
package be buildable, i.e., compiled and linked to produce an executable file. The requirement to build
a package is a small additional requirement over source code analysis tools. As part of our infrastructure
to support packages with complex build structures, we will design and implement the BuildTrack tool
that monitors the key compiling steps during the building of a package and automates the application
of tools to that package. The build process must be tracked to detect executable files produced. If a user
provides or the build produces executables, the binary tool assesses the executables. The results of such
a tool will be tracked in the same way as results from a source code analysis tool.

Some of the prospective binary analysis tools that will be considered include: BAP (“Next Generation
Binary Analysis Platform”, successor to Vine), Black Duck (a commercial tool that analyzes binary or
source code for the use of third party intellectual property), BugScam (scripts for the IDA Pro binary
code analysis and viewing tool), GrammaTech’s CodeSurfer/X86 (for analyzing and rewriting binaries),
protecode (a commercial tool that analyzes binary or source code for the use of third party intellectual
property and security issues), Veracode (bi-nary code as a service) and Vine (BitBlaze’s static analysis
component).

Commercial analysis tools
The team will continue to explore ways to engage commercial tool providers in including their tools in
the SWAMP. Our architecture and services were designed and have been implemented to address the
special needs of such tools.

Result Viewing
Each weakness detected by a tool will be normalized to a common weakness type enabling
comparisons between tools. Support for triage information will be added as well as enhancements to
the source code viewer to support source code navigation functions to assist users in verifying weakness
results.

Build the SWAMP Ecosystem
Software assurance is a very broad and active area. The long-term success of the SWAMP research facility
will depend on our ability to build a broad eco-system that leverages the services of other projects and
organizations. The architecture of the SWAMP follows the principals of distributed computing and will
therefore easily interface to SwA capabilities and computing capacity provided as a service using cloud
interfaces and technologies. Elements of such an ecosystem may include among others:

Repository of Certified Open Source Software
The Repository of Certified Open Source Software offers open source software packages that “passed”
the SwA analysis tools of the SWAMP. This repository will operate as an independent project/service
that will use the SWAMP to certify the packages. An example for such a service is the repository of

Th
e

Ro
a

d
m

a
p

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 17

components operated by Sonatype.

Continuous Compliance Validation
The SWAMP will provide continuous assurance services that will help meet application security
compliance guidance such as (but not limited to): NIST 800-53 controls, Defense Information Systems
Agency (DISA) Application Security and Development Security Technical Implementation Guides,
Payment Card Industry (PCI) Payment Application Data Security Standard, as well adherence to
industry regarded best practices like SANS Top 25 Most Dangerous Software Errors and Open Web
Application Security Project (OWASP) Top 10. The SWAMP will play a key role in ensuring that all systems
and applications that support government and critical infrastructure are not only secure, but meet
applicable compliance guidance to ensure proper coding and secure development practices are being
followed.

Consumer Report for SwA Tools
The SWAMP’s structure of automating the running of a collection of analysis tools against a collection of
software packages can provide the basis for a facility evaluating the effectiveness of the analysis tools.
The basic mechanism for supporting this evaluation is the incorporation of calibration reference analysis
data (the ground truth) into the analysis results for a given software package. Supporting this calibration
reference data requires three major features: (1) sources of authoritative reports of weaknesses or
(better) vulnerabilities in a standard form, (2) a pseudo-analysis tool that incorporates these reports into
the analysis of a given package and (3) the addition of calibration factor in the range of [0, 1] for each
weakness report.

Sources of Authoritative Weakness and Vulnerability Reports
Authoritative weakness or vulnerability datasets consist of two parts: the packages to which the
reports apply and the reports themselves. Several potential sources of authoritative weakness or
vulnerability data have been identified. The first source is packages used in a NIST SATE, which
includes a wide variety of different types of test packages (from very small and simple to larger and
more realistic). The weakness reports associated with these packages are documented in NIST’s
SAMATE format. The second source is the UW Middleware Security and Testing (MIST) project’s
verified vulnerability dataset. This dataset applies to full packages that have been subjected to
indepth analyst driven assessment and have verified exploits for each identified vulnerability.
These vulnerabilities also have the interesting characteristic that they are beyond the ability of
the best current tools to detect defects. The MIST project is producing a “redacted” version of each
vulnerability, i.e., a simplified version of each vulnerability isolated from the package from which
they were derived. The third potential source will come from tools that have verified behaviors for
the results that they generate. The fourth source is the NIST SRD, which consists of a collection of
mainly synthetic and small programs with known weaknesses or known to be weakness free.

Note that the calibration data does not have to be complete to be effective in the SWAMP. One of
the strengths of the SWAMP is that it can incorporate data from a variety of sources, and each new

TH
e

ro
a

d
m

a
p

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g18

addition. Meaning, we can incorporate data whether it 1) comes from a source that can
report only a limited set of vulnerabilities or 2) from a source that can report vulnerabilities
for a limited number of packages or 3) just limited parts of a package. Each additional result
strengthens the overall result.

Incorporating Reference Results in the SWAMP
Incorporating reference analysis results into the SWAMP will be accomplished by creating

a new “oracle” tool that presents the
reference results in a way similar to a
normal tool. It will take reports in the
SAMATE format and present them as
results from the oracle tool.

A Calibration Factor for Analysis
Tool Results
Introducing a calibration factor for
tool results provides a way to label
the strength of results. Initially, it can
be used to label reference results
with a calibration factor of 1. In the
longer term, as the reference data to

evaluate analysis tools is obtained, it will be used to label the quality of the results of those
tools. A cumulative view of the calibration factors for a given analysis tool can form the basis
evaluation of that tool.

To make this calibration activity effective, novel techniques will be required to compare the
calibration results to those of actual tools. We will need to summarize them in a way that
gives an accurate view of the capabilities of an analysis tool, and visualize the results in a
way that is intuitive and easy to understand for large, complex code bases. Developing such
techniques and deploying the associated tools will require leveraging of results from other
organizations.

Ioc and beyond
The following subsections present the staged process of introducing new functionalities to the
SWAMP. Following the IOC, which is scheduled for January 2014, each following stage will target
one key functionality and a number of major enhancements to existing capabilities. Two of the
stages target new capabilities in addition to the key functionality. For each functionality and
enhancement, candidate technologies are listed and technology gaps identified.

Tool 1 results

Tool 2 results

Tool 3 results

Tool 4 results

Tool 5 results
SWAMP

ASSSESSMENT
RESULTS

SWAMP Output
One Integrated Report in Results Viewer

Identify, Sort & Filter

IO
C

a
n

d
 b

ey
o

n
d

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 19

IOC + 0
Major New Functionality:
•	 Support static code assessment (SCA) tools.

Technology gap – There is a considerable gap between the commercial tools and
the open source tools. In general open source tools do not perform whole program
analysises that impede their ability to accurately detect many types of weaknesses. Even
the commercial tools report a significant number of false positives and fail to report
many weaknesses.

IOC + 6 months
Major New Functionality:
•	 Support mobile code assessment. Support the assessment of Android and iOS mobile

applications.
Candidate technologies – Android: Android Lint, Comdroid, SCanDroid, Stowaway, BAP,
findbugs-for-android; iOS: OCLint, Clang Static Analyzer, CxSuite*.
Technology gap – Similar to SCA tool above, but tools are less mature.

Enhancements:
•	 Normalized SwA tool results--allows uniform tool results.

Candidate technologies---in house development.

2014 2015 2016 2017

Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4

Q1 Q2

Major New

Technology to be

Released

Additional

Technology to be

Released

mobile code assessment

static binary malware detection

dynamic testing tools

provenance related tools

expose APIs

native binary analysis tools

probing dynamic assessments

package subscriptions

static code assessment

Figure 2: The SWAMP Roadmap post IOC

IO
C

a
n

d
 b

ey
o

n
d

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g20

•	 Triage support--supports recording and filtering of human assessment of results.
Candidate technologies --in house development.

•	 Finer-grained access controls.
Candidate technologies --in house development.

IOC + 12 months
Major New Functionality:
•	 Support dynamic testing tools--enables additional testing techniques based on executing the

code, such as QA testing, resource and memory error detection, test coverage, and performance
measurement.

Candidate technologies – Memory: Valgrind, dmalloc, Purify*, C/C++ Test*, JTest*,
BoundsChecker*; Threads: Helgrind, DRD, ThreadChecker*, Parallel Inspector*; Performance:
Cachegrind, Shark*, Memcheck, Quantify, gprof, gperftools, oprof, Intel VTune*, Parasoft
Insure++*, JTest*; Coverage: gcov, CoverStory*, CodeCover, Cobertun, jcoverage/gpl, Jester,
Quilt, Hansel, JVMDI Code Coverage Analyzer, GroboCodeCoverage, InsECT.

New Functionality:
•	 Support static binary malware detection--detect malware by inspecting the applications produced

by the software package.
Candidate technologies – Clam AntiVirus, Pyew, Avast!*, AVG*, Avira*, BitDefender*, Comodo,
F-Prot*.
Technology gap –although there are many methods and tools to aid in malware detection,
there is a lack of tools to detect malware embedded in source code. Another useful capability
would be the ability to detect insider malicious modification to source code, such as insertion
of malware like functionality such as back doors and time bombs.

•	 Support native binary analysis tools--enable assessments or software in binary form with source
code.

Candidate technologies – BAP, Bugscam/IDAPro*, CodeSurfer/X86*.
Technology gap – there are few static binary analysis tools that operate in an automated
fashion.

Enhancements:
•	 Interversion triage support--automatic realignment of triage location as source code changes.

Candidate technologies – In house development.
•	 Source code navigation features--assist human analysis of assessment results.

Candidate technologies – in house development.
•	 Enhanced dashboard support--add trendline and summary information.

Candidate technologies – in house development.

IO
C

a
n

d
 b

ey
o

n
d

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 21

IOC + 18 months
Major New Functionality:
•	 Provenance related SwA tools. Use of secure hashes to detect copied code and alert users

when software components they are using have known defects.
Candidate technologies – In house development.
Technology gap – There are few tools to assess source code and binary code to
determine provenance.

New Functionality:
•	 Enable probing dynamic assessments--external assessment tools that operate by

connecting to a system such as penetration and fuzz testing tools.
Candidate technologies – OpenVAS, nmap, w3af, sqlmap, Netsparker, Metasploit,
DirBuster, monkey, Skipfish, WFuzz, Wapati, Wikto, Websecurify, Grendel-Scan, Nikto
AppScan*, Acunetix WVS*, HP WebInspect*.
Technology gap – Fuzzing and penetration tools benefit from human direction. There
could be work done to automate the usage of these tools perhaps by using the source
code as a guide or by building more intelligence into the tool.

Enhancements:
•	 Enhance support for educators--simplify roster management, class setup and scheduling

tasks.
Candidate technologies – In house development.

IOC + 24 months
Major New Functionality:
•	 Expose APIs to interact with the SWAMP--the APIs will include support to import and export

data, notifications to external systems when events occur in the SWAMP, notifications from
external systems to trigger actions in the SWAMP, and connections to external software
development system such as version control system, issue tracking systems, and IDEs.

Candidate technologies – In house development.
New Functionality:
•	 Support subscriptions for software packages--automatically assess packages when new

versions of the software or SwA tools are available.
Candidate technologies – In house development.

Enhancements:
•	 Enhance summary result reporting--give non-software developers simplified metrics about

the quality and security of the software.
Candidate technologies – In house development.
Technology gap – There are no tools that can take SwA results and reduce them to
quantifiable results that non-technical users can use to determine the quality and
security of a software package.

IO
C

a
n

d
 b

ey
o

n
d

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g22

•	 Enhance access control to support 3rd party assessments
Candidate technologies – In-house development

Post-IOC + 24 months
Technology Gaps in SwA Tools for Future SWAMP Capabilities:
•	 Tools to determine the structure of a system--dynamic analysis, possible in conjunction with static

analysis, can be used to determine the structure of a software system including the architecture, resources,
privileges, and trust boundaries. Security analysts could use this as an initial step in performing a manual
assessment or for anyone wishing to understand how a software system is structured.

•	 Hybrid static/dynamic analysis tools--develop models of combining information from static and dynamic
analyses and construct tools based on those models.

•	 Develop databases of exploits and vulnerabilities to focus new tool development--exploits and
vulnerabilities need to be gathered from real-world assessments and potentially from mining bug
repositories. These test cases present an immediate focus for new and evolving analysis tools.

•	 Analysis of installation and configuration--analysis of the installation and configuration of a software
system.

•	 Whole system static and dynamic analysis--analyzing dataflow across process and system boundaries
should improve the results of SwA tools

IO
C

a
n

d
 B

Ey
o

n
d

S WA M P | Co n t i n u o u sAs s u r a n c e.o r g 23

Morgridge Institute for Research
330 North Orchard Street

Madison, WI 53715
Phone: 608.316.4300

Primary Program Contact

Patrick Beyer, PhD, PMP
pbeyer@continuousassurance.org

608.509.5203

Providing continuous assurance services to the marketplace

ContinuousAssurance.org

Follow SWAMP on Twitter @swampteam

Join our Software Assurance Marketplace LinkedIN Group

