ENVIRONMENTAL ASSESSMENT
OF THE
U.S. COAST GUARD PROPOSED
FACILITY RESPONSE PLAN REGULATION

Prepared by:

ICF Incorporated
9300 Lee Highway
Fairfax, VA 22031-1207

September 30, 1992
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Environmental Regulatory Process</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Overview of the Oil Pollution Act of 1990</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3 Purpose and Need for the Proposed Action</td>
<td>1-3</td>
</tr>
<tr>
<td>2. DESCRIPTION OF PROPOSED ACTION AND REGULATORY ALTERNATIVES</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Response Planning Provisions of OPA 90</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Facility Response Plan Requirements</td>
<td>2-3</td>
</tr>
<tr>
<td>Under the Coast Guard Proposed Regulation</td>
<td></td>
</tr>
<tr>
<td>2.3 Summary of Regulatory Alternatives</td>
<td>2-6</td>
</tr>
<tr>
<td>2.4 Comparison of Alternatives</td>
<td>2-7</td>
</tr>
<tr>
<td>3. SUMMARY OF ENVIRONMENTAL IMPACTS OF THE PROPOSED ACTION</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Water Pollution</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Land Pollution</td>
<td>3-4</td>
</tr>
<tr>
<td>3.3 Air Pollution</td>
<td>3-5</td>
</tr>
<tr>
<td>3.4 Impacts of the Proposed Action on the Environment</td>
<td>3-5</td>
</tr>
<tr>
<td>4. COORDINATION</td>
<td>4-1</td>
</tr>
<tr>
<td>5. REFERENCES</td>
<td>5-1</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The *Exxon Valdez* oil spill in 1989 revealed that the nation was inadequately prepared to respond rapidly and effectively to catastrophic oil spills. Section 4202 of the Oil Pollution Act of 1990 (OPA 90) modifies the planning and response system created under the authority of section 311(j) of the Federal Water Pollution Control Act (also known as the Clean Water Act (CWA)). The new system consists of a National Response Unit, Coast Guard strike teams, Coast Guard District Response Groups, Area Committees, Area Contingency Plans, and vessel and facility response plans. This environmental assessment addresses the expanded spill preparedness measures resulting from preparing and implementing facility response plans. Tank vessel response plans are addressed in a separate environmental assessment.

The four sections of this report provide the background information and analysis needed to assess the environmental impact of proposed facility response plan requirements. Section 1 provides an overview of the regulatory process under which this environmental assessment must be prepared and briefly discusses the Oil Pollution Act of 1990, which established requirements that affect the marine oil transportation industry. Section 2 of this environmental assessment describes the proposed regulatory action and the three alternatives that have been considered. This section also describes the specific OPA 90 requirements that address facility response plans. Section 3 describes the effects of oil pollution on water, land and air, and discusses how the proposed regulation will mitigate these impacts. Section 4 addresses coordination efforts undertaken by the Coast Guard in compliance with the provisions of the National Environmental Policy Act (NEPA), and Section 5 provides a list of references used for this study.

1.1 ENVIRONMENTAL REGULATORY PROCESS

Section 1501.3(a) of Volume 40 of the *Code of Federal Regulations* (CFR) requires the U.S. Coast Guard to prepare an environmental assessment, as described in 40 CFR 1508.9, which provides "sufficient evidence and analysis for determining whether to prepare an environmental impact statement or a finding of no significant impact." This environmental assessment fulfills the regulatory requirement as it applies to the U.S. Coast Guard under 40 CFR 1501.3(a), and the provisions of the National Environmental Policy Act (NEPA), 42 USC 4321.

1.2 OVERVIEW OF THE OIL POLLUTION ACT OF 1990

The *Exxon Valdez* oil spill caused considerable damage to the marine and coastal environments of Prince William Sound, including the contamination and destruction of wildlife and flora. Because of the large impact of the *Exxon Valdez* spill on the environment and concern that increasing oil transportation traffic as a result of greater demand for foreign oil would lead to more frequent oil spills, both Houses of Congress passed the Oil Pollution Act of 1990 (OPA 90, Pub. L. 101-380). OPA 90 was signed into law by the President on August 18, 1990. The main elements of OPA 90 include:
Expanded Federal Role in Response: The Federal government is now required to direct responses to discharges that pose a "substantial threat to the public health or welfare," and has the discretion to direct responses to other discharges. In addition, the USCG is in the process of establishing a National Response Unit and individual oil spill response groups in each of the 10 U.S. Coast Guard districts to coordinate equipment used for spill response activities.

Oil Spill Liability Trust Fund: OPA 90 establishes an Oil Spill Liability Trust Fund, administered by the U.S. Coast Guard, to pay for removal costs and damages not recovered from responsible parties. Fund resources are supplied by a five-cent-per-barrel fee on oil. The fund provides up to $1 billion per incident for cleanup costs and other damages.

Increased Liability for Spills: OPA 90 increases the liability of tank owners and operators in the event of a spill from $150 per gross ton to $1,200 per gross ton of vessel weight. In addition, responsible parties at onshore facilities and deepwater ports, and holders of leases or permits for offshore facilities are exposed to a higher level of liability for the damages and removal costs of spills. OPA 90 also broadens the scope of liability to cover, in addition to removal costs and natural resource damages, spill-related health and safety services provided by State and local governments and losses of property, revenues, and profits.

Double Hulls: OPA 90 requires all newly constructed vessels to be equipped with double hulls or other containment systems. Newly constructed vessels of less than 5,000 gross tons are exempt from this requirement if they are equipped with a containment system proven to be as effective as double hulls in preventing oil discharges.

Research and Development: OPA 90 mandates the creation of an interagency committee to coordinate efforts to improve oil spill response technology.

Spill Preparedness: The Coast Guard and EPA are required to enhance the National Response System by designating Area Committees to develop Area Contingency Plans (ACPs) to help ensure the removal of a worst case spill from a vessel or facility in or near the area covered by a plan. In addition, OPA 90 requires owners or operators of vessels and facilities that "could reasonably be expected to cause substantial harm to the environment" to prepare response plans for addressing a worst case discharge of oil.
As noted above, one of the primary purposes of OPA 90 is to ensure that industry develops and maintains a fast and adequate oil spill prevention and response capability. Specifically, OPA 90 amends the CWA to require preparation of oil spill response plans. Section 4202(a)(6) of OPA 90 instructs the President to issue regulations requiring an owner or operator of a facility to prepare and submit an oil spill response plan to the President. The President, in section (2)(d)(2) of Executive Order 12777, subsequently delegated the authority for the regulations pursuant to section 311(j)(5) for tank vessels, transportation-related onshore and offshore facilities (except pipelines), and deepwater ports, to the Department of Transportation (DOT). Through the Secretary of Transportation, the Coast Guard has been delegated this responsibility.

As amended, section 311(j) of the CWA stipulates that the Federal government must issue regulations requiring the owner or operator of a vessel or facility to "prepare and submit to the President a plan for responding, to the maximum extent practicable, to a worst case discharge, and to a substantial threat of such a discharge of oil or hazardous substance." OPA 90 section 4202(b) requires the Federal government to promulgate these vessel and facility response plan regulations by August 18, 1992.

The Coast Guard has been delegated the responsibility for developing response plan regulations for onshore marine transportation-related (MTR) facilities and deepwater ports. After February 18, 1993, any facility required to submit a response plan may not handle oil unless the plan has been submitted to the Federal government. Prior to plan approval, the Coast Guard may authorize a facility to operate for up to two years after submittal of a plan if an owner/operator certifies the availability of adequate response personnel and equipment.

1.3 PURPOSE AND NEED FOR THE PROPOSED ACTION

The purpose of requiring response plans is to enhance private sector planning and response capabilities to minimize the environmental impact of spilled oil. With the passage of OPA 90, Congress indicated its preference for a statutory/regulatory solution to oil spill response planning rather than a "free-market" solution. There are a number of reasons why market forces -- in the absence of regulations -- do not ensure that facilities develop an adequate oil spill response capability.

Insurance markets. Although facilities may obtain certain types of pollution insurance to address catastrophic events, the premiums charged by insurance companies generally are not sensitive to whether the facility implements such measures as response plans to reduce the potential environmental damage caused by oil spills. In particular, for a given class of facilities, insurance companies do not typically evaluate facility-specific

characteristics (e.g., type, age, and condition of equipment, management procedures in case of emergencies) to determine the potential for environmental damage, nor do these companies generally have the necessary expertise to do so. Furthermore, unlike the automobile insurance market, where a significant body of historical data exists to perform actuarial analyses for vehicles with different features (including the presence/absence of safety devices), there is far less available data on facilities that handle oil. Insurance companies generally do not adjust premiums to reflect the reduced potential for environmental damage afforded by a facility's safety features, including spill response measures. Therefore, facilities have less insurance-related financial incentive to develop or improve their spill response capability.

Externalities. Firms are often not required to incur the full social costs of the damage resulting from oil spills and might be less likely to invest the "optimal" amount to prevent and mitigate the damages to the environment (i.e., firms may not invest in pollution response until, at the margin, costs equal benefits). This may occur despite the fact that from a societal point of view, the social benefits (i.e., avoided social costs) of enhanced oil spill response planning may exceed the costs to the industry. Under the "free market" solution, industry will continue to invest a suboptimal amount in spill response, and the damage caused by spills that would otherwise be mitigated by enhanced spill response planning will continue to be borne by society at large. Regulatory action compensates for these market imperfections by requiring industry to invest greater amounts (albeit, not necessarily the optimal amount) in response planning, thereby "internalizing" these costs.

Effective and uniform response planning. Although OPA 90 requires response plans to address several general requirements, further details are essential to ensure that the plans -- when implemented -- adequately address a facility's worst case discharge and minimize environmental damage caused by such a discharge. For example, OPA 90 defines a facility's worst-case discharge as "the largest foreseeable discharge in adverse weather conditions." In a case such as this, regulations are necessary to provide facilities with operational definitions for such terms as "planning volume" to ensure that owners and operators plan adequately and have sufficient spill response equipment and personnel available. It is not clear that market forces would provide adequate detail for planning purposes. Furthermore, because facility response plans must be consistent with the National Contingency Plan (NCP) and ACPs (as required by OPA 90), regulations are necessary to provide facilities with certain information that will ensure that their response plans interface properly with the government's regional and national response plans.
2. DESCRIPTION OF PROPOSED ACTION AND REGULATORY ALTERNATIVES

Chapter 2 describes the proposed action and the regulatory alternatives for implementing the facility response planning requirements. Section 2.1 describes the response planning provisions of OPA 90 and Section 2.2 describes the specific requirements for implementing these provisions under the Coast Guard proposed regulation. Section 2.3 provides a summary of the regulatory alternatives for implementing the proposed response planning requirement. Section 2.4 presents a comparison of the number and type of MTR facilities estimated to be affected under the regulatory alternatives and the Proposed Action. In addition, Section 2.4 presents a comparison of the number and size of oil spills occurring at facilities affected under each regulatory alternative.

2.1 RESPONSE PLANNING PROVISIONS OF OPA 90

Under section 4202(a)(6) of OPA 90, facilities that could reasonably be expected to cause "substantial harm" to the environment are required to prepare and submit response plans. Facilities that could reasonably be expected to cause "significant and substantial harm" to the environment must have their response plans reviewed and approved.

OPA 90 section 4202 requires that a facility response plan meet certain conditions. The plan must:

- Be consistent with the requirements of the National Oil and Hazardous Substances Pollution Contingency Plan and Area Contingency Plans;
- Identify the qualified individual having full authority to implement removal actions, and require immediate communications between that individual and the appropriate Federal official and other response personnel;
- Identify, and ensure by contract or other means, private personnel and equipment necessary to remove to the maximum extent practicable a worst case discharge, and to mitigate or prevent a substantial threat of such a discharge;
- Describe the training, equipment testing, periodic unannounced drills, and response actions of persons at the facility to be carried out under the plan; and,
- Be updated periodically.

The statute also establishes deadlines for facilities to prepare and submit their plans and for the plans to be approved. OPA 90 section 4202(b)(4)(B) specifies that during the period beginning February 18, 1993 and ending August 18, 1993, any facility
that is required to prepare a response plan under CWA section 311(j)(5) may not handle oil unless the plan has been submitted to the President (by delegation, to the Coast Guard). Under the amended CWA section 311(j)(5)(E), after August 18, 1993, a facility required to prepare a response plan under OPA 90 may not handle, store, or transport oil unless: (1) for a plan that is reviewed, the plan has been approved by the Coast Guard; and (2) the facility is operating in compliance with the plan. Up to two years after a facility submits a plan, the Coast Guard may authorize the facility to operate without an approved plan, if the owner or operator certifies by contract or other means approved by the Coast Guard, the availability of private personnel and equipment necessary to respond, to the maximum extent practicable, to a worst case discharge or a substantial threat of such a discharge (new CWA section 311(j)(5)(F)).

In addition to the facility response plan requirements under section 4202, OPA 90 section 5005(a)(1) requires that a facility permitted under the Trans-Alaska Pipeline Authorization Act (TAPAA)(43 U.S.C. 1651 et seq.) shall provide for:

- Prepositioned oil spill containment and removal equipment in communities and other strategic locations within the geographic boundaries of Prince William Sound;

- The establishment of an oil spill removal organization at appropriate locations in the Sound, consisting of trained personnel in sufficient numbers to immediately remove to the maximum extent practicable, a worst case discharge or a discharge of 200,000 barrels of oil, whichever is greater;

- Training in oil removal techniques for local residents and individuals engaged in the cultivation or production of fish products in the Sound;

- Practice exercises not less than two times per year which test the capacity of the equipment and personnel; and

- Periodic testing and certification of equipment.
2.2 FACILITY RESPONSE PLAN REQUIREMENTS UNDER THE COAST GUARD PROPOSED REGULATION

The Coast Guard is proposing that the following categories of facilities will pose both "substantial harm" and "significant and substantial harm" to the environment:

- "Substantial Harm." All fixed MTR facilities capable of transferring oil in bulk only to or from a vessel with a capacity of 10,500 gallons or more, and all mobile MTR facilities (e.g., tank trucks) that are capable of transferring oil in bulk only to or from a vessel with a capacity of 10,500 gallons or more. These categories of facilities are potentially subject to the requirements of the Coast Guard's regulation, "Facilities Transferring Oil or Hazardous Material in Bulk," at 33 CFR Part 154 (see 33 CFR 154.100(a) and 33 CFR 154.100(b)); and

- "Significant and Substantial Harm." All fixed MTR facilities capable of transferring oil in bulk only to or from a vessel with a capacity of 10,500 gallons or more (i.e., subject to 33 CFR 154.100(a)).

This categorization of facilities was based on a consideration of a variety of risk criteria, including proximity to navigable waters, adjoining shorelines, oil storage capacity, and type of operations.

Under the Coast Guard proposed regulation, facility response plans would have to address a number of specific areas. The format of a facility response plan would be as follows:

Introduction. This section includes the identity of the facility's owner or operator, facility address, a table of contents, other information pertaining to the facility's operations (e.g., dates and types of substantial expansion), and location (e.g., latitude and longitude). In addition, this section would include any "record of changes" pages that reflect revisions to the response plan.

Emergency Response Action Plan. This section of the response plan must cover five areas:

- **Notification procedures.** A description of a communications network that lists organizations and officials to be contacted in the event of a discharge. The list of contacts should include the National Response Center, the facility's response
team, contracted response organizations or personnel, and other response bodies.

- **Mitigation procedures.** A description of prioritized actions and procedures for responding to an oil spill, including the identification of the relevant personnel, a description of equipment shutdown procedures and transfer operations to be implemented in case of a spill, and a list of equipment and the responsibilities of personnel that would be used to respond to the average most probable spill. This subsection also would include the planning volumes for the average most probable spill, the maximum most probable spill, and the worst case discharge.

- **Facility response activities.** A description of the duties of the qualified individual, including procedures for coordinating the response with Federal On-Scene Coordinators, and the authority to activate the spill response organization. This subsection also must identify the company or facility organizational structure for managing the response.

- **Sensitive areas.** A list of environmentally sensitive and economically important areas around the facility that could be affected by a spill, and a description of response actions and equipment for protecting these areas.

- **Waste disposal activities.** A description of procedures for the disposal of wastes generated as a result of the response activities, including specifying proper removal and disposal procedures for all contaminated materials such as sorbent material, and the location of disposal sites.

Drills. The response plan must specify a drill program that includes: exercising the response plan notification procedures monthly; conducting announced and unannounced full-scale drills involving the deployment and testing of all equipment that would be used to respond to an average most probable discharge at the facility; and performing tabletop drills involving spill management personnel. Records of drills must be maintained for three years.

Training. The response plan must specify the training requirements that are necessary to ensure that personnel are knowledgeable about their roles and responsibilities during a response (e.g., operation and deployment of equipment). Records of training must be maintained for three years.
Appendices. The response plan must contain an appendix that includes facility-specific information such as diagrams of the facility and materials handled, lists of the facility's response equipment and off-site equipment, the location, operational status, and capability of this equipment, a communications plan, and a site-specific safety and health plan.

Response Capability. As part of the response plan, the facility owner or operator must ensure the capability to respond to a worst case discharge, maximum most probable discharge, and average most probable discharge. Because most facilities will not buy sufficient equipment to respond to such a spill, facilities are expected to establish relationships with outside organizations (e.g., spill response contractors) to provide the additional personnel and equipment needed to respond to a worst case discharge. In addition, facilities must ensure that they have equipment immediately available to respond to smaller spills (e.g., operational spills).

The Coast Guard proposed regulation would require facilities to review and update their response plans annually. The annual update, at a minimum, would include:

- Any new information about the plant operations or layout, such as new tanks, piping, changes in grading or drainage, or alterations in maintenance procedures;
- Revisions to contact, equipment, and response personnel lists;
- Additions to logs for inspections, training, and drills related to the response plan;
- Changes to the facility's spill scenarios or disposal plans;
- Written log sheets of all spills occurring in the past year at the facility; and,
- A letter submitted to the Coast Guard documenting that the annual review has been conducted.

In addition, all revisions to the response plan must be reflected in the record of changes pages and submitted to the Coast Guard. Furthermore, in the event that a facility meeting the "significant and substantial" harm criteria undergoes a substantial modification — such as a change in facility capacity, a change in configuration or type of oil transferred, or change in the availability and amount of response resources — the revisions to the plan that incorporate the changes must be submitted to the Coast Guard for review and approval. The Coast Guard's proposed regulation also requires that all facility response plans be resubmitted for approval every five years, regardless of any changes.
To implement the section 5005 provisions, the Coast Guard’s proposed regulation requires a facility permitted under the TAPAA (hereafter referred to as a TAPAA facility) to meet the following additional key requirements beyond the section 4202 requirements:

- Identify in the facility response plan:
 - A description of the training of personnel from various communities located in Prince William Sound in the operation of prepositioned equipment.
 - Drill procedures that require the spill response organization identified in the plan to conduct two drills per year to ensure that the prepositioned equipment are adequate and the community-based personnel are trained properly.

- Provide for additional spill response equipment that will be prepositioned at various communities throughout Prince William Sound.

The proposed requirements also establish more stringent time periods for response equipment to arrive at the spill site (e.g., different response times under the tiered response planning structure).

2.3 SUMMARY OF REGULATORY ALTERNATIVES

The Coast Guard considered three regulatory alternatives for implementing the response planning requirements in addition to the Proposed Action (Regulatory Alternative 1), as described below:

Alternative 2. Under Regulatory Alternative 2, all fixed MTR facilities capable of transferring oil in bulk only to or from a vessel with a capacity of 10,500 gallons or more, 10 percent of all fixed MTR facilities capable of transferring oil in bulk only to or from a vessel with a capacity of less than 10,500 gallons, and all mobile MTR facilities capable of transferring oil in bulk only to or from a vessel with a capacity of 90,500 gallons or more would meet the "substantial harm" criteria and, therefore, would be required to prepare and submit response plans. All fixed MTR facilities capable of transferring oil in bulk to or from a vessel with a capacity of 10,500 gallons or more would meet the "significant and substantial harm" criteria.
Alternative 3. Under this alternative, all MTR facilities capable of transferring oil in bulk to or from a vessel would meet the "substantial harm" criteria. All fixed MTR facilities capable of transferring oil in bulk only to or from a vessel with a capacity of 10,500 gallons or more and 10 percent of fixed MTR facilities capable of transferring oil in bulk only to or from a vessel with a capacity of less than 10,500 gallons would meet the "significant and substantial harm" criteria.

No Action. Under this regulatory alternative, the Coast Guard would not promulgate criteria on the types of facilities that would pose either "substantial harm" or "significant and substantial harm" to the environment. Thus, facilities would have to prepare response plans that satisfy the requirements of OPA 90 in the absence of regulations. By not establishing categories of facilities nor reviewing response plans prepared by facilities, the Coast Guard would fail to fulfill its OPA 90 mandate.

2.4 COMPARISON OF ALTERNATIVES

This sub-section presents a comparison of the number and type of facilities subject to the response planning requirements, number and size of oil spills occurring at these facilities, under the Proposed Actions and the regulatory alternatives.

The specific response planning requirements are the same for each regulatory alternative (with the exception of the "No Action" alternative) and only the number and type of facilities determined to cause "substantial harm" and "significant and substantial harm" differ. The number and categories of facilities affected by each alternative were identified through several sources, including: EPA's SPCC Facilities Study, which estimates the number of facilities subject to the EPA's Oil Pollution Prevention regulation; existing Coast Guard regulatory programs, such as 33 CFR Part 154; and conversations with industry representatives.

Seven general categories of MTR facilities could potentially be subject to the response planning requirements:

- Petroleum Bulk Stations and Terminals (SIC Code 5171);
- Petroleum Refineries (SIC Code 291);
- Government Installations (SIC Code 971);
- Oil Production Facilities (SIC Code 131);
- Petroleum Bulk Stations and Terminals (SIC Code 5171);
- Petroleum Refineries (SIC Code 291);
- Government Installations (SIC Code 971);
- Oil Production Facilities (SIC Code 131);

2 For more information on the universe of facilities affected, see Appendix C of the "Regulatory Impact Analysis of the U.S. Coast Guard Proposed Facility Response Plan Regulation."

3 These facilities are primarily Federal military installations.
Electric Utility Plants (SIC Code 491); Mobile Facilities (SIC Code 4213, 4953, others); and, Marinas (SIC Code 4493), Marine Fuel Stations (SIC Code 5541) and Related Facilities (various SIC Codes).

In addition, the facilities in each facility category identified above were classified into four oil storage capacity tiers:

- Less than 10,500 gallons;
- 10,500 to 42,000 gallons;
- 42,001 to 1 million gallons; and,
- Greater than 1 million gallons.

Exhibit 2-1 presents the number of facilities by facility category and oil storage capacity estimated to be affected by the Proposed Action. As shown in the Exhibit, 3,580 facilities are expected to meet the "substantial harm" criteria and, therefore, would be required to prepare and submit response plans.

Under Regulatory Alternative 2, in addition to the larger facilities, a small but significant number of fueling facilities are expected to meet the criteria for "substantial harm." Specifically under this regulatory alternative, in addition to the facilities affected under the Proposed Action, 10 percent of all fixed facilities capable of transferring oil in bulk only to or from a vessel with a capacity of less than 10,500 gallons would be affected. The facilities are primarily marine fueling facilities which include marinas, marine fuel stations, and related facilities (e.g., resorts with vessel fueling capability) that transfer fuel to recreational and small commercial vessels. An estimated 4,250 facilities are affected under this alternative. Exhibit 2-2 presents the number of these facilities by facility category and oil storage capacity.

Under Regulatory Alternative 3, all MTR facilities capable of transferring oil in bulk to or from a vessel would be expected to meet the "substantial harm" criteria. Regulatory Alternative 3 is estimated to affect 10,280 facilities. Exhibit 2-3 presents the number of these facilities by facility category and oil storage capacity.

To determine how the Coast Guard proposed regulation would affect the environment, oil spill data were analyzed to obtain annual (average) spill statistics (e.g., number of spills, quantity of oil spilled, medium affected) for facilities affected under each regulatory alternative. Data on the size and frequency of oil spills from MTR facilities for 1987-1990 were obtained from the U.S. Coast Guard's Marine Safety Information System (MSIS). MSIS contains a variety of information on oil spills,

*The benefits expected as a result of the Coast Guard's facility response planning requirements are discussed in Section 3.
<table>
<thead>
<tr>
<th>SIC Code</th>
<th>FACILITY CATEGORY</th>
<th>OIL STORAGE CAPACITY (Gallons)</th>
<th>"BEST ESTIMATE"</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10,000</td>
<td>Petroleum Bulk Stations and Terminals</td>
<td>5171</td>
<td>0</td>
</tr>
<tr>
<td>10,500 - 42,000</td>
<td>Oil Production Facilities</td>
<td>131</td>
<td>0</td>
</tr>
<tr>
<td>42,001 - 1,000,000</td>
<td>Oil Refineries</td>
<td>291</td>
<td>0</td>
</tr>
<tr>
<td>> 1,000,000</td>
<td>Government Installations</td>
<td>971</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Electric Utility Plants</td>
<td>491</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Mobile Facilities</td>
<td>4953/ others</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL | | | 2,235 | 1,960 - 2,510 | 131 - 349 | 108 - 207 | 136 | 411 | 400 | 400 | 400 | 3,580 |
ESTIMATED NUMBER OF FACILITIES AFFECTED UNDER REGULATORY ALTERNATIVE 2

<table>
<thead>
<tr>
<th>FACILITY CATEGORY</th>
<th>SIC CODE</th>
<th>OIL STORAGE CAPACITY (Gallons)</th>
<th>TOTAL</th>
<th>"BEST ESTIMATE"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>< 10,500</td>
<td>10,500 - 42,000</td>
<td>42,001 -1,000,000</td>
</tr>
<tr>
<td>Petroleum Bulk Stations and Terminals</td>
<td>5171</td>
<td>0</td>
<td>40</td>
<td>970</td>
</tr>
<tr>
<td>Oil Production Facilities</td>
<td>131</td>
<td>0</td>
<td>0</td>
<td>131 - 349</td>
</tr>
<tr>
<td>Refineries</td>
<td>291</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Government Installations</td>
<td>971</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electric Utility Plants</td>
<td>491</td>
<td>0</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>Mobile Facilities</td>
<td>4213/4953/ others</td>
<td>400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marinas, Marine Fuel Stations and Related Facilitiesa</td>
<td>4493/5541/ others</td>
<td>670b</td>
<td>neg.</td>
<td>neg.</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1,110</td>
<td>1,200 - 1,418</td>
<td>1,472 - 2,190</td>
</tr>
</tbody>
</table>

a This category of facilities includes marinas, marine fuel stations, and other establishments with "facility-vessel" fuel transfer capability such as waterside motels and restaurants.

b Comprehensive information is not available to classify these facilities by oil storage capacity. However, based on background research and conversations with industry personnel, the majority of these facilities have oil storage capacities between a few hundred gallons and 42,000 gallons.

Source: ICF analysis.
EXHIBIT 2-3

ESTIMATED NUMBER OF FACILITIES AFFECTED UNDER REGULATORY ALTERNATIVE 3

<table>
<thead>
<tr>
<th>FACILITY CATEGORY</th>
<th>SIC CODE</th>
<th>< 10,500</th>
<th>10,500-42,000</th>
<th>42,001-1,000,000</th>
<th>> 1,000,000</th>
<th>TOTAL</th>
<th>"BEST ESTIMATE"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Bulk Stations and Terminals</td>
<td>5171</td>
<td>0</td>
<td>40</td>
<td>970</td>
<td>950 - 1,500</td>
<td>1,960 - 2,510</td>
<td>2,235</td>
</tr>
<tr>
<td>Oil Production Facilities</td>
<td>131</td>
<td>0</td>
<td>0</td>
<td>131 - 349</td>
<td>0</td>
<td>131 - 349</td>
<td>240</td>
</tr>
<tr>
<td>Refineries</td>
<td>291</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>108 - 207</td>
<td>108 - 207</td>
<td>158</td>
</tr>
<tr>
<td>Government Installations</td>
<td>971</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>69 - 138</td>
<td>102 - 171</td>
<td>136</td>
</tr>
<tr>
<td>Electric Utility Plants</td>
<td>491</td>
<td>0</td>
<td>0</td>
<td>66</td>
<td>345</td>
<td>411</td>
<td>411</td>
</tr>
<tr>
<td>Mobile Facilities</td>
<td>4213/4953/others</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Marinas, Marine Fuel Stations and Related Facilities</td>
<td>4493/5541/others</td>
<td>6,700b</td>
<td>neg.</td>
<td>neg.</td>
<td>6,700</td>
<td>6,700</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>7,140</td>
<td>1,200 - 1,418</td>
<td>1,472 - 2,190</td>
<td>9,812 - 10,748</td>
<td>10,280</td>
<td></td>
</tr>
</tbody>
</table>

a This category of facilities includes marinas, marine fuel stations, and other establishments with "facility-vessel" fuel transfer capability such as waterside motels and restaurants.

b Comprehensive information is not available to classify these facilities by oil storage capacity. However, based on background research and conversations with industry personnel, the majority of these facilities have oil storage capacities between a few hundred gallons and 42,000 gallons.

Source: ICF analysis.
including the location of the spill (e.g., latitude/longitude), source, facility operations during the time of the spill, cause of spill, quantity, type of product, and medium affected, among others.

Exhibit 2-4 presents the number of oil spills and total volume of oil spilled from facilities, by regulatory alternative, for the four-year period, based on an analysis of MSIS data. Although MSIS does not have specific categories for different sizes of MTR facilities, "source" and "use" data fields within MSIS were used in various combinations to roughly match oil spill data with certain categories of facilities. To the extent that this procedure for matching oil spill data to categories of facilities is imprecise (i.e., MSIS data fields include facilities other than MTR facilities or fail to include all of these facilities), these spill statistics may overestimate or underestimate the actual number and volume of oil spills from these facilities.

As shown in Exhibit 2-4, the aggregate volume of oil spilled increases only slightly when moving from the Proposed Action to Regulatory Alternative 3. Although the number of spills from facilities affected under Regulatory Alternative 3 is nearly 50 percent higher than under the Proposed Action (reflecting the increase in the number of spills from the 6,700 additional fixed facilities affected under this alternative), the aggregate spill volume increases by only about 1 percent. This result indicates that the vast majority of spills occurring at fixed facilities with the capability to transfer oil in bulk to a vessel only with a capacity of less than 10,500 gallons are small, based on these data.

Exhibits 2-5, 2-6, and 2-7 show, for facilities affected by each regulatory alternative, how the frequency and volume of spills are distributed across different spill size categories for land and water. These are averages based on the 1987-1990 MSIS data. As shown in the Exhibits, the majority of spills are small; however, most of the oil spilled (volume) is from a few very large spills (i.e., greater than 10,000 gallons). For example, based on an analysis of MSIS data, 99 percent of all oil spills from facilities affected under the Proposed Action are 50,000 gallons or less. However, the volume of these spills is less than six percent of the total volume of oil spilled from these facilities. The Exhibits also indicate that while the total volume for spills of less than 10,000 gallons is distributed approximately equally between water and land, more than 75 percent of the total volume from spills larger than 10,000 gallons affects land.

To determine whether the oil spill trends obtained from MSIS are similar to those of other oil spill data bases, MSIS data were compared with oil spill data from the Emergency Release Notification System (ERNS). ERNS is the Federal government’s central source of data on releases of oil and hazardous substances to navigable waters. These data are collected primarily from initial release notifications received by the National Response Center, EPA, and the Coast Guard. The oil spill trends obtained from ERNS data are similar to those provided by MSIS. For example, less than two percent of spills reported to ERNS are larger than 10,000 gallons, but these spills account for more than 87 percent of the total volume of oil spilled. Furthermore, more
EXHIBIT 2-4

NUMBER AND VOLUME OF SPILLS BY YEAR FOR EACH REGULATORY ALTERNATIVE

<table>
<thead>
<tr>
<th>YEAR</th>
<th>ALTERNATIVE 1</th>
<th>ALTERNATIVE 2</th>
<th>ALTERNATIVE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Spills</td>
<td>Spill Volume (Gallons)</td>
<td>Number of Spills</td>
</tr>
<tr>
<td>1987</td>
<td>477</td>
<td>1,333,444</td>
<td>496</td>
</tr>
<tr>
<td>1988</td>
<td>383</td>
<td>3,643,806</td>
<td>400</td>
</tr>
<tr>
<td>1989</td>
<td>460</td>
<td>8,848,793</td>
<td>481</td>
</tr>
<tr>
<td>1990</td>
<td>452</td>
<td>4,579,675</td>
<td>478</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>443</td>
<td>4,601,430</td>
<td>464</td>
</tr>
</tbody>
</table>

Source: ICF analysis of the Coast Guard MSIS data.
EXHIBIT 2-5

DISTRIBUTION OF THE NUMBER AND VOLUME OF SPILLS BY SPILL SIZE AND AFFECTED MEDIUM

REGULATORY ALTERNATIVE 1

<table>
<thead>
<tr>
<th>SPILL SIZE CATEGORY (GALLONS)</th>
<th>NUMBER OF SPILLS</th>
<th>GALLONS SPILLED TO LAND</th>
<th>GALLONS SPILLED TO WATER</th>
<th>TOTAL GALLONS SPILLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>328</td>
<td>1,695</td>
<td>3,330</td>
<td>5,025</td>
</tr>
<tr>
<td>100 - 999</td>
<td>78</td>
<td>11,925</td>
<td>11,944</td>
<td>23,869</td>
</tr>
<tr>
<td>1,000 - 9,999</td>
<td>26</td>
<td>36,959</td>
<td>30,068</td>
<td>67,027</td>
</tr>
<tr>
<td>10,000 - 99,999</td>
<td>6</td>
<td>131,555</td>
<td>39,620</td>
<td>171,175</td>
</tr>
<tr>
<td>100,000 - 999,999</td>
<td>4</td>
<td>848,187</td>
<td>141,647</td>
<td>989,834</td>
</tr>
<tr>
<td>≥ 1,000,000</td>
<td>1</td>
<td>2,270,000</td>
<td>1,074,500</td>
<td>3,344,500</td>
</tr>
<tr>
<td>TOTAL</td>
<td>443</td>
<td>3,300,321</td>
<td>1,301,108</td>
<td>4,601,430</td>
</tr>
</tbody>
</table>

Source: ICF analysis of the Coast Guard MSIS data for 1987 to 1990.
Exhibit 2-6

Distribution of the Number and Volume of Spills by Spill Size and Affected Medium

Regulatory Alternative 2

<table>
<thead>
<tr>
<th>Spill Size Category (Gallons)</th>
<th>Number of Spills</th>
<th>Gallons Spilled to Land</th>
<th>Gallons Spilled to Water</th>
<th>Total Gallons Spilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>346</td>
<td>1,769</td>
<td>3,496</td>
<td>5,265</td>
</tr>
<tr>
<td>100 - 999</td>
<td>80</td>
<td>12,215</td>
<td>12,184</td>
<td>24,399</td>
</tr>
<tr>
<td>1,000 - 9,999</td>
<td>27</td>
<td>37,745</td>
<td>30,827</td>
<td>68,572</td>
</tr>
<tr>
<td>10,000 - 99,999</td>
<td>6</td>
<td>133,622</td>
<td>40,671</td>
<td>174,293</td>
</tr>
<tr>
<td>100,000 - 999,999</td>
<td>4</td>
<td>848,187</td>
<td>141,647</td>
<td>989,834</td>
</tr>
<tr>
<td>≥ 1,000,000</td>
<td>1</td>
<td>2,270,000</td>
<td>1,074,500</td>
<td>3,344,500</td>
</tr>
<tr>
<td>Total</td>
<td>464</td>
<td>3,303,538</td>
<td>1,303,325</td>
<td>4,606,863</td>
</tr>
</tbody>
</table>

Source: ICF analysis of the Coast Guard MSIS data for 1987 to 1990.
EXHIBIT 2-7

DISTRIBUTION OF THE NUMBER AND VOLUME OF SPILLS BY SPILL SIZE AND AFFECTED MEDIUM

REGULATORY ALTERNATIVE 3

<table>
<thead>
<tr>
<th>SPILL SIZE CATEGORY (GALLONS)</th>
<th>NUMBER OF SPILLS</th>
<th>GALLONS SPILLED TO LAND</th>
<th>GALLONS SPILLED TO WATER</th>
<th>TOTAL GALLONS SPILLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>503</td>
<td>2,433</td>
<td>4,991</td>
<td>7,424</td>
</tr>
<tr>
<td>100 - 999</td>
<td>100</td>
<td>14,820</td>
<td>14,345</td>
<td>29,165</td>
</tr>
<tr>
<td>1,000 - 9,999</td>
<td>34</td>
<td>44,817</td>
<td>37,663</td>
<td>82,480</td>
</tr>
<tr>
<td>10,000 - 99,999</td>
<td>8</td>
<td>152,230</td>
<td>50,120</td>
<td>202,350</td>
</tr>
<tr>
<td>100,000 - 999,999</td>
<td>4</td>
<td>848,187</td>
<td>141,647</td>
<td>989,834</td>
</tr>
<tr>
<td>≥ 1,000,000</td>
<td>1</td>
<td>2,270,000</td>
<td>1,074,500</td>
<td>3,344,500</td>
</tr>
<tr>
<td>TOTAL</td>
<td>650</td>
<td>3,332,487</td>
<td>1,323,266</td>
<td>4,655,753</td>
</tr>
</tbody>
</table>

Source: ICF analysis of the Coast Guard MSIS data for 1987 to 1990.
than 70 percent of the total volume corresponding to spills larger than 10,000 gallons affects land; approximately 50 percent of the total volume for spills of less than 10,000 gallons affects land.
3. SUMMARY OF ENVIRONMENTAL IMPACTS OF THE PROPOSED ACTION

This section examines how the proposed action will reduce oil pollution from MTR facilities. Sections 3.1, 3.2, and 3.3 describe the adverse environmental effects of oil on water, land, and air, respectively. Section 3.4 discusses how the proposed regulation will reduce the overall risk of pollution and ecological damage caused by oil spills.

3.1 WATER POLLUTION

Studies have documented nature's ability to recover over time from the damage caused by a large oil spill. Nevertheless, the impact of such large spills can be devastating in the short-term, and some of the effects may last for years or even decades.

Both the extent of biological damage caused by a spill and the speed of recovery depend on many factors, including the following: geographic location, quantity of oil spilled, characteristics of the area affected, oceanographic conditions, weather conditions, the season, and the type of oil.

Physical, chemical and biological transformations of spilled oil begin immediately upon introduction to marine or freshwater environments. The rate and degree of transformation depend on several factors related to advective and spreading processes. Advection is caused by the influence of overlying winds and underlying currents on the oil, while spreading results from the interplay among the forces of gravity, inertia, friction, viscosity, and surface tension. These two processes cause a rapid increase in the exposure area of the oil to subsequent "weathering." Oil spreads on the surface of water, forming a "slick" that tends to move or drift with waves, currents and wind. The rate of spreading depends on the type of oil, its volume, wind and sea conditions, and the amount of weathering that occurs. A thicker region of an oil slick will drift more rapidly than a thinner one, so that thicker regions tend to accumulate at the leading edge of a drifting slick.

The toxicity of the spill depends on oil type. Freshly spilled crude is more acutely toxic than weathered oil because of the presence of the more toxic volatile constituents, which quickly evaporate or dissolve. Similarly, lighter refined products (e.g., diesel fuel and gasoline) are more acutely toxic than crude but dissipate more rapidly.¹

chocolate mousse. For persistent oils, emulsification can increase initial spill volume by a factor of 2 to 3, depending on the type of oil. The longer the spilled oil remains in rough seas, the greater the likelihood of moussing. Moussing may also occur in quiescent waters.

The viscosity of oil also changes as the oil is exposed to these weathering processes. High viscosity oils are more difficult to recover mechanically (e.g., pump) and disperse than low viscosity oils. Weathering processes tend to increase the viscosity and may make collection and removal of spilled oil from water more difficult. Over time, the spill spreads into a thin layer and continues to break down, fragmenting into smaller patches. These patches may cover even larger surface areas than the initial spill due to drift ing.

Depending on the location of the spill, as well as weather and oceanographic conditions, some of the oil may affect shoreline areas. The analysis of Coast Guard MSIS data, presented in Exhibit 2-7, indicates that approximately 28 percent of the total volume of oil spilled from MTR onshore facilities affects coastal or inland waters. Unlike ocean spills that are dispersed by wind and wave action, oil spilled near the shoreline typically concentrates and mixes with nearshore waters or collects along shorelines. As a result, wetlands, seagrass beds, beaches, rocky habitats, coral reefs, intertidal areas and terrestrial ecosystems may be damaged.

Oil deposited in nearshore sediments persists longer than in ocean sediments. Oil is particularly persistent in low-energy, wetland habitats. High-energy, rocky shores tend to self-clean within a matter of months, whereas soft-sediment lagoons, marshes and mangrove swamps act as long-term petroleum sinks. Pools of oil may collect between rocks and remain essentially unchanged for a long time.

On cobble and sandy beaches, oil can sink deeply into the sediments and remain longer than on bare rocks. Sediment grain size and compaction determine the rate of penetration. In muddy sediments, only the upper few centimeters are penetrated. However, because little physical weathering occurs in these environments, stranded oil can persist for decades.

Heavy oiling of the shore zone causes immediate, widespread death of plants and animals due to smothering and toxic effects. The long-term effects are more variable and

subtle, and depend on the type of petroleum spilled, climate, weather, resilience of the affected ecosystem, and numerous other factors.

Attempts to clean beaches of oil may actually cause further ecological damage. The extent of possible additional damage depends on the cleanup technology used (e.g., hot- and cold-water washing, backhoeing and tilling, and manual oil removal). Hot-water washing may destroy any surviving marine organisms in areas where the technique is applied. Additionally, the high pressure used in both hot- and cold-water washing can destabilize gravel and sand beaches. Shifting sediments then suffocate marine organisms that inhabit these areas, impeding recolonization. Furthermore, manual removal may damage some ecosystems more than if natural degradation of the oil were allowed to occur. Excessive removal of oiled sediments can also result in the disturbance of physical and ecological equilibrium.

To varying degrees, coastal marine environments throughout the United States serve as breeding and nursing areas for resident and migratory species of fish and aquatic birds. Fish can be affected through ingestion of oil or oiled prey and uptake of dissolved petroleum compounds through the gills, or by changes in the ecosystem. Damage to fish eggs and larvae also may occur. The sensitivity of fish to oil spills varies by species and age class. In general, fish are very sensitive to short-term acute exposures, but are able to metabolize sub-lethal intakes. Fish in older age classes are able to avoid heavy contamination and have a mucous coating that helps them resist contact with toxic oil constituents. The youngest age classes are most vulnerable to oil spills. Oil may smother eggs, interfere with hatching success, or cause developmental abnormalities. Many physiological, histological, and behavioral abnormalities caused by exposure to crude oil have been documented.

Aquatic birds, especially diving birds, are highly vulnerable to oil spilled in coastal areas. Feathers that are coated with oil become waterlogged and lose their insulative properties. As a result, birds may drown or die of hypothermia. Oil also may be ingested by birds as they preen. It has recently been discovered that birds suffer stress-related effects as they attempt to detoxify the ingested oil. Ingested oil can temporarily

depress egg laying and reduce the hatching success of those eggs that are laid. Disturbance of valuable habitats or resources also could indirectly affect birds through increased competition. Many waterfowl and shorebirds flock on salt marshes and mud flats (which tend to recover more slowly) and would be vulnerable if their feeding habitat were contaminated by oil spills.

Oil spills may also disrupt the structure and function of marine ecosystems. Differential rates of mortality resulting from oil spills shift food web relationships. The results for individual organisms are changes in resource availability, competition, and predation. On the population level, species that are dependent on affected prey or habitats will decline while opportunistic species may increase. Rare species, small local populations, or species that are seasonally concentrated in the impacted habitat are the most likely to decline as a result of an oil spill.

In addition to adverse effects on fish, aquatic birds, and marine ecosystems, human health may be at risk as a consequence of oil pollution of water. The main concern regarding the risk to humans is the known carcinogenicity of several of the oil components and exposure to toxic elements in oil through direct exposure or through oil-tainted food. Human health risks also include hazards encountered by workers during cleanup operations.

3.2 LAND POLLUTION

Coast Guard MSIS data indicates that approximately 72 percent of the total volume of oil spilled from MTR facilities affects land (see Exhibit 2-7). Oil released to land does not spread as rapidly or as widely as oil released to water. Consequently, the effects of land spills tend to be confined to the immediate vicinity of the spill. Damage may include immediate loss of vegetation with associated erosion problems in sloping areas. Terrestrial animals, if not initially trapped in the oil, can usually leave the area of a spill and go to adjacent uncontaminated areas. Other effects on terrestrial animals include the possible disruption of migratory patterns and the loss of habitats. The extent of these effects depends on the species affected.

Long-term impacts of oil spills to land depend on a number of factors, including the removal of contaminated soils and the recovery rate of the affected ecosystems. Some possible fates of oil spilled on land include the following: (1) lighter refined products, which generally include the most toxic constituents of petroleum, may enter ground water resources and affect nearby streams, ponds, or water wells; (2) oil-soaked soil can leak petroleum residues into surface fresh water environments; and (3) oil-covered detritus (i.e., leaves, wood) may be washed into nearby fresh water systems.

Exposure to benzene and other toxicants through drinking water may pose a human health risk. Leaching of benzene (a known carcinogen) through soil may occur quickly after an oil spill. Some studies indicate that, depending on soil conditions, gasoline spills sometimes can reach even deeper ground-water tables in a matter of hours, or at most, days. Heavy products (e.g., crude oil and diesel fuel) are likely to penetrate soils slower than light products, and thus may pose lesser threats to ground water. Once heavy oils reach ground water, plume contamination is more likely to occur at a slower rate than for lighter oils, primarily due to viscosity differences.

3.3 AIR POLLUTION

The evaporation of volatile hydrocarbons from oil spills at MTR facilities can result in significant, short-term air pollution effects in the immediate vicinity of the spill. Evaporation may be responsible for the loss of from one- to two-thirds of an oil spill mass in a period of a few hours or a day. The rate of evaporative loss from a given volume of oil depends on a number of factors, including: (1) the area exposed, which tends to increase rapidly for spills to water; (2) the oil phase component vapor pressures, which are a function of oil temperature and composition, and which fall as lighter components are depleted from the slick; (3) the oil-air mass transfer coefficient, which depends primarily on the wind speed; and (4) the possible presence of diffusive barriers, such as water-in-oil emulsion or a "skin" on the oil surface. Most of the hydrocarbons that quickly evaporate are the more volatile, low molecular weight aromatics such as benzene, toluene, and the xylenes. These hydrocarbons are among the most toxic components of crude and refined oil, and evaporative emissions of these compounds can both directly and indirectly affect human health by contaminating the air and contributing to ozone formation.

3.4 IMPACTS OF THE PROPOSED ACTION ON THE ENVIRONMENT

Although the enhanced spill preparedness and training afforded by the proposed response plan requirements may prevent some spills from occurring, the number of spills that will be avoided as a result of the proposed requirements is not expected to be large. This regulation will reduce the damages caused by oil spills primarily by improving the effectiveness of private spill response efforts.

Implementing a facility's response plan is expected to increase a facility's ability to respond to oil spills in several ways. The facility response plan will provide facility personnel with a well-organized, updated source for contacting a variety of organizations and personnel, including company personnel and contractor oil spill response personnel, who can control and mitigate the consequences of an oil discharge. This information will

enable facility and outside personnel to respond expeditiously to the oil spill, thereby saving valuable time during the most critical phase of the oil spill response. In addition, facility personnel will benefit from having the procedures and duties to be performed during a spill formalized in a plan.

Facilities also will be required, if necessary, to retain the services of an oil spill contractor for addressing a facility's worst case discharge, thereby ensuring that an adequate and timely response capability is available to address the most environmentally harmful oil spills. In addition, the plan must contain procedures clearly delineating the responsibility and authority of the qualified individual. This information is expected to streamline the response process, thereby avoiding delays and reducing the potential for mistakes and wasted or duplicative effort. Finally, facilities would be required to implement a drill program that would include full-scale drills and spill team management drills. These requirements would ensure that facility personnel understand their responsibilities when responding to spills and also provide an opportunity for facility personnel to identify and correct potential problems with their spill response system (e.g., revise procedures for the deployment of spill response equipment to decrease response time).

In summary, the response planning requirements implemented under the Proposed Action are expected to enhance the effectiveness of a facility's spill response in a number of ways, including reducing the amount of oil that is released from the source, preventing oil from affecting sensitive environments once it is spilled, and increasing the amount of oil that is recovered. Specifically, the Proposed Action is estimated to reduce the amount of oil released from MTR facilities that affect the environment by approximately 1.4 million gallons, or 30 percent of all oil spilled from these facilities.9 The overall result will be a reduction in water, land, and air pollution from oil spills at MTR facilities.

9 See the "Preliminary Regulatory Impact Analysis of the U.S. Coast Guard Proposed Facility Response Plan Regulation", which uses the 30 percent figure as a "best estimate" of the reduction in the volume of oil affecting the environment as a result of response plans.
4. COORDINATION

Executive Order 12777 delegated the authority to issue regulations implementing the new FWPCA requirements for facility response plans to the Department of Transportation (the Secretary of Transportation, in 46 CER 1.46(m), which further delegated the authority for regulating MTR facilities to the Coast Guard), the Environmental Protection Agency, and the Department of Interior (DOI). Accordingly, the Coast Guard is drafting regulations for onshore MTR facilities and deepwater ports, the EPA is drafting regulations for non-transportation-related fixed onshore facilities, and DOI’s Minerals Management Service is drafting regulations for response plans for non-transportation-related offshore facilities and transportation-related pipelines linking oil production platforms to onshore facilities. All three agencies have been meeting to coordinate the development of these regulations.

A number of sites at which oil is transferred in bulk to or from a vessel are likely to include both transportation-related transfer facilities regulated by the Coast Guard and non-transportation-related storage facilities regulated by the EPA. Thus, the Coast Guard and EPA have coordinated their efforts to ensure that "substantial harm" criteria are similar for both agencies. This level of cooperation will lead to consistent criteria for facilities under both agencies’ jurisdiction. In addition to attending EPA workgroup meetings, the Coast Guard attended meetings with EPA and industry groups at the American Petroleum Institute on September 5, 1991, March 10, 1992, and May 7, 1992. The purpose of these joint meetings is to ensure interagency cooperation, and to establish consistency between the Coast Guard’s and EPA’s proposed rules. This coordination will help the regulated community comply with these regulations by establishing clear and consistent requirements.
5. REFERENCES

EXECUTIVE ORDER 12866 SUBMISSION

Important

If you require assistance in completing this form, contact the OIRA Docket Library, Room 3201, Attention: Docket Library, Office of Information and Regulatory Affairs, Room 2201, OIRA, 1200 Pennsylvania Avenue, N.W., Washington, DC 20503.

Send three copies of this form and supporting material to:

Office of Information and Regulatory Affairs
Office of Management and Budget
Attention: Docket Library, Room 3201
725 17th Street, N.W.
Washington, DC 20503

1. Agency/Subagency originating request:
 U.S. Coast Guard

2. Regulation Identifier Number (RIN):
 2115-AD82

3. Title:
 Response Plans for Marine Transportation-Related Facilities

4. Stage of Development:
 - [] Prerule
 - [] Proposed Rule
 - [] Interim Final Rule
 - [X] Final Rule
 - [] Final Rule – No material change
 - [] Notice
 - [] Other
 Description of Other:

5. Legal Deadline for this submission:
 a) [] Yes
 [X] No
 b) Date: __/__/__
 c) [] Statutory
 [] Judicial

6. Economically Significant:
 [] Yes
 [] No

7. Agency Contact (person who can best answer questions regarding the content of this submission):
 LCDR B. Hunt
 Phone (202) 267-6230

Certification for Executive Order 12866 Submissions:
The authorized regulatory contact and the program official certify that the agency has complied with the requirements of E.O. 12866 and any applicable policy directives.

Signature of Program Official: __________________________ Date: __________________________

Signature of Authorized Regulatory Contact: __________________________ Date: __________________________