Department of Homeland Security (DHS) Science and Technology (S\&T)

Real-Time Translation

Homeland Security

Science and Technology

TECHNOLOGY SCOUTING

 RESEARCH SUMMARYDate: August 2019

THIS REPORT IS PROVIDED "AS IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICLAR PURPOSE. As a condition of the use of this report, the recipient agrees that in no event shall the United States Government, its contractors, or subcontractors be liable for any damages, including, but not limited to, direct, indirect, special, or consequential damages, arising out of, resulting from, or in any way connected to this report or the use of information from this report for any purpose.

Overview: Commercial datasets and open-source research were utilized to compile a list of solution options. A summary of the request is outlined below, and the top identified solutions thus far are displayed on the following pages.

Problem Description:

When responding to incidents, emergency responders often interact with individuals who speak little or no English, making it very challenging to quickly assess and respond to the problem. In addition, 9-1-1 dispatchers sometimes struggle with understanding non-English speakers when answering emergency calls. Further, there are times when dispatchers or responders cannot determine which language is being spoken or understand what is being said. The inability of on-scene responders and 9-1-1 dispatchers to effectively communicate in real time with non-English speakers or the speech impaired delays response time, which impacts operations when responding to incidents.

Desired Use Case:

In the desired use case, potential solutions will provide the ability for on-scene emergency responders and 9-1-1 dispatchers to rapidly and effectively communicate with non-English speakers and those unable to communicate verbally. It is anticipated that the solution would be a separate device that will automatically identify, translate and display the language being spoken in real-time during emergency response operations. Responders would carry the device with them on-scene and activate it as soon as communications begin with a non-English speaker or those unable to communicate verbally. The device may be spoken into by all parties involved (e.g., responders, patients, by-standers). Once spoken into, the device would work to automatically identify the language, translate and display the conversation in real-time. It would work at the Public Safety Answering Point (PSAP) for 9-1-1 callers and dispatchers as well as for responders in the field. The translation results should be displayed on a screen for responders and other parties to see so they can understand each other more quickly and accurately.

Technology Requirements:

The list of the requirements assessed for this report are listed below:

- Detects, identifies and translates various languages in real-time
- Integrates into existing PSAP infrastructure including computer-aided dispatch (CAD), automatic call distributor (ACD) and customer premise equipment (CPE)
- Connects and integrates with legacy architecture
- Is inclusive of text-to-911
- Is cost-effective

Additional desirable capabilities are listed below:

- Connects and integrates with Next-Generation 911 (NG911) architecture
- Displays name of language spoken in real-time
- Translates languages at a 95% accuracy rate
- Includes camera for image capture and translation
- Performs two-way sign language translation for the hearing impaired
- Records audio, video and provides transcription
- Has a pre-record buffer and programmable durations
- Has a graphical use interface (GUI) screen
- Is manually activated
- Be of a size that should not exceed that of a cellular phone
- Includes a keyboard for people who have speech impediments or other disabilities that effect their ability to effectively communicate orally
- Filters out background noise
- Converts voice-to-text during language conversion
- Integrates with other equipment (body-worn cameras, flashlight)
- Processes speech of understand multiple or simultaneous speakers

Solution Options - Application Programming Interfaces (API)				
\#	Solution	Description	Requirements	
1	amazon Rekognition Amazon Translate by Amazon Web Services (USA)	Supports the translation of 25 different languages. Its application allows for the performance of both batch translation when there are large quantities of pre-existing text to translate, and real-time translation to deliver ondemand translations of content as a feature of applications. Can instantly translate chat conversations. At time of report, it does not appear that this application allows for speech translation, but future developments of Alexa, the personal assistant technology, may yield improvements to speech recognition/translation capabilities.	Real-time language detection	Yes
			Real-time language identification	Yes
			Real-time language translation	Yes
			PSAS infrastructure integration	*
			Inclusive of text-to-911	*
			Cost-effective	*

2	$\begin{aligned} & \text { Dynamic Simultaneous Translation } \\ & \text { and Anticipation and Controllable } \\ & \text { Latency (STACL) by Baidu (China) } \end{aligned}$	Can begin a translation just a few seconds into a speaker's speech and finishing seconds after the end of a sentence. It is the opposite of consecutive interpretation, where a translator waits until the speaker pauses to start translating.		
			Real-time language detection	Yes
			Real-time language identification	Yes
			Real-time language translation	Yes
			PSAS infrastructure integration	*
			Inclusive of text-to-911	*
			Cost-effective	*
3	Google Cloud Speech API by Google (USA)	API has speech-to- text translation capabilities, has tested well in medical scenarios. Can automatically identify spoken language and return text transcriptions in real time for shortform and long-form audio from multiple audio sources. The API recognizes 120 languages and dialects, including 14 different English dialects, 20 Spanish dialects, and 15 Arabic dialects. Generally available to all third-party developers, Google offers multiple pre-built speech recognition models that are customizable to the use case.	Real-time language detection	Yes
			Real-time language identification	Yes
			Real-time language translation	Yes
			PSAS infrastructure integration	*
			Inclusive of text-to-911	*
			Cost-effective	*
4	Babel Program (IARPA) by IARPA (USA)	Developing speech recognition technology that can be rapidly applied to any human language. Will be able to generate a speech transcription system for any new language within one week to support keyword search performance for effective triage of massive amounts of speech recorded in real-world situations.	Real-time language detection	Yes
			Real-time language identification	Yes
			Real-time language translation	Yes
			PSAS infrastructure integration	*
			Inclusive of text-to-911	*
			Cost-effective	Yes
5	IBM Watson Speech-to-Text API by IBM (USA)	Can automatically transcribe audio from 7 languages, dialects excluded, in real-time; it can do so even with lower quality recordings, conversations with multiple speakers, and more. The model is customizable to recognize certain names, sensitive subjects, names of individuals, and other content that is relevant to the use case. Can identify and determine repeated words and tones in conversations, recognizing patterns and offering analytic insights on the audio content.	Real-time language detection	Yes
			Real-time language identification	Yes
			Real-time language translation	Yes
			PSAS infrastructure integration	*
			Inclusive of text-to-911	*
			Cost-effective	*

There are several consumer-grade, handheld translation devices designed and marketed primarily toward travelers. While these devices do not meet many of the requirements listed in the SOO, some solutions are included below for awareness of devices that can address a simpler use case.		
\#	Solution	Description
1	ili by Logbar (USA, Japan)	A wearable translator. A device developed for travelers and works without being connected to the Internet. It currently translates between English and Japanese, Mandarin, Spanish, and Korean.
2	Ambassador by Waverly Labs (USA)	Over-the-ear design. Seamless pairing, simple sharing and adaptable settings for live translations across the globe. Features: - Smooth sharing with guests by pairing multiple Ambassadors to onesmartphone - Over-the-ear design for sharing, longer battery life, and signal quality - Advanced microphone array - Translate and understand dozens of languages / dialects with guests and groups

		A smart voice translator, a real time speech interactive translator that can translate 40 languages such as English, Chinese, Japanese, Spanish and more. Using intelligent speech recognition technology, it can translate recorded sound into text, and simultaneously transmit into voice output.
Enence by Muama (USA)		

