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Probabilistic Risk Analysis and Terrorism Risk 

Barry Charles Ezell,1 Steven P. Bennett,2 Detlof von Winterfeldt,3 

John Sokolowski,1 and Andrew J. Collins1 

Since the terrorist attacks of September 11, 2001, and the subsequent establishment of the 
U.S. Department of Homeland Security (DHS), considerable efforts have been made to esti­
mate the risks of terrorism and the cost effectiveness of security policies to reduce these risks. 
DHS, industry, and the academic risk analysis communities have all invested heavily in the 
development of tools and approaches that can assist decisionmakers in effectively allocating 
limited resources across the vast array of potential investments that could mitigate risks from 
terrorism and other threats to the homeland. Decisionmakers demand models, analyses, and 
decision support that are useful for this task and based on the state of the art. Since terrorism 
risk analysis is new, no single method is likely to meet this challenge. In this article we explore 
a number of existing and potential approaches for terrorism risk analysis, focusing particu­
larly on recent discussions regarding the applicability of probabilistic and decision analytic 
approaches to bioterrorism risks and the Bioterrorism Risk Assessment methodology used 
by the DHS and criticized by the National Academies and others. 
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1. INTRODUCTION 

“Probability is the guide to life.”—Cicero (107 BC) 

“We have to identify and prioritize risks—understanding 
the threat, the vulnerability and the consequence. And 
then we have to apply our resources in a cost-effective 
manner.” (Michael Chertoff, Former Secretary of the 
Department of Homeland Security, 2006) 

For more than 30 years, probabilistic risk analy­
sis (PRA) has been a major tool for assessing risks 
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and informing risk management decisions by govern­
ment and industry, in areas as diverse as environmen­
tal protection, industrial safety, and medical deci­
sion making. Applications of PRA to terrorism risks 
are new, however, and not uncontroversial. Here, we 
take a broad view of PRA, including any probabilis­
tic approach involving tools like event trees, fault 
trees, and decision trees. We also introduce other 
tools such as game theoretic approaches and system 
dynamics, which may prove to be useful in dealing 
with the intelligent adversary. A major challenge in 
risk analysis of terrorism is the fact that terrorists, un­
like nature or engineered systems, are intelligent ad­
versaries and may adapt to our defensive measures. 
There has been recent criticism of PRA approaches 
to terrorism risk analyses, especially (but not only) 
by the National Research Council’s Committee on 
Methodological Improvements to the Department of 
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Homeland Security’s (DHS) Biological Agent Risk 
Analysis (referred to hereafter as the NRC Com­
mittee). The NRC Committee has argued that be­
cause of this adaptive nature, it is problematic to 
assess probabilities of terrorism events or to use tra­
ditional PRA tools like event trees, suggesting alter­
native tools to assess the risks of terrorist events. One 
purpose of the article is to justify the use of PRA for 
terrorism risk analysis, while acknowledging its limi­
tations. A secondary purpose of the article is to pro­
pose a pluralistic approach to terrorism risk analysis, 
which allows alternative approaches to be examined 
and tested. To this end, we examine some alternative 
approaches and discuss their contributions and limi­
tations. While we do not take issue here with the pos­
sible value of these alternative approaches, we aim to 
make a case that (1) probabilities of terrorism events 
are useful to assess terrorism risks; (2) event trees 
can be used as part of a terrorism PRA to decompose 
the universe of terrorism scenarios; and (3) alterna­
tives suggested by the NRC Committee like extended 
forms of games or decision trees constructed from the 
terrorists’ perspective, like all approaches, have limi­
tations. This article is organized in the following way. 
Section 1.1, provides a short background on the De­
partment of Homeland Security (DHS) Bioterrorism 
Risk Assessment (BTRA) methodology and the con­
text that motivated this article. Following the BTRA 
background, it concludes with a summary of the NRC 
Committee’s criticism of the use of probability to as­
sess the likelihood of terrorism events and the use 
of event trees in favor of approaches that consider 
terrorist events as actions that can be derived from 
their objectives. Section 2 details the usefulness of 
probabilities in bioterrorism risk analysis. Section 3 
provides an overview of several tools that have been 
used or might be used to account for the intelligent 
adversary in terrorism risk. The review of tools in 
Section 3 is not intended to be exhaustive, but rather 
to note that modeling tools have limitations in deal­
ing with the intelligent adversary. For example, some 
tools and approaches, while promising, may require 
additional development before ready for use in real-
world applications while others are more mature and 
established. The final section summarizes, and ad­
vances, the claim that no single model or approach 
is sufficient to cover the entire landscape of terror­
ism risk and support the difficult decisions that must 
be made by Homeland Security decisionmakers. 

1.1. 2006 Bioterrorism Risk Assessment 
Background 

Signed in 2004, Homeland Security Presidential 
Directive4 (HSPD) 10 focused on improving the na­
tion’s ability to prevent, prepare for, respond to, and 
recover from terrorism attacks that employed bio­
logical agents as their means. An important compo­
nent of HSPD-10 was the president’s requirement 
for DHS to develop “periodic assessments of the 
evolving biological weapons threat,” explaining that 
“the United States requires a continuous, formal pro­
cess for conducting routine capabilities assessments 
to guide prioritization of . . . on-going investments in 
biodefense-related research, development, planning, 
and preparedness.” The first national Bioterrorism 
Risk Assessment would be required by January 2006. 
To meet this requirement, in early 2005, DHS in­
vestigated three methodologies varying in complex­
ity, depth, and community familiarity. A Technical 
Expert Review Panel reviewed each methodology.5 

Based on resulting comments, and other factors, 
DHS determined that BTRA should primarily be a 
PRA-based methodology. BTRA has evolved over 
the years, incorporating new tools and techniques as 
science progresses and as program realities allow. 

DHS requested the National Academy of Sci­
ences’ National Research Council (NRC) to review 
BTRA in 2006. The NRC’s Draft Final Report, de­
livered in January 2008, recommended “to assess the 
probabilities of terrorist decisions, DHS should use 
elicitation techniques and decision-oriented models 
that explicitly recognize terrorists as intelligent ad­
versaries who observe U.S. defensive preparations 
and seek to maximize achievement of their own ob­
jectives.” Also, the committee chairman proposed a 
decision tree approach from the “terrorist point of 
view.”(1) 

DHS identified several concerns with the NRC 
Committee’s report.(2) In particular, the conclusion 
that probability of terrorism events and event trees 
are not suitable for bioterrorism risk analysis ap­
peared to be controversial and not shared by many in 

4 Homeland Security Presidential Directive 10: Biodefense for 
the 21st Century, 2004. Available at www.fas.org/irp/offdocs/ 
nspd/hspd-10.html. 
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the risk analysis community. This article challenges 
the NRC Committee’s conclusion. 

1.2. Intelligent Adversary Analysis 

An essential aspect of any terrorism risk as­
sessment is the approach used to represent and 
model terrorist adversaries. It is arguable that one 
of the best sources of information on the nature and 
intelligence of our adversaries, although limited, un­
certain, and incomplete, is the intelligence com­
munity (IC). The IC persistently observes, collects, 
fuses, and assesses terrorist activities, motivations, 
intent, and capabilities. The ongoing challenge for 
DHS risk analysts, then, is how best to consult, incor­
porate, and transform relevant intelligence informa­
tion into meaningful inputs for terrorism risk anal­
ysis, in conjunction with other models of terrorists’ 
behavior outside of the IC. 

Intelligence products exist in a range of forms, 
from opinions based on anecdotal information, to as­
sessments based on tradecraft, and in other cases, 
technical methods and models. How, then, might 
DHS and the IC transform intelligence information 
into meaningful inputs for bioterrorism risk analy­
sis? The NRC Committee advised DHS to model po­
tential bioterrorists as “intelligent adversaries” as a 
part of its risk assessment—assuming that at each 
decision point in the planning of an attack, the 
adversary will always make the choice that max­
imizes his or her objectives, thus making terror­
ism attack probabilities outputs of decision models, 
rather than incorporating intelligence information as 
input.(1) 

In decision analysis terminology, the NRC Com­
mittee proposed to conceptualize the interaction be­
tween defenders and attackers in an evolving terror­
ist attack as a decision tree, in which the attacker’s 
choices are modeled as decisions that maximize ex­
pected utility and the defender’s choices are modeled 
as uncertain events, related to the relative effective­
ness of the defenses. Three other possibilities are (1) 
a decision tree in which the defender’s choices are 
modeled as decisions that maximize expected utility 
and the attacker’s choices are modeled as uncertain 
events that are influenced by the defender’s decision; 
(2) a decision tree in which both the attacker’s and 
the defender’s choices are modeled by decisions that 
maximize expected utility, e.g., an extended form of 
a game; and (3) an event tree that models both the at­
tacker’s choices and the defender’s responses as un­
certain events. 

Clearly, there are advantages and disadvantages 
to these ways of representing attacker–defender in­
teractions and there is no “correct” answer. 

2. PROBABILITIES ARE USEFUL TO 
QUANTIFY THE RISK OF 
TERRORIST ATTACKS 

In the first issue of the journal Risk Analysis, Ka­
plan and Garrick published an important paper that 
defined risk as the triplet of scenario, likelihood, and 
consequence.(3) For the following three decades, the 
risk and decision analysis communities have cited this 
seminal paper and used many of the concepts and 
tools developed in it. More recently, Garrick et al. 
advocate the use of PRA for assessing terrorism risk, 
specifically for assessing the probabilities of terror­
ist attacks.(4) Work based on Garcia, McGill et al., 
Paté-Cornell and Guikema, Rosoff and von Winter­
feldt, Willis, and von Winterfeldt and O’Sullivan is 
an example of risk analyses that use PRA, and that 
externally estimate probabilities of terrorist attacks 
as inputs.(4−10) 

Willis, McGill et al., and other terrorism risk re­
searchers operationalize terrorism risk as the prod­
uct of threat, vulnerability, and consequences. More 
specifically, threat is usually defined as the probabil­
ity of an attack (weapon, delivery mode, target, etc.), 
vulnerability as the probability of an attack’s success 
given that it occurs, and consequences are the losses 
that occur (fatalities, injuries, direct and indirect eco­
nomic impacts, among others) given a successful at­
tack. Equation (1), then, is a common expression of 
homeland security risk.(11,6) 

Risk = P (A) × P (S | A) × C (1) 

Hence, a useful first-order indicator of terror­
ism risk is the expected consequences (loss of lives, 
economic losses, psychological impacts, etc.) against 
which the benefit of existing or potential terrorism 
strategies, policies, and countermeasures can be eval­
uated and estimated. In this probabilistic framework, 
the attack probabilities (P(A) in Equation (1)) are 
for the most part agreed to be the most challeng­
ing to estimate. Quantifying P(A) requires knowl­
edge, data, or modeling about the motivations, in­
tent, and capabilities of terrorists (largely the domain 
of the intelligence community), in addition to or in­
stead of knowledge about historical attacks and their 
relevance to current risk. 

It is very difficult to elicit absolute probability 
(or frequency) judgments that permit this kind of 
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output. However, relative judgments in terms of rank 
orders or ratios are easier to acquire from intelli­
gence or other experts. For example, while it may 
be difficult to assess the absolute probability that a 
particular terrorist group will engage in a terrorism 
attack using nuclear materials in the United States 
in the next 10 years, experts can more easily reason 
comparatively, and might judge a “dirty bomb” at­
tack using radiological material from a medical facil­
ity is more likely or less likely than an attack using an 
improvised nuclear device by considering the relative 
technical difficulties of executing these attacks. There 
is extensive literature regarding methods for eliciting 
uncertain probability judgments (often as probability 
distributions) from experts, which suggests how one 
might elicit probabilities in the face of intelligence 
complexities and uncertainties inherent in terrorism 
risk analysis (for a recent summary, see Bedford and 
Cooke, and Hora(12,13)). 

When intelligence analysts estimate a probabil­
ity of attack, they are making a statement of belief 
about what a terrorist might do, based on available 
intelligence information as well as their personal ex­
perience and judgment. Apostolakis makes this crys­
tal clear: “there is only one kind of uncertainty stem­
ming from our lack of knowledge concerning the 
truth of a proposition. Distinctions between proba­
bilities are merely for our convenience in investigat­
ing complex phenomena. Probability is always a mea­
sure of degree of belief.”(14) 

There are two common arguments against the 
use of expert-estimated attack probabilities for ter­
rorism risk analysis: (1) that the level of uncertainty 
and incompleteness associated with intelligence data 
prevents reasonable probability estimates from be­
ing made, even when using expert elicitation ap­
proaches that are designed to capture and repre­
sent uncertainty, and (2) that these probabilities are 
not static—i.e., the adversary is intelligent, observing 
U.S. defensive actions and shifting attack preferences 
accordingly. 

Regarding the first argument, it is important to 
note that intelligence information is already in use 
for decision support at the highest levels in govern­
ment; uncertainty and incompleteness are managed 
and communicating by representing judgments ver­
bally with associated caveats. This approach, how­
ever, has historically led to some significant misun­
derstandings of intelligence information, a notable 
example being a (now declassified) 1951 National In­
telligence Estimate (NIE 29–51), entitled “Probabil­
ity of an Invasion of Yugoslavia in 1951.” In this 

intelligence document appeared the statement: “Al­
though it is impossible to determine which course the 
Kremlin is likely to adopt, we believe that an attack 
on Yugoslavia in 1951 should be considered a seri­
ous possibility.” When asked by State Department 
staff what odds the authors of the assessment placed 
on an attack in 1951, Sherman Kent of the National 
Board of Estimates replied “65 to 35 in favor of an at­
tack.”(15) The State Department had interpreted “se­
rious possibility” as being “very considerably lower” 
than Kent’s 65/35 reply. Kent then polled the other 
authors of the document to determine the odds they 
had in mind when they agreed to the wording, ob­
serving that the odds in the minds of the authors 
ranged from 80/20 to 20/80 in favor of an attack. 

The example above is not intended to criticize 
the production and communication of intelligence 
information; rather, it highlights an opportunity for 
improved clarity and understanding of uncertainty 
when a mathematical language for capturing and 
expressing degree of belief—probability theory—is 
used. Expression of intelligence information in a con­
sistent manner that reflects uncertainty and is able 
to be incorporated into other models is helpful and 
arguably can improve the interpretation and util­
ity of the information, particularly as it informs risk 
analysis. 

Regarding the second argument against using 
expert-elicited attack probabilities, the adaptive na­
ture of the adversary is certainly an important con­
sideration. Nevertheless, it is reasonable to start with 
a baseline of defensive actions, current terrorist moti­
vations, intent, and capabilities (based on data, intel­
ligence, and other expertise), and then assess prob­
abilities conditional on this baseline. We take it for 
granted that all probabilities are conditional on our 
current state of knowledge. While it is perhaps more 
difficult to spell out these conditions precisely in ter­
rorism risk analysis, there is no fundamental differ­
ence in this type of conditioning compared to condi­
tioning probability judgments in the case of natural 
or engineered systems. 

Once we introduce new defensive actions, it is, 
of course, important and necessary to reassess these 
probabilities in light of the preventative, protective, 
or deterrence effects of the defensive actions. For 
example, as von Winterfeldt and O’Sullivan pointed 
out, the use of countermeasures to Man-Portable 
Air-Defense Systems (MANPADS) is assessed to 
have a strong deterrence effect on terrorists who may 
contemplate the use of MANPADS weapons (such 
as shoulder-fired missiles, etc.) to attack commercial 
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airplanes.(10) It is important to note, however, that re­
evaluation of probabilities following defensive action 
is not necessarily always a best estimate of risk, since 
for a terrorist adversary, it is next to impossible to 
determine whether or not, or the degree to which, 
the adversary is in fact (1) aware of particular defen­
sive actions and their subsequent implications, and 
(2) adjusting the adversary’s decisions and prefer­
ences based on awareness of defensive actions. Addi­
tional intelligence information can assist in determin­
ing the “penetrance” of U.S. defensive adjustments 
into the adversary’s decision-making process, but any 
newly determined “postdefensive adjustment” risks 
may well be best presented to decisionmakers along­
side, or in addition to, baseline risks rather than in­
stead of them. 

3. TOOLS FOR TERRORISM RISK ANALYSIS 

Probabilities associated with complex events are 
difficult to assess directly, and it is therefore often 
useful to decompose these events into components 
and to determine the overall event probability by as­
sembling the components’ probabilities using stan­
dard probability calculus. There are many alterna­
tive decomposition tools, including event trees, fault 
trees, decision trees, influence diagrams, and belief 
nets. When the intention is to divide a very large uni­
verse of events into a structured set, event trees are 
useful as part of a baseline assessment of terrorism 
risk, beginning with an initial choice of weapon and 
target, and following through the path from attack, 
through success or failure, to eventual consequences. 
Event trees have been used to decompose terrorism 
scenarios in a number of efforts.(16−18) Rosoff and 
von Winterfeldt use event trees to track the paths to 
failure or success of a dirty bomb attack and von Win­
terfeldt and O’Sullivan use a combination of decision 
and event tees to quantify the costs and benefits of 
countermeasures to MANPADS.(8,10) 

We present three categories of tools for use 
in PRA as it applies to terrorism risk, beginning 
with an introduction of logic trees under which we 
group forward logic trees and fault trees. Next, we 
briefly review additional methods—influence dia­
grams, systems dynamics models, and Bayesian net­
works (BN)—as potentially useful in transforming 
conceptual terrorist actions into computational mod­
els. For the final category, we discuss game theoretic 
approaches. For each we discuss the potential advan­
tages and limitations. 

3.1. Logic Trees 

Logic trees are important tools for exploring the 
scenario space, analyzing uncertain events, defining 
scenarios, and assessing risk.(19) The use of logic trees 
in probabilistic seismic hazard analysis has a long his­
tory, ranging from weighting of a few alternative as­
sumptions to full uncertainty treatment for all of the 
inputs to a probabilistic assessment. Logic tree anal­
ysis consists of specifying a sequence of assessments 
that must be made in order to perform an analysis 
and then addressing the uncertainties in each of these 
assessments in a sequential manner. Thus, it provides 
a convenient approach for breaking a large, com­
plex assessment into a sequence of smaller, simpler 
components that can be more easily addressed.(20) In 
this next section, we divide logic trees into two cate­
gories: (1) probability, event, and decision trees, and 
(2) fault, attack, and success trees. Where some may 
draw a serious distinction between probability, event, 
and decision trees, they fundamentally all use for­
ward logic in their design. Parnell et al. arrived at a 
similar conclusion in a report by the Homeland Se­
curity Institute for DHS that represented “consensus 
among the authors” and detailed 20 risk assessment 
frameworks.(21) In this article, we do not attempt to 
recount what has already been published. Instead, we 
narrow our focus to trees and game theory; two areas 
(minus PRA event tress) that the NRC Committee 
strongly recommended as the appropriate way to do 
bioterrorism risk analysis. 

3.1.1. Probability, Event, and Decision Trees 

Probability trees model a sequence of uncer­
tain events in order to calculate the probabilities 
of events in the outcome space (Fig. 1). A proba­
bility tree is a succession of circular nodes (uncer­
tain state variables) with branches. The branches 
emanating from each node represent the different 
possible values of the uncertain variables associated 
with the node. Probability trees have the following 
properties: (1) event \ nodes and branches; (2) for­
ward logic; and (3) downstream events conditioned 
on previous nodes. Probability trees have many uses 
such as (1) to graphically represent the fundamentals 
of probability theory; (2) to describe probabilistic re­
lationships between two or more events; and (3) to 
serve as the mathematical foundation for more ad­
vanced tree structures such as event trees or decision 
trees. 

Event trees inductively model the sequences of 
events that lead to consequences.(22) Event trees 
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have the following properties: (1) events (nodes) 
and branches; (2) forward logic; and (3) downstream 
events conditioned on previous events. Event trees 
are an extension of probability trees by adding: ini­
tiating event, mitigating events, and consequences. 
Consequences are added for each probability path. 
Event trees have been used in many fields. For large 
systems, event trees have been used in nuclear reac­
tor safety studies. Ezell et al. employed event trees 
to understand cyber risk to supervisory control and 
data acquisition systems for water supply.(16) In PRA, 
event trees operate by identifying the likelihood of 
any given probability path (from initiating event 
through the leaves of the all tree branches). 

Probabilities are assigned to event tree branches 
to represent the relative likelihood or degree of be­
lief about the outcome of each branch. Probabilities 
at a given node are assessed conditionally on the as­
sumption that all the branches leading to that node 
represent the true states of the preceding events. 
Because they are conditional probabilities for as­
sumed mutually exclusive and collectively exhaustive 
events, the sum of the conditional probabilities at 
each node is unity.(23) 

Event trees have been used for very large com­
plex systems. For example, NASA has a mature 
program using PRA for decision making and manag­
ing project risk—Mars missions, Space Station con­
struction, Space Shuttle flights, etc. Compared to the 
BTRA event tree, NASA PRAs involve extremely 
large sets of unknowns. While it is desirable to cre­
ate small and compact event trees that are simply 
described, this is often inadequate for the represen-

tation of real uncertainties. Consider as an exam­
ple, a comparison between the BTRA and NASA 
PRA. The BTRA is comprised of one event tree, 
16 events, and 74 branches. A NASA Space Shut­
tle PRA has 5,000 event trees, 6,000 events, and 
2,000,000 branches, and approximately 100 off-line 
supporting models.(24) 

Decision trees are logic trees that include de­
cision nodes in addition to events. A decision tree 
is effectively a diagram of a decision, read left to 
right.(25) The leftmost node in a decision tree is the 
root node and is usually a decision node (represented 
by a square). Branches emanating to the right from 
a decision node represent the set of decision alter­
natives that are available. Small circles in the tree 
are chance nodes that represent uncertainty in out­
comes (Fig. 2). In the same fashion as probability 
trees and event trees, probabilities are assigned to the 
branches, referred to as states of nature, emanating 
from the chance nodes in the tree. The leaves of each 
path through the tree are called endpoints. Each end­
point represents the final outcome of a path from the 
root node of the decision tree to that endpoint.(26) In 
decision analysis, decision trees are used as a decision 
support tool to find the alternative with the best ex­
pected value. In the terrorism context, decision trees 
can structure the attacker’s actions as decisions and 
the defender’s as chance nodes vs. structuring the de­
fender’s actions as decisions and the attacker’s ac­
tions as chance nodes. The NRC report emphasizes 
the use of decision trees that structure the attacker’s 
actions as choices and the defender’s responses as 
chance nodes. Other studies do the reverse.(10) When 
both the attacker’s and the defender’s choices are 
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a2 

Fig. 1. Probability tree. 
Fig. 2. Decision tree.(26) 
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modeled as decision nodes, such approaches are con­
sidered to be in the domain of game theory. 

Logic trees have limitations. First, probability 
assignments are usually based significantly on sub­
jective judgments (1) because of the often limited 
availability of numeric data, and (2) because hu­
man judgment is often needed to weigh alternative 
interpretations of whatever data are available. In 
the context of the BTRA, intelligent adversary de­
cisions are modeled as probability estimates, which 
are structured to incorporate the intelligence com­
munity expert knowledge about the intelligent ad­
versary’s preferences and capabilities. Another lim­
itation is that terrorist choices are not random events 
such as failure events in engineered systems or natu­
ral hazard events. At best, the probabilities assigned 
by the intelligence community represent its belief as 
to the choices terrorist will make. Terrorists are not 
static and change their preferences based on what we 
choose to do so probability judgments must be up­
dated as the situation changes. Event tree PRA is 
therefore only a “snapshot” of threat, vulnerability, 
and consequences for a given time period. 

In BTRA, DHS used an event tree and modeled 
terrorist decisions as probability estimates elicited 
from the intelligence community—estimates that 
were elicited specifically to incorporate the adver­
sary’s level of sophistication, or “intelligence” from 
the intelligence community’s perspective. The NRC 
Committee, however, rendered an opinion that the 
government should use decision trees from the ter­
rorist’s perspective, where at each decision point 
in the tree, an adversary will always choose the 
“branch” that maximizes the consequences of an at­
tack. Decision trees (as the Committee points out) 
have the advantage that they are a simpler form of 
analysis, and more easily explainable. 

Using decision trees to model terrorism from the 
perspective of terrorists (as proposed by the Commit­
tee) requires two important assumptions. First, it as­
sumes ideal adversary intelligence and rationality— 
that the adversary knows which branch choice at 
a particular decision node best maximizes conse­
quences at tree endpoints. For most terrorist attack 
paths, and certainly for technically complex attack 
paths requiring some degree of sophisticated knowl­
edge and skills such as those for bioterrorism, this 
can be a very unsafe assumption for the U.S. gov­
ernment.(27) This assumption is problematic for a few 
reasons—first, successfully executing a WMD terror­
ism attack such as bioterrorism is a technically chal­
lenging enterprise, often with counterintuitive rela­

tionships between technical planning decisions and 
resulting consequences (e.g., terrorists could assume 
that a particular mode of production for “virus A” 
might be optimal in terms of producing casualties 
when used in attack since that mode is known to 
be optimal for “virus B”; such assumptions in biol­
ogy are often false due to the complexity of biolog­
ical systems). As such, many decisions that may ap­
pear to be the consequence-maximizing ones may in 
fact be the exact opposite, and the level of techni­
cal proficiency—an aspect of terrorist groups that is 
studied by the intelligence community—can be the 
determining factor in whether or not the adversary 
knows this. Further, the assumption in proposed de­
cision tree approaches that terrorist adversaries have 
a perfect working knowledge of all defensive coun­
termeasures arrayed against them is potentially prob­
lematic for two reasons; first that the adversary really 
does know all the details of our defenses, and second 
that even if the adversary did, he or she would act 
rationally in possession of that information. Were in­
telligence information to indicate that either of these 
were not the case, the objective functions for the ter­
rorist would be undermined to the point that the util­
ity of the analysis for estimating risk from overideal­
ized terrorists would be greatly reduced. 

The second critical assumption, also related to 
the adversary’s objective function in the decision 
mode, is that the intelligence community (or anyone 
else for that matter) knows the objectives the adver­
sary is trying to maximize in the first place. While 
consequence maximization may be a good guess, it 
is not easy to determine which types of consequences 
are most desirable to the adversary, and in what pro­
portions. This is an important aspect of the anal­
ysis in that decision points for the adversary may 
be consequence maximizing for some consequence 
measures (such as fatalities), but not necessarily for 
others (such as economic or psychological conse­
quences). For example, consider the 2001 anthrax 
attacks in the United States, in which four people 
were killed and 18 (known) infected. It has been 
noted that the widespread panic, closure of govern­
ment and postal facilities, and massive public expen­
ditures and preventive actions were of higher impact 
than the four fatalities, and that psychological and 
economic impacts may be more important adversary 
objectives than killing Americans.(28) However, one 
way to manage this challenge is to examine data, and 
elicit experts that seek to assess the outputs of ter­
rorists’ objective functions—that is, what adversaries 
are actually doing or planning. Specifically, while 
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Fig. 3. Notional bioterrorism event tree. 

intelligence information describing what the adver­
sary is actually doing is uncertain and incomplete, 
data about the specifics of the objective function a 
terrorist may be trying to maximize—that is, what 
the terrorist is thinking is at least as uncertain and in­
complete, and probably more so. Specifically, this as­
sumption requires knowledge of the adversary’s pref­
erences and capabilities relating to 

• representational and computational capaci­
ties(27) 

• the nature of the adversary’s objective function 
(i.e., whether the goal is to maximize his or her 
consequences); 

• adversary knowledge and reasoning about 
the problem commensurate with the United 
States; and 

• adversary capability of representing a model 
and computing its solution.(28) 

To summarize, probability trees, event trees, and 
decision trees share common elements of forward 
logic and appear very similar. Event trees have a 
long history in PRA and in the past 10 years many 
applications to terrorist risk have been published. 
Applications using decision trees in terrorism risk, 
however, are not well developed in the risk analy­
sis literature. In comparing Figs. 3 (event tree) and 
4 (decision tree from an attacker’s perspective), the 
distinction between the two formulations becomes 
clear. In Fig. 3, the event tree formulation expresses 
the intelligence community’s uncertainty in the intelli­
gent adversary’s true utility. This uncertainty is rep­
resented by a probability assignment for a terrorist 
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Fig. 4. Notional bioterrorism decision tree. 

choice based on the state of information available 
to the intelligence community. In Fig. 4, and as de­
scribed above, the decision tree assumes (1) we know 
the intelligent adversary’s true utility for the choices in 
the tree, and (2) the adversary has the knowledge and 
rationality to actually maximize that utility; we argue 
that this is not the case. 

3.1.2. Fault, Attack, and Success Tree 

Fault trees deductively model the combinations 
of system failures and human errors that could lead 
to an accident (Fig. 5). Fault trees are a useful tool 
for analyzing, visually displaying, and evaluating fail­
ure paths in a system to evaluate system level risk.(29) 

Similarly, success trees model the combinations of 
events that lead to success. Attack trees model the 
actions of an intelligent adversary to defeat a defen­
sive system.(30) Fault, attack, and success trees all use 
Boolean algebra, reliability theory, and probability 
theory. Fault trees provide insight into why mitigat­
ing events in an event tree may fail. Attack trees cat­
egorize the different ways in which a system can be 
attacked. And, success (defense) trees are the com­
plement of fault trees. Fault trees have been used 
for years in concert with event trees. For example: 
1961—Minute Man Missile, aircraft design, and nu­
clear power plant safety analyses have all used fault 
trees to support planning and decisions. Similarly, at­
tack trees are special case of fault trees that have 
been used to represent an adversary’s successful de-

Fig. 5. Generic fault tree. 

feat of a countermeasure or system, such as a fire-
wall system, a mitigating event for an event tree.(31) 

Along this same line, other techniques may prove to 
be useful with logic trees. For example, in the next 
section, a combination of systems dynamic modeling 
and Bayesian networks is explored to provide more 
structure to how one may underpin estimates from 
the intelligence community for the behavior of the 
intelligent adversary. 

3.2. Influence Diagrams 

Influence diagrams depict the relationships 
between decisions, events, and outcomes by 
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depicting them as nodes and arcs in a directed 
acyclic graph (Fig. 6). Following influence diagram 
conventions, uncertain variables and events are 
typically shown as ellipses, variables calculated from 
predecessors are shown as double ellipses, decision 
nodes are shown as rectangles, and value nodes 
are shown as diamonds (or hexagons). Influence 
diagrams are directed acyclic graphs, in which an 
arrow connecting node A to node B is interpreted as 
follows: 

1. If node A is an event node and node B is a 
decision node, it means that “the event in A 
will be known prior to making the decision in 
D.” 

2. If both nodes A and B are both chance nodes, 
it means that “knowing the event in node A 
affects the probabilities of events in node B.” 

3. If node A is a chance or decision node and 
node B is an outcome node, it means that “the 
outcome depends on the predecessor nodes.” 

4. If nodes A and AN are chance nodes and node 
B is a node characterizing a calculated vari­
able, it means that the variable is node B is 
calculated from the numbers representing the 

Nuncertain variable in A and A . 

Influence diagrams are also compact representa­
tions of decision trees, which hide the branches of the 

Fig. 6. Example terrorist influence 
diagram. 

tree and display only its nodes. Every influence di­
agram can be represented by a symmetric decision 
tree, in which all possible combinations of decision, 
events, and outcomes are represented. Conversely, 
all decision trees can be enriched to symmetric trees 
and converted to an influence diagram. 

Fig. 6 shows an influence diagrams for a terrorist 
group’s decision to choose a mode and a target of at­
tack.(32) In this influence diagram, there is only one 
decision node, characterizing the possible counter­
measures, and one outcome node, the consequences 
of a combination of the type of weapon, target, 
and delivery means (shaded event nodes in Fig. 6). 
The other nodes are event nodes, characterizing ter­
rorist states and information available to the U.S. 
government. 

This influence diagram analysis was applied in an 
illustrative analysis to determine the relative likeli­
hood of alternative types of terrorist attacks on the 
United States. 

The results suggested that IED attacks, “dirty 
bombs,” and biological attacks are most likely. 

3.3. Causal Loop Diagrams and Systems 
Dynamic Models 

Representing terrorist behavior in a simulation 
is a unique challenge. When simulating physical 



585 Probabilistic Risk Analysis and Terrorism Risk 

Action by Military 

Number of 

Violent Incidents 

Pressure to Reduce 
Incidents 

Troops 

Impact on Indigenous 
Popluation 

+ 

+ 

+ 

+ 

-

-

Insurgents 

Fig. 7. Insurgency causal loop diagram. 

phenomena one can utilize detailed mathematical 
models to capture the behavior of those systems. 
Models such as those representing flight dynamics 
or fluid structures are well understood and have 
been developed to a point where they closely repre­
sent reality. Some representations have become good 
enough to substitute the models and simulations for 
real-world systems and still attain the same or nearly 
the same training and testing benefits as the actual 
system. The same cannot be said for the terrorist and 
social systems. Human systems are far more complex 
than physical systems and therefore much more diffi­
cult to represent in computational models. However, 
strides have been made in this area and a few points 
are worth mentioning. 

A modeling paradigm that lends itself to cap­
turing the many factors that influence complex sys­
tem behavior is system dynamics (SD). SD is a way 
to model and depict factors contributing to the be­
havior of a system and the causal relationships that 
exist among those factors. To employ this modeling 
method one begins by developing a causal loop dia­
gram that shows these variables and their causal link­
ages. Fig. 7 represents one such causal loop diagram. 

This figure is a simple example of factors that 
are causing a change in an insurgent population. The 
words in the diagram represent the factors linked to 
the insurgent level and the arrows show the causal 
linkages. A plus sign indicates a change in the same 
direction as the source factor change. A minus sign 
indicates a change in the opposite direction. One 
can interpret this diagram as follows. As the num­

ber of insurgents change, this causes a change in the 
number of violent incidents. As those change, pres­
sure on the government to reduce incidents changes. 
This change causes a subsequent response by mili­
tary troops, which leads to a change in how the in­
digenous population responds. Their response then 
contributes to the number of people participating in 
the insurgency. 

Once the causal loop diagram is developed the 
modeler can proceed to the next step in SD, which 
is the development of a stock and flow diagram. This 
type of diagram is derived from the causal loop re­
lationships and represents actual levels and rates of 
change of the system variables. Fig. 8 is the stock and 
flow representation for this insurgent model. 

The rectangular box is the level variable of inter­
est that is governed by creation and loss rates. These 
rates are in turn influenced by the factors noted in 
the causal loop diagram. With an SD model one has 
a graphical representation of the system that clearly 
shows the cause and effect relationships and provides 
a sense of the interdependencies that exist in com­
plex systems. 

Although a simple example, one can see that 
this approach lends itself to modeling many types of 
systems. By including variables that affect the risk 
level of a particular problem, a sense of how changes 
in those variables will affect the risk level may be 
gleaned. 

3.4. Bayesian Network Analysis 

A Bayesian network is a directed acyclic graph 
or belief network where nodes represent random 
variables and the directed arcs indicate probabilistic 
dependence. The arcs in the network define proba­
bilistic dependence between pairs of variables; the 
direction of the arc indicates which of two possible 
conditional probability distributions has been cap-
tured.(33) In describing a network, modelers use tree 
and family metaphors to describe the relationships 
between nodes. Parents are nodes that point to chil­
dren. Ancestors of a node include all nodes that point 
to it directly or indirectly through its parents. De­
scendants are those nodes to which a node points 
directly or indirectly.(34) 

Bayesian networks have been used in the de­
velopment of anti-terrorism modeling. BN have also 
been used to predict distribution for lethal exposure 
to chemical nerve agents such as Sarin. For example, 
in Fig. 9, conditional probability tables are shown for 
each node: Sarin Attack, Exposure Type, Detected 
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Early, and Lethal Exposure. In this notional model, 
Sarin Attack is the root node and parent to Expo­
sure Type and Detected Early. By changing the ev­
idence for a given variable, the inference algorithm 
applies Bayes’s rule and updates the probability dis­
tribution for Lethal Exposure. BN are useful as well 
because as the situation changes, they are easy to up­
date; as the evidence changes, the posterior proba­
bility changes. BN software such as NeticaTM or Ge­
nieTM is well known and can interact and exchange 
data with other models. 

3.5. Game Theoretic Models 

Game theory (GT) is the study of multi-agent de­
cision problems. The classic references include von 

Neumann and Morgenstern, and Nash, though it was 
first considered in the 19th century by Cournot.(35−37) 

Most of the current research and applications are 
conducted by micro-economists, though the subject 
is not confined to that area as there have also been 
several successful applications of the technique in ar­
eas as diverse as computer science and evolutionary 
biology.(38,39) 

An important assumption in game-theoretic 
models is that all the possible utilities of the differ­
ent consequences for each player must be derivable 
and usable within the model. This implies knowl­
edge of the possible goals and aspirations of the dif­
ferent players. Classical game theory only considers 
one set of utilities for each player; however, if there 
is uncertainty about the other players’ intentions, 
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multiple utilities can be modeled using games of 
incomplete information.(40−42) In addition, another 
well-discussed assumption of game theory is the need 
for the players to be rational and intelligent enough to 
work out the consequence of their actions.(43) This as­
sumption can be quite limiting especially when play­
ers turn out to be less sophisticated than first thought 
(e.g., they have misinterpreted the consequences of 
their actions). It has also been questioned whether 
any sensible decisions can be made about terror­
ist behavior for analytical application.(44) However, 
these limiting assumptions have not prevented game 
theory from contributing to analysis in numerous re­
lated areas.(45) 

One response that is often offered in defense of 
the assumption above, that adversary objectives are 
strictly consequence maximizers, is that it defaults 
to the worst case and is therefore “erring” in the 
right direction. The thinking is that planning or de­
fending against the worst an intelligent agent can do 
is not necessarily a bad thing. However, there are 
some limitations to this argument. For example, if re­
sources have to be removed from defending against 
a small-scale attack to help defend against a large-
scale attack this could make attacking on the small 
scale beneficial to the terrorist especially if that was 
the intention anyway. Further, the worst-case conse­
quences for terrorism scenarios (particularly in the 
case of WMD attacks) can be many orders of magni­
tude larger than the assessed expected consequences 
given less-than-optimal choices made by the adver­
sary. This can greatly bias assessment conclusions 
and have strong impacts on planning and defense 
strategies. 

There have been several successful applications 
of game theory within the nuclear, biological, and 
chemical (NBC) arena. For example, Robert Au­
mann, Nobel Memorial Prize in Economics 1995, and 
Michael Maschler developed game theoretic models 
during the Cold War for dealing with nuclear disar­
mament problem.(46) Most of the work using game 
theory within an NBC arena focuses on the human 
element of the problem, to include negotiating with 
terrorists, formation of terrorists groups, and willing­
ness of the domestic population to accept solutions to 
a terrorism problem.(47−50) More recent applications 
of game theory can be seen in Kott and McEneaney, 
who discuss several applications of the game the­
ory to Department of Defense problems and cover 
a wide variety of possible implementations.(51) 

It is important to realize that unlike other ana­
lytical methods (where finding the maximum or min­

imum of some value is the sole goal), there is no “one 
size fits all” solution method to a game. For exam­
ple, possible solution methods include min-max.(35,36) 

Also, these solution methods can produce multiple 
solutions to the same problem (due to the nonlinear 
nature of games). This has led to much research into 
the selection of the solution when multiple solutions 
are presented.(52,53) 

Recent useful applications of game theory have 
been used in analyses supporting the protection of 
multiple targets and to interdependent security.(54,55) 

A very important application of game theory was de­
veloped by Milind Tambe and his colleagues, who 
used the Stackelberg game to develop optimal ran­
domizations of inspections and patrols.(56) Applica­
tions are spreading rapidly to include randomizations 
of patrols and inspections at the Los Angeles Airport 
to randomization of assignments of Federal Air Mar­
shalls, among other areas. 

Game theory is a normative technique as op­
posed to a descriptive or positive one.(43) This means 
that given a game, game theory will tell you how the 
game should be played as opposed how it will ac­
tually be played. This may lead an analyst to gain 
some unexpected and interesting insight into the ter­
rorism problem, which other techniques fail to pro­
vide. However, given the problems of determining an 
opponent’s rationale and intentions, a good solution 
might given by game theory but it could be for the 
wrong game in the first place. 

4. CONCLUSION 

There remains significant debate in the risk anal­
ysis, decision analysis, security, and intelligence com­
munities about the validity of the NRC Committee’s 
underlying assumption that terrorists have the under­
standing to always make optimal choices that max­
imize consequences in the wide array of challeng­
ing technical disciplines required for successful exe­
cution of a bioterrorism attack. Despite decades of 
advances in consequence modeling in the U.S. gov­
ernment, there may be significant uncertainty and in­
accuracy in our own estimates of consequences from 
a WMD attack given a set of initial conditions— 
Can we base our strategic biodefense planning on 
the assumption that terrorists do better? That they 
have the information at their disposal to always make 
consequence-maximizing choices? Given this, elicit­
ing intelligence experts that have a level of under­
standing of what our adversaries are capable of ac­
complishing is a quite reasonable and responsible 
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option; representing this information probabilisti­
cally on an event tree is reasonable as well, noting 
the relevant limitations. 

Professor Yacov Haimes suggests the use of 
multiple techniques for assessing terrorist actions as 
probabilities. He reminds us that “no single model or 
methodology can effectively meet all the challenges 
of tracking terrorism through scenario generation 
and structuring, updating and quantifying the value 
of intelligence, assigning priorities to the scenarios in 
a well-established risk-based methodology, or track 
terrorists’ attack plans.”(26) We agree that multiple 
approaches, perhaps in combination are needed to 
address the complex issue of terrorism, including 
event trees, decision trees, fault trees, Bayesian be­
lief networks, game theory, and agent-based mod­
els, among others. In this context, however, PRA 
and event trees have been shown to be useful ap­
proaches for assessing terrorism risks, especially for 
creating a baseline comparison of these risks. Deci­
sion trees, like PRA and all approaches, have limita­
tions and are not on their own a complete solution. 
In the case of applications for terrorism risk analysis, 
the NRC’s decision tree approach has limitations that 
may be difficult to surmount upon implementation to 
include the fact that adversaries’ objective functions 
and level of ability to predict tree outcomes are un­
known and difficult to estimate. 
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